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ABSTRACT

Vehicle Routing Problems (VRP) are encountered in many practical situations. VRP with
the added complexity of pick-up and ddiveries will make the planning problem more
difficult. In this paper, we will consider a restricted situation where all delivery demands
start from the depot and all pick-up demands shall be brought back to the depot. In a
traditional VRP setting this can lead to bad utilisation of the vehicles capacities, increased
travel distances or a need for more vehicles. An alternative is to relax the VRP restriction
that all customers shall only be visited once. This relaxation can lead to several different
routing options. One such solution can be a so-called lasso-solution. In such a solution the
first customers on the route are visited twice. On thefirst visit, only the delivery demands
are performed, hence creating more free space on the vehicle. On the way badk to the
depot, the same customers are visited the second time, now in order to perform the pick-up
service. Not very much research has been done on this kind of situation and a lot of new
problems and possibilities arise. In this paper we discuss some of these problems and offer
different heuristics for finding solutions for the problem. The heuristics will be based on
variations of well-known heuristics for the traditional VRP.

Key Words: Vehicle Routing Problem, Pick-up and Delivery, Lasso-solutions,
Heuristics



1. INTRODUCTION

The Vehide Routing Problem (VRP) and its specidisation, the Travelling Sdesman Problem
(TSP), are well-gudied combinatorid optimisation problems with many practica gpplications.
Both VRP and TSP are NP-complete problems and as such they will in generd be difficult
solve to optimdity when the problems become large. For overviews of the said problems, seef.
ex. Bodin & d. (ed.), (1983), Lawler & 4d. (ed.), (1985), Golden and Assad (ed.), (1988) and
more recently Bal & & (ed.), (1995), chapter 4 in volume 7 or Bdl & d. (ed.), (1995),
chapters 1 - 4, volume 8.

Bascaly the VRP describes a planning Stuation where a fleet of vehicles serves a st of
customers, starting from a depot, visting each cusomer one and only one time and then return
to the depot. The customers demands are supposed to be known and the capacities of the
vehicles taken together must be equal to or exceed the customers demands. Many extensions
of this basic planning Stuation have been done thraugh the last decades. One such extension can
be that the customers demands are a mix of pick-up and ddivery demands. A mathematica
mode for this generd sStuation can be found in Golden and Assad, (1988), in the article by
Desrochers & ., pp. 65 - 84.

The present paper concerns a planning Situation where pick-ups and deliveries are important
parts of the problem, but restricted to situations where dl the demands - that is both the pick-up
and the delivery demands - end and start, respectively, a the depot. Hence, there are no
interchanges of goods between the customers.

Let i = 23,......, n denote the customers and i = 1 denote the depot. Further, let
d, and p;, i =23,......,ndenote the delivery and the pick-up demands of the customers,

respectively . Then three different Situations can occur:
Situation 1: For every customer i, d; 3 p;.

In this case any feasble solution to the planning problem using the ddivery demands as in-put
parameters and disregarding the pick-up demands, will be a feasible solution to the extended
problem of taking the pick-up demandsinto consideration as well.

Situation 2: For every customer i, d; £ p; .

In this case any feasible solution to the planning problem using the pick-up demands as in-put
parameters and disregarding the delivery demands, will be a feasible solution to the extended
problem.

Situation 3: For some customers d, £ p; , for other customersit is the other way around.

In this case we cannot use only one set of parameters, since a feasible solution for one set of
parameters only, can very wel be infeasible when the other set of parameters is taken into
consderation. Hence, the problem must be solved taking both sets of parameters into
consderation at the sametime. This can be done for example by using the modd suggested by
Desrochers & d., mentioned above, with afew specidisations in the modd.



However, the classcd VRP and TSP with or without the problem of ddivery and pick-up
demands, have one common tecit premise: Every customer is visited one and only one time
during the time horizon. In the case of a pick-up and ddivery problem, this premise would
lead to an optima solution more expengive than in a pure ddivery or pure pick-up Stuation,
snce the sequence of vigting the customers for one or more of the involved vehicles probably
will change.

The main objective of this pagper isto relax the premise that every customer is visted only once,
or more precisaly, we accept one or two times. Hence, the following two Stuations can occur:

A customer visited twice, will either be visted by two different vehicles or be visited twice by
the same vehicle.

The former case is usudly cdled split-delivery. A description of such a planning situation can
be found in Brenninger-Gothe, (1989). However, the premise of split-ddiveriesisredricted to
congdering ddivery demands (or pick-up demands) only and the multiple vists - asmentioned
above — are performed by different vehicles for the customersinvolved.

This paper will congder a planning stuaion with delivery and pick-up demands from the
depot, where some of the customers can be visited twice by the same vehicle.

