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Outline of Talk

• Introduction and Motivation

• A New Approach

• Complexity and Special Cases

• Valid Inequalities

• Implementation

• Computational Issues and Results

• Future Directions
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The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the

edges of a graph G(V, E). Notation:

• V is the set of customers and the depot (0).

• d is a vector of the customer demands.

• k is the number of routes.

• C is the capacity of a truck.

A feasible solution is composed of:

• a partition {R1, . . . , Rk} of V such that
∑

j∈Ri
dj ≤ C, 1 ≤

i ≤ k;

• a permutation σi of Ri ∪ {0} specifying the order of the

customers on route i.
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Classical Formulation for the VRP

IP Formulation:

∑n
j=1 x0j = 2k∑n
j=1 xij = 2 ∀i ∈ V \ {0}∑
i∈S
j 6∈S

xij ≥ 2b(S) ∀S ⊂ V \ {0}, |S| > 1.

b(S) = lower bound on the number of trucks required to service

S (normally
⌈(∑

i∈S di

)
/C

⌉
).

If C =
∑

i∈S di, then we have the Multiple Traveling Salesman

Problem.

Alternatively, if the edge costs are all zero, then we have the

Bin Packing Problem.
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BPP/VRP Polytope

MTSP Polytope

Feasible MTSP/Infeasible BPP
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How Hard is the VRP?

• Test Set

– TSPLIB/VRPLIB

– Augerat’s repository

– Available at BranchAndCut.org/VRP

• Largest VRP instance solved: F-n135-k7

• Smallest VRP instance unsolved: B-n50-k8

• Largest TSP instance solved: usa13509

• Time to solve B-n50-k8 as an MTSP: .1 sec

• Why the gap?
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Standard Approach

• Standard approaches treat the VRP in much the same way

as the TSP.

– Most known valid inequalities are generalizations from the

TSP.

– Branching rules are also generalizations from the TSP.

• However, the TSP does not seem to be the right template.

• It is the packing, not the routing that makes the problem

difficult.

6



Vehicle Routing and Related Problems 7

735

14

3

5

9

69

13

25

17

12

12

10

2

23

15

16

26

12

12

26

10

22

4

16

8

23

2

24

12
24

4
19

21

7

15

14

18

7

20

18

2

21

21

3

5

20

16

253

10

7



Vehicle Routing and Related Problems 8

8



Vehicle Routing and Related Problems 9

9



Vehicle Routing and Related Problems 10

10



Vehicle Routing and Related Problems 11

1364

18

26
�

11

30
�

21

19

15

16

29
�

26
�

37
�

16

12

31
�

8
�

19

20
�

13

15

22
�

2812

6
�

27
�

14

18

17

29

1322
�

25
�

28
�

27

19

10

12

14

24
�

16

33
�

15

11

18

17

21
�

27
�

19

20

5
�

22
�

12
19

22
�

16

7
�

26

14

21
�

24
�

13

15

18

11

28

9
�

37
�

30
�

10

8
�

11

3
�

1

6
�

10

20

11



Vehicle Routing and Related Problems 12

What Makes the VRP Difficult?

• It is the intersection of two difficult problems.

– Traveling Salesman Problem (Routing)

– Bin Packing Problem (Packing)

• We don’t have an effective, polynomially sized relaxation.

• Current approaches treat it as a routing problem.

• We know very little about the packing aspect.

• We need a different template.

• Idea: Consider flow-based formulations.
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Node Routing

• We are given an undirected graph G = (V, E).

– The nodes represent supply/demand points.

• We consider problems with one supply point (the depot).

• A node routing is a directed subgraph G′ of G satisfying the

following properties:

– G′ is (weakly) connected.

– The in-degree of each non-depot node is 1.
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Capacitated Node Routing

• A capacitated node routing is one in which the demand in

each component of G′ \ {0} is ≤ C.

• Feasible solutions are bin packings.

• This restriction is easily modeled using a flow-based

formulation.

