Capacitated Vehicle Routing and Some Related Problems

Ted Ralphs Joe Hartman Matt Galati

Industrial and Systems Engineering Lehigh University

Rutgers University, November 27, 2001

Outline of Talk

- Introduction and Motivation
- A New Approach
- Complexity and Special Cases
- Valid Inequalities
- Implementation
- Computational Issues and Results
- Future Directions

The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges of a graph G(V, E). Notation:

- V is the set of customers and the depot (0).
- d is a vector of the customer demands.
- k is the number of routes.
- C is the capacity of a truck.

A feasible solution is composed of:

- a partition $\{R_1, \ldots, R_k\}$ of V such that $\sum_{j \in R_i} d_j \leq C, \ 1 \leq i \leq k;$
- a permutation σ_i of $R_i \cup \{0\}$ specifying the order of the customers on route i.

Classical Formulation for the VRP

IP Formulation:

$$\sum_{\substack{j=1\\j \in S}}^{n} x_{0j} = 2k$$

$$\sum_{\substack{j=1\\j \notin S}}^{n} x_{ij} = 2 \qquad \forall i \in V \setminus \{0\}$$

$$\sum_{\substack{i \in S\\j \notin S}}^{i \in S} x_{ij} \geq 2b(S) \quad \forall S \subset V \setminus \{0\}, \ |S| > 1.$$

b(S) = lower bound on the number of trucks required to serviceS (normally $\lceil (\sum_{i \in S} d_i) / C \rceil$).

If $C = \sum_{i \in S} d_i$, then we have the Multiple Traveling Salesman Problem.

Alternatively, if the edge costs are all zero, then we have the Bin Packing Problem.

How Hard is the VRP?

- Test Set
 - TSPLIB/VRPLIB
 - Augerat's repository
 - Available at BranchAndCut.org/VRP
- Largest VRP instance solved: F-n135-k7
- Smallest VRP instance unsolved: B-n50-k8
- Largest TSP instance solved: usa13509
- Time to solve B-n50-k8 as an MTSP: .1 sec
- Why the gap?

Standard Approach

- Standard approaches treat the VRP in much the same way as the TSP.
 - Most known valid inequalities are generalizations from the TSP.
 - Branching rules are also generalizations from the TSP.
- However, the TSP does not seem to be the right template.
- It is the packing, not the routing that makes the problem difficult.

What Makes the VRP Difficult?

- It is the intersection of two difficult problems.
 - Traveling Salesman Problem (Routing)
 - Bin Packing Problem (Packing)
- We don't have an effective, polynomially sized relaxation.
- Current approaches treat it as a routing problem.
- We know very little about the packing aspect.
- We need a different template.
- Idea: Consider flow-based formulations.

Node Routing

- We are given an undirected graph G = (V, E).
 - The nodes represent supply/demand points.
- We consider problems with one supply point (the *depot*).
- A *node routing* is a directed subgraph G' of G satisfying the following properties:
 - -G' is (weakly) connected.
 - The in-degree of each non-depot node is 1.

Capacitated Node Routing

- A capacitated node routing is one in which the demand in each component of $G' \setminus \{0\}$ is $\leq C$.
- Feasible solutions are bin packings.
- This restriction is easily modeled using a flow-based formulation.
- With capacities, we can model the VRP and the Capacitated Spanning Tree Problem (CSTP).

Optimal Node Routing

- Properties of a node routing.
 - It is a spanning arborescence plus (possibly) some edges returning to the depot.
 - There is a unique path from the depot to each demand point.
- We wish to construct a least cost routing.
 - Cost Measures
 - Lengths of all edges in G'.
 - Length of all paths from the depot.
 - Linear combination of these two.

IP Formulation

IP formulation for this routing problem:

$$\begin{split} Min & \sum_{(i,j)\in A} \gamma \; c_{ij} x_{ij} + \tau \; c_{ij} f_{ij} \\ s.t. & x(\delta(V \setminus \{i\})) = 1 \qquad \forall i \in V \setminus \{0\} \\ & f(\delta(V \setminus \{i\})) - f(\delta(\{i\})) = d_i \qquad \forall i \in V \setminus \{0\} \\ & 0 \leq f_{ij} \leq C x_{ij} \; \; \forall (i,j) \in A \\ & x_{ij} \in \{0,1\} \; \forall (i,j) \in A \end{split}$$

where:

- x_{ij}, x_{ji} (fixed-charge variables) indicate whether $\{i, j\}$ is in the routing and its orientation.
- f_{ij} (flow variable) represents demand flow from i to j.

Complexity

- This node routing problem is NP-complete even in the uncapacitated case (fixed-charge network flow problem).
- Polynomially solvable special cases.
 - $-\tau = 0 \Rightarrow$ Minimum Spanning Tree Problem.
 - $-\gamma = 0 \Rightarrow$ Shortest Paths Tree Problem.
 - Note that demands are irrelevant.
- Other special cases.
 - $-\tau = 0 \Rightarrow$ Capacitated Spanning Tree Problem.
 - $-\tau, \gamma > 0 \Rightarrow$ Cable-Trench Problem.
 - $-\tau = 0$ and $x(\delta(\{i\})) = 1 \Rightarrow$ Traveling Salesman Problem.
 - $-\tau > 0$ and $x(\delta(\{i\})) = 1 \Rightarrow$ Variable Cost TSP.
 - $-x(\delta(V \setminus \{0\})) = x(\delta(\{0\})) = k \Rightarrow \mathsf{VRP}.$

Figure 1: Optimal uncpacitated spanning trees with increasing τ/γ ratios

Connection to Other Models

- There are connections to many well-studied models that may provide better templates.
- The basic model can be seen as an instance of the Fixedcharge Network Flow Problem.
- Removing the upper bounds on the fixed-charge variables yields the Capacitated Network Design Problem.
- We have already mentioned several other related combinatorial models.
- We are looking to make stronger connections among these varied areas of the literature.