This type of solution to a difficult operationd planning Stuation is used in practisefor ingancein
the beverage industry in Norway and probably in other industries and countries as well. For
reviews of the problem see Halskau and Lakketangen, (1997), Haukebg et d., (1998) and
Tjestheim, (1999). Basicdly, avehicle visitsthe fird customer (or afew more) twice. At thefirgt
vidt only the ddivery sarvice is performed. Then dl the other customers are visited in some
order and both types of services are performed. Then the vehicle returns to perform the pick-up
deliveriesfor thefirst customers.

This way of performing the vehicle routing creates - not sub-cycles asin a traditiona VRP
solution - but lassos. In the description above the lasso will consist of a rather large noose (or
loop) and a short spoke with the depot at its end. In principle the loop can of course be made
smdler and the spoke longer, without violating the underlying principle. The necessary knot used
for making the loop is, in the lasso context, denoted as a *honda . However, in our context the
term ‘junction’ seems to be more gppropriate and will be used below. The nodes belonging to
the spoke are denoted spoke nodes and the nodes belonging to the loop, loop nodes

Therest of this paper is organised as follows: In section 2 amore detailed discussion of different
aspects of the lasso solution is discussed. In section 3 we discuss different aspects of what a
feasible solution isin the pick-up and ddivery stting. In section 4 we offer some heurigtics for
this new stuation, based on the lasso solution and the feasibility concepts in the section 3.
Section 5 gives examples for the proposed heurigtics and in section 6 some thoughts about
further research are offered.

2. THELASSO SOLUTION

Initidly we will redtrict ourselves to a Situation where there is only one vehide involved, thet is, a
Stuation directly comparable to the TSP. We will assume that the vehicle's capacity is



aufficiently large to handle both delivery demands and the pick- up demands separately. Further,
we will assume that we have a Stuation & described in Stuation 3 in section 1, that is, for a
least some customers one type of demand can exceed that of the other type and for other
customers it can be the other way around. Further, we will assume a complete undirected graph
G = (E, N) where E denotes the edge set and N the set of nodes.

If the vehicle leaves the depot fully loaded and the route is done in a traditiond TSP way, the
driver may encounter certain problems. Firgtly, he may sooner or later find himself in a Stuation
where the number of units to be loaded onto the truck is larger than the truck can handle.
Secondly, he may have to unload some of the goods to get access the units he wants to deliver
to agiven customer. Thistakestime. In order to circumvent such Stuations the dispatcher or the
driver can try to find another sequence of customers — hoping againgt hope — that the first
customers in this new segquence have less pick-up demands than deivery demands. In this way
aufficient free space on the truck can be created in order to serve the customers to come. This
will usudly cost some money in terms of larger driving distances and more time spent.
Alternatively, the truck can leave the depot not fully loaded in order to have enough free space
to handle the problem of the more or less stochastic pick-up demands. In this way the driving
distance can be kept a a minimum, but the vehicle will not be fully utilised and can lead to a
need for another vehicle. So, in any case, using atraditional TSP cycle may not be practica or
the Hamiltonian cycle used in the TSP solution is not feasble and must be changed, incurring
some extra cost.

Using a so-cdled lasso can solve some of the problems encountered. If we accept that some of
the customers can be visited twice and these customers are the first to be visited, then sufficient
space can be created on the vehicle by only performing the delivery service at the firgt visit, and
meaking the pick-ups at the second vigt. The cost of travelling dong a lasso can of course be
larger than the optima Hamiltonian cycle, but may be smdler than the chegpest feasble
Hamiltonian cyde. Furthermore, it may smplify the problem of loading and unloading the
vehicle, since the access to the ddivery demands will be easier and the stability of the dfferent
routes may increase. In figure 1 below a lasso for one vehicle is shown. The laso has one
spoke node, 5 loop nodes and of course one junction only. The depot is depicted as a square.
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Figure 1. An example of a lasso solution

Note that a Hamiltonian cycle can be regarded as a specia case of alasso, that is alasso with
no spoke or junction. Another extreme case of alasso will be alasso with no loop nodes, i.e. a
path. We need exactly n edgesfor every feasible lasso solution. Note, that the lasso is one-tree,
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graph theoreticaly spesking. Hence, the minimal one-tree will be a lower bound for the
optima solution, but this will probably be a poor lower bound because in the practica
gpplication the edges on the spoke has to be used twice. If the triangle inequdity holds for the
underlying network, it is obvious that the TSP solution — disregarding the delivery and pick-up
parts of the problem — is alower bound for the optimal lasso solution. In Halskau, (2000) one
can find an exadt |P-modd for finding an optima lasso solution for one vehicle,

3. FEASIBILITY OF VRP SOLUTION WITH PICK-UP AND
DELIVERY DEMANDS

As mentioned above, in classcd VRP, a st of customers with known demands is to be
sarviced by afleet of vehides from adepot and the objective isto find a set of routes - aroute
configuration - that service the customers such that the vehicles capacities are not violated and
the tota distance covered by the entire fleet is minimised. It is tacitly assumed that the routes
form sub-cycles dl containing the depot. Hence, each customer is visited by exactly one vehicle.
Thus, a feasible solution to the VRP — a feasble route configuration - consists of a set of

feasible routes, one for each vehicle.