• With capacities, we can model the VRP and the Capacitated

Spanning Tree Problem (CSTP).
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Optimal Node Routing

• Properties of a node routing.

– It is a spanning arborescence plus (possibly) some edges

returning to the depot.

– There is a unique path from the depot to each demand

point.

• We wish to construct a least cost routing.

• Cost Measures

– Lengths of all edges in G′.
– Length of all paths from the depot.

– Linear combination of these two.
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IP Formulation

IP formulation for this routing problem:

Min
∑

(i,j)∈A

γ cijxij + τ cijfij

s.t. x(δ(V \ {i}))=1 ∀i ∈ V \ {0}
f(δ(V \ {i}))− f(δ({i}))= di ∀i ∈ V \ {0}

0 ≤ fij≤Cxij ∀(i, j) ∈ A

xij ∈ {0, 1} ∀(i, j) ∈ A

where:

• xij, xji (fixed-charge variables) indicate whether {i, j} is in

the routing and its orientation.

• fij (flow variable) represents demand flow from i to j.
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Complexity

• This node routing problem is NP-complete even in the

uncapacitated case (fixed-charge network flow problem).

• Polynomially solvable special cases.

– τ = 0 ⇒ Minimum Spanning Tree Problem.

– γ = 0 ⇒ Shortest Paths Tree Problem.

– Note that demands are irrelevant.

• Other special cases.

– τ = 0 ⇒ Capacitated Spanning Tree Problem.

– τ, γ > 0 ⇒ Cable-Trench Problem.

– τ = 0 and x(δ({i})) = 1 ⇒ Traveling Salesman Problem.

– τ > 0 and x(δ({i})) = 1 ⇒ Variable Cost TSP.

– x(δ(V \ {0})) = x(δ({0})) = k ⇒VRP.
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Figure 1: Optimal uncpacitated spanning trees with increasing τ/γ ratios
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Figure 2: Uncapacitated vs. capacitated spanning trees (τ = 0)
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Connection to Other Models

• There are connections to many well-studied models that may

provide better templates.

• The basic model can be seen as an instance of the Fixed-

charge Network Flow Problem.

• Removing the upper bounds on the fixed-charge variables

yields the Capacitated Network Design Problem.

• We have already mentioned several other related

combinatorial models.

• We are looking to make stronger connections among these

varied areas of the literature.
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Valid Inequalities

• Note that any inequalities valid for the TSP, VRP, or CSTP

have counterparts here.

• Many can be strengthened by taking advantage of the

directed formulation.

• Fractional Capacity Constraints

∑

i6∈S, j∈S

xij ≥ d(S)/C, 0 6∈ S

• Multi-star Inequalities

∑

i 6∈S, j∈S

xij ≥ d(S)/C +

∑
i6∈S, j∈S xjidi

C
, 0 6∈ S

21
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Valid Inequalities

• Rounded Capacity Constraints

∑

i6∈S, j∈S

xij ≥ dd(S)/Ce

• Generalized, framed capacity constraints

• Combs, Hypo-tours, Clique Clusters

• Path-bin inequalities

22



Vehicle Routing and Related Problems 23

Flow Linking

• Note that only the edge variables are required to be integral.

• We use the flow variables to force integrality of the edge

variables through flow linking constraints.

• Flow Linking Constraints

fij ≤ (C − di)xij ⇔ xij ≥ fij

C − di

fij −
∑

k 6=j

fjk ≤ xijdj

• Edge Cuts

xij + xji ≤ 1

C=10
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Separation

• The fractional capacity constraints and multi-star inequalities

are automatically satisfied.

• Flow linking constraints and edge cuts can be included

explicitly or separated in polynomial time.

• Separating rounded capacity constraints is NP-complete, but

can be done effectively.

• Heuristic procedures for other classes have not yet been

implemented.
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Solver Implementation

• The implementation uses SYMPHONY, a parallel framework

for branch, cut, and price (relative of COIN/BCP).