Valid Inequalities

- Note that any inequalities valid for the TSP, VRP, or CSTP have counterparts here.
- Many can be strengthened by taking advantage of the directed formulation.
- Fractional Capacity Constraints

$$\sum_{i \notin S, \ j \in S} x_{ij} \ge d(S)/C, \ 0 \notin S$$

• Multi-star Inequalities

$$\sum_{i \notin S, j \in S} x_{ij} \ge d(S)/C + \frac{\sum_{i \notin S, j \in S} x_{ji} d_i}{C}, \ 0 \notin S$$

Valid Inequalities

• Rounded Capacity Constraints

$$\sum_{i \notin S, \ j \in S} x_{ij} \ge \lceil d(S)/C \rceil$$

- Generalized, framed capacity constraints
- Combs, Hypo-tours, Clique Clusters
- Path-bin inequalities

Flow Linking

- Note that only the edge variables are required to be integral.
- We use the flow variables to force integrality of the edge variables through *flow linking constraints*.
 - Flow Linking Constraints

$$f_{ij} \leq (C - d_i) x_{ij} \Leftrightarrow x_{ij} \geq \frac{f_{ij}}{C - d_i}$$

$$f_{ij} - \sum_{k \neq j} f_{jk} \leq x_{ij} d_j$$

• Edge Cuts

$$x_{ij} + x_{ji} \le 1$$

C=10

Separation

- The fractional capacity constraints and multi-star inequalities are automatically satisfied.
- Flow linking constraints and edge cuts can be included explicitly or separated in polynomial time.
- Separating rounded capacity constraints is NP-complete, but can be done effectively.
- Heuristic procedures for other classes have not yet been implemented.

Solver Implementation

- The implementation uses SYMPHONY, a parallel framework for branch, cut, and price (relative of COIN/BCP).
- In SYMPHONY, the user supplies:
 - the initial LP relaxation,
 - separation subroutines,
 - feasibility checker, and
 - other optional subroutines.
- SYMPHONY handles everything else.
- The source code and documentation are available from www.BranchAndCut.org

Preliminary Computation: Formulation Issues

- The new formulation is polynomial and yields stronger relaxations initially, but there are drawbacks.
- For the VRP, the formulation creates symmetry.
- It also seems to make branching less effective.
- There is a related "undirected" formulation which uses one fixed-charge variable per edge.
 - This formulation is smaller and performs much better for the VRP.
 - For the CSTP and CTP, however, the undirected formulation is extremely weak.

Preliminary Computation: Results So Far

- So far, the presence of the flow variables does not seem to help.
- Capacitating the model does increase difficulty significantly.
- Consider relaxations of the VRP.
 - The TSP is very easy relative to the VRP.
 - The CSTP is not much easier than the VRP.
- Versions of these models with positive variable (flow) costs are extremely difficult.
 - Is this due to the upper bound or lower bound?
 - The flow linking constraints are important for these models.

	TSP		CSTP		VRP	
problem	Tree Size	CPU sec	Tree Size	CPU sec	Tree Size	CPU sec
eil13	1	0.00	13	0.09	1	0.00
eil22	1	0.11	2	0.10	1	0.02
eil33	1	0.02	69	3.97	2	0.44
bayg29	1	0.12	1	0.04	4	0.32
bays29	1	0.17	15	1.12	5	0.55
ulysses 16.tsp	1	0.00	1	0.03	1	0.01
ulysses 22.tsp	1	0.00	1	0.06	1	0.03
m gr17	1	0.01	5	0.05	1	0.01
gr21	1	0.00	1	0.02	1	0.03
$\mathrm{gr}24$	1	0.02	5	0.27	4	0.40
fri26	1	0.02	1	0.07	8	0.39
swiss42	1	0.02	35	3.66	10	2.45
att48	2	0.30	92	5.04	193	30.10
gr48	2	1.38	1	0.07	16	4.17
hk48	1	0.19	209	22.88	45	21.19
eil51	1	0.16	77	15.11	11	10.79
A - n32 - k5	1	0.02	1	0.07	2	0.20
A - n33 - k5	3	0.81	3	0.21	7	0.90
A - n34 - k5	6	2.06	4	0.40	9	2.63
A - n36 - k5	1	0.03	52	5.17	51	7.95
A - n37 - k5	1	0.03	5	0.22	11	0.97
A - n38 - k5	1	0.10	1	0.13	111	21.80
A - n39 - k5	1	0.30	11	0.99	480	310.92
A - n44 - k6	3	1.72	586	84.08	1185	1525.78
A - n45 - k6	2	0.27	47	6.19	133	145.59
A - n46 - k7	1	1.25	3	0.20	2	1.95
A - n48 - k7	2	2.01	775	507.41	1949	1620.57
A - n53 - k7	1	0.62	115	19.99	619	881.05
B - n31 - k5	1	0.01	3	0.63	1	0.08
B - n38 - k6	1	0.04	5	0.56	14	1.73
B - n39 - k5	1	0.03	188	9.67	1	0.05
B - n41 - k6	1	0.08	216	18.96	20	2.89
B - n43 - k6	1	0.09	1	0.36	138	34.92
B - n45 - k5	1	0.09	22	1.13	18	5.81
			-	0.10	100	

Conclusions and Future Directions

- We have established interesting connections to other wellstudied models.
- The TSP does not seem to be the right template to follow.
- We have yet to take full advantage of the information provided by the flow variables.
- Better flow linking seems to be the key.
- We also need some new branching rules.
- The connection to the network design literature needs to be explored.
- We are also considering decomposition-based methods.