In a pure delivery stuation feesbility of a route depends only on the totd quantity of goods,
delivered to the customers aong the route. Suppose, a vehicle starts from the depot (i = 1) and
travel aong a certain path 1- i, - i, - ...- i, - ... until it reeches node i, . Withthe cumulative

delivery Cgq(iy)at the point i, of the path we understand the total quantity of goods,
delivered to al customers dong the path up to and including node iy, , that is

@) G)= ad,
it P(Lic)

where P(1,i, ) denotes the nodes along the path. The path becomes infeasible as soon as the
vehicle can not perform the deivery service & a next customer i, because the tota
cumulative divery will exceed the vehicle's capadity K, i.e. assoon as

(32 Cyi)EK, adC,(iy.) > K, -
A feadble path creates a feasible route by connecting the last node i, with the depot.

The cumulative ddlivery function value increases monotonoudy aong the route starting from zero
a the depot and obtaining its maxima vaue at the last visited customer i, on the route. We call

this vdue maximal cumulative delivery of the route. The route feagihbility for the pure ddivery
VRP means that the maxima cumulative ddivery of the route does not exceed the vehicle's
capacity. We will refer to thistype of route feasibility as“ delivery-feasibility”.

Let L(i))be the vehicle's load just dter leaving node i, . Assume that the vehicle leaves the
depot with an initiad load L (1) less or equd to the vehicle's capacity. Then the vehide's load &t
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the node i, of the routeis adifference between the initid load and the cumulative ddlivery & this
node, i. & L(i,)=L(D)- Cy4(iy)- The vdue of the initid load in prectice is equd to the
maxima cumulative delivery of the route. The vehicle's load function in the pure ddivery VRP

monotonoudy decreases dong the route from the initid load vaue at the depot to the minimal
zero value at the last customer of the route.

In asimilar way as for the ddivery demand, we now define the cumulative pick-up Cpliy)at

the point i, . By this we understand the total quantity of goods, picked-up from al customers
dong the path up to and indluding node i, , that is

B3  Cuiy= an-
il P(Lix)
The path becomes infeasible as soon as the vehicle can not perform the pick-up service a a
next customer on the pathi.e.

B4  C,(i)EK,andC,(i..) >K,-

The feasible path creates the feasible route by connecting the last node iy, with the depot. The
vehicle's load at every node i, in this case has the same vaue as the cumulative pick-up, i. e.
L(ix) =C (i) - This function monotonously increeses along the route from the zero at the

depot to the maxima vaue at the last customer of the route. We cdl it maximal cumulative
pick-up of the route. The route feasbility for a pure pick-up VRP means in fact that the
maxima cumulative pick-up of the route does not exceed the vehicl€' s capacity. We will refer
to this type of route feasibility as “pick-up-feasibility”.
In the Ingle-vehicle version of the pure VRP, the assumption that the total ddlivery (or pick-up)
demand does not exceed the vehicle' s capacity, i.e.

(35 QdEK orq p£K,

il N il N

guarantees the route feagbility for any Hamiltonian-cycle. The ddivery or pick-up -feeghility
condition (3.5) are necessary and sufficient conditions for route feagbility in a pure VRP
setting. We can see that the ddlivery or pick-up feasibility of the route depends only on the set
of customers assgned to the vehicle. It will not depend on the sequence the customers are
vigted in. In the VRP with ddivery and pick-up demands the Situation is more complex. Here,
the vehicle' s capacity can be violated at any node of the route. Such a violation will depend on
the sequence of the customers. The delivery- and pick- up-feasibility conditions are necessary
conditions for route feasibility, but not sufficient conditions.

The vehide load a any point of the route in this mixed-demand problem is a function of the
cumulative ddivery, the cumulative pick-up, and the initid load vaue, namely

(3.6) L(i) =Cp (i) + L) - Cq (i) -

Therefore, even when each of cumulative demands (3.1) and (3.3) at any node i, of the path do
not exceed the vehicle's capacity, the vehicle's load given by (3.6) can exceed the vehicle's
cgpacity. This means that the path becomes infeasible because the vehicle can not perform
service at anext customer iy .4 onthepathi. e.