• In SYMPHONY, the user supplies:

– the initial LP relaxation,

– separation subroutines,

– feasibility checker, and

– other optional subroutines.

• SYMPHONY handles everything else.

• The source code and documentation are available from

www.BranchAndCut.org
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Preliminary Computation: Formulation Issues

• The new formulation is polynomial and yields stronger

relaxations initially, but there are drawbacks.

• For the VRP, the formulation creates symmetry.

• It also seems to make branching less effective.

• There is a related “undirected” formulation which uses one

fixed-charge variable per edge.

– This formulation is smaller and performs much better for

the VRP.

– For the CSTP and CTP, however, the undirected

formulation is extremely weak.
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Preliminary Computation: Results So Far

• So far, the presence of the flow variables does not seem to

help.

• Capacitating the model does increase difficulty significantly.

• Consider relaxations of the VRP.

– The TSP is very easy relative to the VRP.

– The CSTP is not much easier than the VRP.

• Versions of these models with positive variable (flow) costs

are extremely difficult.

– Is this due to the upper bound or lower bound?

– The flow linking constraints are important for these models.
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TSP CSTP V RP

problem Tree Size CPU sec Tree Size CPU sec Tree Size CPU sec

eil13 1 0.00 13 0.09 1 0.00
eil22 1 0.11 2 0.10 1 0.02
eil33 1 0.02 69 3.97 2 0.44
bayg29 1 0.12 1 0.04 4 0.32
bays29 1 0.17 15 1.12 5 0.55
ulysses16.tsp 1 0.00 1 0.03 1 0.01
ulysses22.tsp 1 0.00 1 0.06 1 0.03
gr17 1 0.01 5 0.05 1 0.01
gr21 1 0.00 1 0.02 1 0.03
gr24 1 0.02 5 0.27 4 0.40
fri26 1 0.02 1 0.07 8 0.39
swiss42 1 0.02 35 3.66 10 2.45
att48 2 0.30 92 5.04 193 30.10
gr48 2 1.38 1 0.07 16 4.17
hk48 1 0.19 209 22.88 45 21.19
eil51 1 0.16 77 15.11 11 10.79
A− n32− k5 1 0.02 1 0.07 2 0.20
A− n33− k5 3 0.81 3 0.21 7 0.90
A− n34− k5 6 2.06 4 0.40 9 2.63
A− n36− k5 1 0.03 52 5.17 51 7.95
A− n37− k5 1 0.03 5 0.22 11 0.97
A− n38− k5 1 0.10 1 0.13 111 21.80
A− n39− k5 1 0.30 11 0.99 480 310.92
A− n44− k6 3 1.72 586 84.08 1185 1525.78
A− n45− k6 2 0.27 47 6.19 133 145.59
A− n46− k7 1 1.25 3 0.20 2 1.95
A− n48− k7 2 2.01 775 507.41 1949 1620.57
A− n53− k7 1 0.62 115 19.99 619 881.05
B− n31− k5 1 0.01 3 0.63 1 0.08
B− n38− k6 1 0.04 5 0.56 14 1.73
B− n39− k5 1 0.03 188 9.67 1 0.05
B− n41− k6 1 0.08 216 18.96 20 2.89
B− n43− k6 1 0.09 1 0.36 138 34.92
B− n45− k5 1 0.09 22 1.13 18 5.81
B− n51− k7 1 0.36 1 0.13 129 32.48
B− n52− k7 1 0.19 1 0.20 26 0.76
B− n56− k7 1 0.10 38 2.20 1 0.29

Total 50 12.73 2606 711.48 5211 4670.22

Figure 3: Preliminary Computational Results
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Conclusions and Future Directions

• We have established interesting connections to other well-

studied models.

• The TSP does not seem to be the right template to follow.

• We have yet to take full advantage of the information

provided by the flow variables.

• Better flow linking seems to be the key.

• We also need some new branching rules.

• The connection to the network design literature needs to be

explored.

• We are also considering decomposition-based methods.
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