(3.7) LG« £ K, and L(ix.1) > K, -

As we see, in the mixed-demand VRP situation thereis anew type of route feesibility that must
be obeyed. This feasihility will depend on the sequencing of the cusomers. We will refer to this
type of route feasibility as “load-feasibility”. In the mixed-demand VRP situation dl the three
types of feasbility must be obeyed. That is, aroute isfeasbleif and only if it is ddlivery-feasible,
pick-up-feasible, and load-feasible.

There have been severa attempts to develop heurigtics for the pick-up and delivery VRP.
These are usudly modifications of well-known procedures for the basic VRP such as the saving
heurigtics, insertion procedures, space filling curves, tour-partitioning procedures. For an
overview of such heurigtics for pure VRP heurigtics, see for example severd aticles in Golden
and Assad (1988). In dl these attempts to modify the classcd heurisics some severe
smplifications are done. One such smplification is that a given node is either a delivery node or
a pick-up node, see Mosheiov (1998). This will hardly be the case in practica applications.
Other amplifications are done by assuming that the pick- up demands are subgtantialy less than
the delivery demands or that the nodes with pick-up demands are postponed to the end of the
route. These heuristics solve the load-feasibility problem for each vehide with the hdp of
different redtrictions and assumptions, but under the traditional premise that every customer is
visted once and only once. Hence, they al end up with sub-cycles. The costs can be
sgnificantly larger than those necessary in a pure VRP Stution.

However, it is not necessary to take al these assumptions. More precisdly, let a set of customer
nodes be given such that the cumulative ddivery and pick up demands are less than a vehicles
capacity, that is we have feedhility in the traditiona sense. Now, it is dways possble to find a
sub-cycle for the vehicle that is delivery-, pick-up- and load-feasible. This can be achieved in
the following way.

Firgt, split the set of nodes into two subsets. The firgt st should consst of dl nodes where the
delivery demands are dtrictly larger than the pick- up demands. Let the second set consists of the
remaining nodes, i.e. nodes where the pick-up demands are larger or equa to the ddivery
demands. Now, let the vehicle leave the depot with dl the ddivery demands and vist dl the
nodes in the first st in any order performing both kind of services. When this is done, the
vehicle travels to any node in the second set and vist the remaining nodes in any order,

performing both services and then return to the depot. As long as a vehicle perform the services
in the first set, the load function L(i) will be monotonoudy decreasing. Switching to the second
s, the load function will be monotonoudy increasing and ending up with the sum dl the pick-up
demands asits end value. Hence the vehicl€ s capacity will never be violated. This meansthat a
classcd solution to the mixed problem is aways possible as soon the both of the two traditiona

criteriain (3.5) arefulfilled that is (3.5) with ‘and’, but the costs can increase.

Allowing customer’s service to be performed by the same vehicle twice a the different points of
the route, it can easily happen that the shortest feasible lasso-route becomes chegper than the
shortest feasible Hamiltonian cycle for the same set of customers. For an example, see Halskau,
(2000).

A lasso-route has to conform to feesibility in the same way as a cycle-route, but the vehicle's
load dong the lasso changes in another way. Along the spoke nodes out from the depot, up to
and induding the junction node, the vehicle's load function decreases monotonoudy from the
initid load vdlue, L(1). In the opposite direction it increases, reeching the maxima cumulative
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pick-up when leaving the last node before returning to the depot. At the loop nodes the
vehicle's load vaue can change unpredictably, as in the classicd Stuation, but will dart a a
lower vaue. This gives alarger probability for a lasso route to become feasible. The difference
between the vehicle's |oad average vaue and the vehicl€' s capacity vaue at the loop nodes will
increase as the spoke length increases. In the extreme case, we may use a lasso with no loop
nodes & al, i.e. apath. Along a path where every customer are visited twice, apart from the last
one, the vehicle's load function will monotonoudy decrease on the way out from the depot and
increase on the way back. Thus, it is adways possible to create the feasible lasso-route by
vaying the length of the spoke. Lassos dlow greater flexibility in cregting feasible routes.
Hence, the shortest feasible routes for some vehicles may be sub-cycles, for others — lassos.

4. HEURISTIC METHODS FOR CONSTRUCTING LASSOS

In this section different heuritics for finding lasso solutions are proposed. These heuristics are
based on well-known heurigtics for the traditiona VRP. The proposed heuristics can come in
many different variations. We have restricted ourselves to some basic idess.

4.1. Heuristics for asingle vehicle

All known tour condruction heurigtics for the pure VRP/TSP cregte the delivery- (pick-up)
feasble routes in the form of a Hamiltonian cycle. Some of the tour congtruction heurigtics, such
as the nearest neighbour or the sweep-agorithm creete the tour starting from the depot - node
by node. They start with a sngle node and sequentidly create a path according to some
criterion until a complete tour is obtained. Insertion heuristics congruct a tour starting with a
sub-cycle. A sub-cycle is extended by adding new nodes, one a atime. The chosen node is
inserted into the existing sub- cycle by some criterion and hence creating anew and alarger sub-
cycle until it includes dl nodes. One of the most well known among iterative construction
methods and most widdly used in practice, is probably the saving heurigtic. Here a path is
created by choosing the arc according to the so-called saving vaue until al nodes are connected
and then the path is closed by connecting the end nodes to the depot. The mgority of these
procedures give no possibility to check the vehicle's load a every point of the tour until it's
congruction is finished. For the pure VRP there is no need to do it - apriori a any point of the
Hamiltonian tour the vehicle's load doesn't exceed the vehicle's capacity. For the mixed-
demand VRP the dtuation is quite different. It is impossible to check route feashility -
specificdly load-feashility - until the whole tour is finished. Thus it is not possble to use dl
these classical heurigtics directly when constructing feasible routes in a mixed Stuation.

The exceptions are the tour congtruction procedures, creating the tour node by node starting
from the depot, hence specifying a sequence. To specify a sequence is necessary if one wantsto
check load feashility. We propose a heuristic based on the adaptation of the nearest neighbour
heurigtic’'s ideas and baptise it the feasible lasso construction procedure. Initidly dl the
customer nodes are assumed to be loop nodes. The vehicle's initid load is equd to the totd
cusomers ddivery demands. The heurigic sequentidly cregtes a path until the vehicle's load



exceeds the vehicle' s capacity and changes the status of one node and its service so that the
created path becomes load-feasible. When al customer nodes are in the path and the status of
each node on the path is identified, nodes are connected in the required sequence so creating a
lasso.

The feasible lasso construction procedure:

Step 1. Use the nearest neighbour heurigtic to find a path such that i, and i, satisfy (3.7)
andL(i;) £K,;" j<k. If nosuchnodes i, and i,,, are found, return to the depot from the last
node on the path and stop. If such nodes i, and i, ,, are found, change the first loop node i, into

a spoke node, ignore its pick-up order and reduce the vehicle sload vaue at the path nodes by
the pick-up demand p, . Go to step 2.

Step 2: Use the nearest neighbour heuritic to extend the path until a new pair i, and i, is
found sdtisfying (3.7) andL(i;) £ K,;" j < k. Change the first loop node on the path into a

spoke node and ignore its pick-up order. Reduce the vehicle s load value at the path nodes by
the pick-up demand of the new spoke node.

Step 3: Repeat Step 2 until the path includes dl the nodes. Connect the end node of the path
with the last created spoke node. Change this node into a junction node. Connect nodes
according to their status and creste the lasso.

The proposed heuristic can come in many different variations. Other criteriafor the choice of the
next node on the path can be used instead of the ‘ nearest neighbour’ criterion.

The lasso congtruction procedure can be easily adapted for a Stuation when an initial route is
given. Assume that the VRP has been solved either to optimality or by a heurigtic disregarding
customers demands. Assume that this solution is not load-feasble. We now propose a
procedure for “re-constructing’ this initid tour into a feasible lasso solution. In the lasso
solution, the vehide will perform delivery service to the customersin the same sequence as on
the basic tour. However, the pick-up service will not be performed smultaneoudy for al the
customers. The vehicle will vigt these customers a second time and perform pick-up servicein
the reverse sequence after dl the ddiveries are made. Initidly al the customer nodes are
assumed to be loop nodes. The vehicle's initid load is equd to the totd of the customers

delivery demands. Thisheuristic isreferred to as.

The lasso improvement procedure:

Step 0. Make a Hamiltonian cycle disregarding the customers demands. Check if this basic
tour isload feasble or not. If it is, Stop. If not, go to step 1.

Step 1. Start from the depot node, perform the full service dong the basic tour until a some
node the vehicle' s load exceeds the vehicle' s cgpacity. Change the first loop node on the tour
after depot into a spoke node, and ignore its pick- up order. Reduce the vehicle sload vaue at
the visited nodes by the pick-up demand of the spoke node. Go to step 2.

Step 2: Continue the service dong the basic tour until a some node the vehicle s load exceeds
the vehicle' s capacity again. Go back, change the first loop node after the spoke on the basic
tour into a spoke node and ignore its pick-up order. Reduce the vehicle's load vaue at the
visited nodes by the pick- up demand of the new spoke node. Go to step 3.



Step 3: Repeat Step 2 until dl the nodes are visited. Connect the last visited node with the last
created spoke node. Change this node into a junction node. Connect al the nodes according to
their status and create the lasso. On the way from the junction node to the depot, perform the
pick-up service.

4.2. Heuristics for several vehicles

In this sub-section, we congder a Stuation with more than one vehicle, i.e. a typicad VRP
stuation. Let v denote a vehicle from the vehicle fleet V and K|, the capacity of the vehicle v.

We assume that no customer demand exceeds the maximum vehicle capacity. With a feasble
route configuration, we will understand a set of feasible routes, one for each vehicle. Let R,

denote the nodes included in the route for vehicle v. We will refer to this feesihility as “ route
configuration feasibility” .

In the pure VRP, the condition that total customers demand (ddlivery or pick-up) does not
exceed the total vehicle capacity, i.e.
(4.9 ad£aKodpfdK,
i"N Y, iTN Y,
is necessary for afeasible route configuration to exigt. Sufficient condition for route configuration
existenceisthat eachroute R, is delivery- (pick-up-) feasible, i.e.

4.2 adEK,ord pEK, "viV.
iR, iR,
In the mixed-demand VRP gtuation (4.1) must be changed from ‘or’ to ‘and’. These are
necessary conditions for route configuration feesibility, and the sufficient conditions are that each
routeisdelivery-, pick-up-, and load-feasible.

The process of finding a feagble route configuration conssts of two problems, preferably
solved smultaneoudy: 1) The assgnment of customers into different clusters (one clugter for one
vehicle) and 2) Sequencing the customers in each clugter. Two different main policies are
avalable if one hasto split the planning problem into the two parts mentioned above: ‘ Clustering
firdt, then routing/sequencing’ or ‘Routing firgt, then clustering’. In the context of a mixed VRP
Stuation the ddivery- and pick-up-feashbility play the main role when clustering takes place.
When in routing — the load-feasibility isthe main objective.

In many of the known heurigtics for pure VRP stuations the routing takes place dong with the
clustering. However, some of theses heurigtics, especialy the saving and insertion heurigtics as
well as the improvement and exchange heuristics are difficult to adapt. These heuridtics can
usudly not be used in their origind form because they don't guarantee route configuration
feaghility or route feasibility (pecificdly load-feashility) of the solution. The policy ‘routing firg,
then dlustering’ works by initidly generating a large route, containing al customers, which then is
partitioned into a number of smdler routes, dl of which are made feasible. This can be quite
difficult in a mixed demand Stuaion. The adaptation of heurigtics using the ‘dugter fird, then
routing’ principle are especidly attractive for the mixed- demand VRP, since the routing problem
is more complicated in such cases than in the pure VRP due to the load-feashility problem. In
the routing phase, it is possible to use the lasso gpproach and construct a feasible lasso for each



clugter. Heuristics proposed in section 4.1 for single-vehicle problems could be used in the
routing phase of the multiple vehicle Stuation after the clustering has taken place.

Route constructing heuristic for multiple vehicles with pick ups and deliveries

Step 1: Creste a route configuration that satisfies (4.2). Check load-feasihility for each route
and vehicle. If dl routes are load-feasible, then stop. For each of the routes not load- feasible,
gotostep 2.

Step 2: Use the lasso improvement procedure on each of the non load-feasible routes from step
1.

The result of this heurigtic will to a large degree depend on step 1, but it is not self evident how
one can creste a route configuration satisfying (4.2). One such possihility is to use the following
sub-routine:

Sep 1: Take avehicle. Creete a path among the nodes not used so far starting from the depot
until apair of nodes i, and i,,, isfound satisfying (3.4). Cdculate C,(i, ). Go to step 2aor 2b.

Sep2a:lf C,(i,) £ K, , return to the depot. Call thisroute R, . L, (1) =C,(i,) Goto gep 3.

Sep2b : If C,(i,)>K,, delete the last nodes on the path one by one until C, (i,) £ K, for
somenode i, . Cdl thisroute R, . L, (1) =C,(i,). Goto step 3.

Sep 3 : If any nodes left, go to step 1. If no nodes are left, stop.

For a homogenous vehicle fled, it is possible to find a lower bound for the number of vehicles
required for a solution and thus ensure efficient utilisation of vehicles capacities. If assume that all
vehicles are identicd with the same capacity K, a smple formula for the minima number k of
vehicles necessary to serve al customers in the mixed-demand VRP can be suggested, namely:
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Given the assumption that vehide fleat is homogenous and has the Sze given by (4.3), a heurigtic
used in step 1 above, can not guarantee route configuration feesbility. Bad utilisation of
vehicle's capacity for one cluster can lead to lack of cgpacity for the remaining clusters. To
solve this feasibility problem on the clustering stage severa optimisationbased heurigtics can be
adapted. They are dl directly based on one or another mathematicad modd of the VRP.
Among these, we have chosen to focus on the generd assgnment heurigtic of Fisher and
Jaikumar (1981) (FJ). The FJ gpproach is based on a vehicle flow formulation of the basic pure
VRP where the number of vehicles is given. Ther reformulation of the basic mode follows a
‘clugter firdt, then routing’ approach. FJ suggested a linear gpproximation of the cost functionin
reformulated modd. The clustering part of their heurigtic is described below and is a rdaively
smple IP-modd, which usudly can be solved quite eeslly.
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The varidbles W, specify whether a vehide v visits a cusomer i (W, =1) or not (W, =0).
Cofficients f,, are computed by first choosing a set of “seed-customers’, s,, v =1,..., k,
each one assgned to one vehicle, and then by computing f,, as the cost of inserting customer i

into the route of vehicle k from the depot to the seed- customer and back to the depot again, i.
e.

(4.7) f, =min {Cli *Cg ™ G0 Gy TGy Csvl}'
The coefficient f,, for a seed-customer s, and the corresponding vehicle v will have the vaue
zero. Seed-customers can be selected either automaticaly or interactively by the dispatcher. In
the case of manua sdlection, it is suggested that the most distant customers dong radia
corridors corresponding to mgor thoroughfares should be chosen. This choice will result in
coefficients  f;,,, which are such that in a solution to the above modd customers assigned to the
samevehicle are located close to each other.

This solution gpproach guarantees route configuration feasibility dreedy at the clustering phase.
The routing phase is then performed by solving a TSP for each vehidle v=1,..., k.

We adapt FJ heurigtic for the mixed-demand VRP by reformulating the generdised assgnment
problem by adding to the model (4.4) — (4.6) the extra congtraints
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Such a modd will guarantee not only route configuration feadhility, but adso pick-up- and
delivery- feaghility of solutions. Never the less, the solution of a TSP for each vehicle over the
assigned customers in the routing phase does not guarantee load-feasibility of the routes. We
propose to use one of the three possihilities below for congruction feasible routes for each
vehicle in routing part:

1) Use the exact lasso mode from Halskau, 2000 iteratively for congtruction of feasible lassos.
2) Use the lasso congtruction heurigtic from section 4.1.

3) Find a TSP solution and if necessary reconstruct the sub-cycle into lasso by applying laso
improvement heurigtic from section 4.1.

It should be noted that the choice of seed-customers usudly is done on spatid considerations
only or with a Sde-glance & customers with very large demands. In the context of load-
feashility problem, customers with large pick-up demands or with large difference between
pick-up and delivery demands can aso be chosen as seed-customers. How to include the
added problem of load feasibility into to the objectiveis not clear a the present stage.

n



5. EXAMPLES

In table 5.1 below one will find a cost matrix for a graph with 14 nodes. In table 5.2 there are
given pick-up and delivery demands for 13 of the nodes, node 1 being the depot.

Table 5.1. Cost matrix for the graph

1 2 3 4 5 6 7 8 9 | 10|11 |12 | 13| 14
1 55 | 75 115 | 170 [ 148 | 145 | 159 | @8 | 101 | 95 | =0 | 58 | 20
2 43 115 | 165 | 155 | 170 | 198 | 142 | 138 | 115 | 5 | 105 | 75
3 & 125|120 | 142 | 181 [ 135 | 123 | 91 | & | 106 | 95
4 56 | 41 | 72 | 124 (102 | 80 | 40 | 66 | 100 | 124
5 41 | 8 | 145 | 145 | 120 | 88 | 121 | 151 | 178
6 45 [ 105 [ 105| 80 | 55 | % | 120 | 153
7 60 | B | 53 | 53 | 8 | 103 | 145
8 63 | 60 [ 91 [ 123 | 104 | 150
9 25| 60 | 72 | 40 | 88
10 40 | 66 | 50 | 95
11 45 | 64 | 98
12 46 | 58
13 47
14

Table 5.2. Pick-up and delivery demands for the customer nodes.

=

Node 213|456 |7 |8]9|10(11(12|13]| 14| am

Delivery 20125|15(40| 20|10 (30(30|25|2 (15|20 | 20 | 290

o

Pick-wp | O |30(30(15|30|15(15|20|35(10|15|15|30 (35| 295

The TSP solution for this network is1 -2 -3 -12 -11 -4-5-6-7-8-10-9-13 —
14 — 1 with cost 641. However, if the vehicle's capacity is taken to be 300 units, thisis an
impossible sequence to use, since the load value exceeds the capacity both at node 2 and node
14. Note that the cumulative pick-up and ddivery demands are within the capacity. Hence the
route is feasible in these two respects, but not load feasble. It is possible to show that the
chegpest Hamiltonian cycle thet is feesible in dl three respectsis1 -13-10-9-8-7-6—
5-4-11-12 -3 -2-14 — 1 with cost 685. Now, let us turn to alasso solution for the
same problem. We assume that there will be no spoke nodes (gpart from the depot). Using the
mode in Halskau, (2000) gives the following optima solution where node no. 14 turns out to be
thejunction: 1 —14 -2 -3-12-11-4-5-6-7 -8 -10 — 9 - 13- 14— 1 with cost
681, which is better than the chegpest feasible Hamiltonian cycle. Further it is easily checked
that the above lasso solution is feasble for the given ddivery and pick-up demands whatever
direction the sequence is performed. The conclusion is that in this respect, relaxing the premise




that every customer shall be visited only once can give a better result than ingsting on a cycle
solution.

Now, gpplying the lasso congtruction heurigtic from sub-section 4.2 we get the following lasso:
1-14-13-9-10-11-4-6-5-7-8-12 -3 -2—- 14— 1 with cost 764. The
junction is gtill node 14 as in the optimal solution above, but the sequencing among the loop
nodes is quite different. The nearest neighbour part of this heurigtic will firgt cregte the path 1 —
14. This violates the vehicle' s capacity since the load then becomes 305. Hence we change the
first node — node 14 into a spoke node and reduce the load value with 35 units, the pick up
demand for node 14. Continuing the from node 14 weget 13-9-10-11-4-6-5-7-8
— 12 — 3. Findly node 2, the last node, is added to the path and we return from node 2 to node
14, changing the status of node 14 from a spoke node to a junction node.

Applying the lasso improvement heuristic, we start with the optima Hamiltonian cycle given
above astheinput cyclein step 0. Thiscycleis not feasible. Starting from the depot the capacity
will be violated dready a node 2. Changing the status of this node to a (potentia) spoke node,
we reduce the vehicle load with the pick-up demand for this node. Having done this the rest of
the cycle can be served and we return to node 2, changing the status to ajunction node. Hence
we havethelasso 1 -2-3-12-11-4-5-6-7-8-10-9-13 -14 — 2 — 1 with cogt
751. If one traverses the Hamiltonian cycle in the opposite direction, and letting node 14 be the
first node after the depot one end s up with the optimal lasso above.

The next examples are deding with a multiple vehicle problem. Using the same graph and
demands as before, we now assume that we have a homogenous fleet of vehicles with
capacities equal to 150 units. Hence we know that we need two vehicles or more to handle the
planning Sitution.

We firg illugrate the heuristic from sub-section 5.2 using the nearest neighbour heurigtic to

create sub cycles that are both delivery and pick- up feesble. This gives the following three sub-
cycles

Route 1: 1— 14— 13-9-10 —11 — 4 — 1 with cost 327 and L(1) = 130units
Route2: 1-12-3-9-2-11-6-5-7— 1 with cost 583 and L (1) = 130units
Route 3: 1— 8 —1 with cost 318 and L (1) = 30units.

It is eadily checked that dl three sub-cycles are load feasible, route 1 taken in the opposite
direction, and can then be used for the pick-up and ddivery problem. Thetotal cost is 1228.

In the last example we will use the FJ goproach. We ge the two cluders
{125,6101314 and{1,3,4,7,8,91112}. By congtruction, these two clusters are both pick-up
feasble and delivery feasible with L(1) = 145units in both cases. Making sub-cycles from the
fird duster, the chegpest load feasible Hamiltonian cycleis1 -5-6 -10-13-14-2 -1
with cost 518. However, thelasso 1 —14 —13 —-10 -6 -5 -2 —14 —1isload feasble as
well, but the cost is only 498. For the last cluster the Hamiltoniancycle1 -3-4-11-7-8—
9 —12 — 1 isloadfeasble with cogt 493. Note that the feasible route configuration conssts of
one lasso and one sub-cycle. The total cost becomes 991.



6. CONCLUSIONS AND FURT HER RESEARCH

In this paper we have shown that the pick-up and deivery problem is substantia more complex
than the traditiond pure VRP — even when redtricted to the case when al demands either
originate a the depot or must be brought back to the depot. The paper also shows that three
kinds of feasible criteria must be obeyed and that load feesibility severdy redtricts the
goplications of traditiond heurigtics for TSP and vehicle routing. Further, the examples show
that the introduction of lassos can give better solutions to the planning problem than solutions
based exclusvely on cycles. In addition lasso solutions make the routes more flexible both in
terms of changing demands and free space on the truck. However, our andysisis preliminary at
this stage and the problems tested have been smadl, but this approach seems to compare
favourably with the classical gpproach in terms of total distance. To the best of our knowledge
no exact model for multi-vehicle lasso problems is described in the literature. Such models can
probably be formulated in severa different ways and it will be of importance to formulate them,
test and compare how they behave with red lifein-put data. This paper represents a preliminary
examindion of the new dternative approach. There is much additional agorithmic work that
needs to be done.
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