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Abstract:

The vehicle routing problem with time windows (VRPTW) is an extension of the well-known

vehicle routing problem with a central depot. The objective is to design an optimal set of routes that

services all customers and satisfies the given constraints, especially the time window constraints.

The objective function considered here combines the minimization of the number of vehicles

(primary criterion) and the total travel distance minimization (secondary criterion). In this paper,

two evolution strategies for solving the VRPTW are proposed. The evolution strategies were tested

on 58 problems from the literature with sizes varying from 100 to 417 customers and 2 to 54

vehicles. The generated new best known solutions indicate that evolution strategies are effective in

reducing both the number of vehicles and the total travel distance.
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1 Introduction and problem formulation

This paper considers the vehicle routing problem with time windows (VRPTW). The VRPTW is an

extension of the well-known vehicle routing problem (VRP). It can be described as follows (see

Domschke 1990):

n customers are to be serviced from a depot with vehicles of the same capacity Q. For each

customer i, i = 1,..., n, there is a demand qi, a service time si and a service time window zi = [ei, fi].

The lower bound e
i
 describes the earliest and the upper bound fi describes the latest time for start

servicing. The demand qi of a customer i is to be covered by exactly one service within the time

window zi. In addition, e0 describes the earliest time for the departure of a vehicle from the depot i,

i = 0, and f0 the latest time for the arrival at the depot. The locations of the depot and the customers

and the shortest distances di,j and the corresponding travel times d'i,j between two locations are given.

The objective is to determine a feasible route schedule which primarily minimizes the number of

vehicles and secondarily the total travel distance.

Customers may not be serviced outside their time windows. However, time window constraints can

still be met if a vehicle reaches a customer before the time window's lower bound. In this case the

vehicle simply has to wait until the earliest time service can begin. Some variables are introduced

for the subsequent consideration of time correlations: with equations (1) and (2) the earliest possible

departure time δi, and with equations (3) and (4) the latest feasible arrival time αi for the depot i = 0

or the customer i, i ≠ 0 (see Solomon et al. 1988). The location i− denotes here the predecessor of

the location i in a route schedule and the location i+  describes the successor.

δ0 = e0 for the depot i = 0, (1)

δi = max {δ i− + d'i−,i, ei} + si for the customer i, i ≥ 1. (2)
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α0 = f0 for the depot i = 0, (3)

αi = min {αi+ − d'i,i+ − si, fi} for the customer i, i ≥ 1. (4)

According to Lenstra and Rinnooy Kan (1981) the VRP and the VRPTW belong to the class of the

NP-hard combinatorial optimization problems. The VRPTW in particular, according to Solomon et

al. (1988) is still "much more difficult" to solve than the VRP. It is therefore no surprise when

primarily heuristic procedures are suggested for solving larger problem instances of the VRPTW. In

the recent past, quite good results have been achieved for the VRP and VRPTW respectively, above

all with metaheuristics such as tabu search (see Osman 1993, Taillard et al. 1996, Chiang and

Russell 1997, Liu and Shen 1998), simulated annealing (see Chiang and Russell 1996) and genetic

algorithms (see Thangiah et al. 1991). These metaheuristics have a common feature: they guide a

subordinate heuristic in accordance with a concept derived from artificial intelligence, biology,

mathematics, nature or physics to improve their performance (see Osman 1995). The group of

metaheuristics also includes the evolution strategies (ES), since these strategies proceed in

accordance with a concept borrowed from biological evolution and guide subordinate problem-

related heuristics. The solution of the VRPTW by means of ES has not yet been reported in the

literature. However, Ablay (1979) and Nissen (1994) apply ES to other combinatorial optimization

problems.

ES were developed in the 1970s by Rechenberg (1973) and Schwefel (1977) to solve optimization

problems with real-value variables. Especially the (µ, λ)-evolution strategy from Schwefel (1977)

seems to be a particularly suitable method, since it evolves its so-called strategy parameters

according to the ES metaphor. For this reason it will be used below to solve the VRPTW, after

some fundamental characteristics of ES as well as a general metaheuristic based on the (µ, λ)-

evolution strategy have been introduced. This general metaheuristic will be adapted to the VRPTW.
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Finally, the resulting procedure will be described in detail and subjected to a comparative test. The

test will be carried out with the problem instances published by Solomon (1987) and Russell (1995).

2 Evolution strategies as metaheuristics

2.1 Fundamentals of evolution strategies

Together with genetic algorithms (GA) and evolutionary programming (see Fogel 1992) evolution

strategies form the class of evolutionary algorithms (see Nissen 1994). On the other hand, ES and

GA also represent metaheuristics. Hence, they may also be described as evolutionary metaheuristics

to distinguish them from other metaheuristics.

Similarly to GA, ES manipulate populations of individuals, which represent solutions of an

optimization problem. Due to an integrated selection mechanism the iterative calculation of a

sequence of populations favors the generation of better solutions. Differences to GA exist with

regard to the representation of the problem and the search operators. ES dispense with the encoding

of individuals and instead simulate the evolution process directly on the level of problem solutions.

Accordingly, the search operators manipulate direct problem solutions and not coded individuals. In

contrast to the GA, mutation operators are given a superior role in comparison to the recombination

operators (see Gehring and Schütz 1994).

Originally, ES were developed to solve optimization problems with real-value decision variables. In

the case of the optimization of an objective function F(X) with n real-value decision variables xi,

i = 1,..., n, an individual can be represented as an n-dimensional real-value solution vector X ∈ IRn.

Various evolution strategies were developed to manipulate populations of real-value solution
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vectors, e.g. the (1+1)-evolution strategy from Rechenberg (1973) and the (µ, λ)-evolution strategy

from Schwefel (1977). The differences between these approaches concern primarily the population

size, the representation of individuals and the search operators. The (1+1)-evolution strategy works

with a population size of only a single individual, the (µ, λ)-evolution strategy with a population

size of several individuals. In addition, the (1+1)-evolution strategy dispenses completely with a

recombination operator and generates the offspring exclusively through mutation of real-value

solution vectors. In contrast to the (1+1)-evolution strategy the (µ, λ)-evolution strategy uses an

extended representation of individuals; in addition to the real-value solution vector each individual

includes a second component, a real-value vector σ of the so-called strategy parameters. Both

components are generally evolved by means of recombination and mutation operators. The

following more detailed remarks are restricted to the (µ, λ)-evolution strategy.

Include Figure 1 here.

The (µ, λ)-evolution strategy is based on the reproduction process shown in Figure 1. Starting from

a population P(t) with µ individuals a number of λ, λ > µ, offspring is generated. To calculate the

offspring, several individuals, called parents, are selected from P(t). Selections are random and put

aside. The probability of selection is the same for each individual and independent of the fitness

values F*(X) of the individuals. In the simplest case the fitness values F*(X) of the individuals

correspond to the objective function values F(X). Through recombination of the selected parents

exactly one offspring is calculated and then subjected to a mutation. Finally, µ individuals of the

following population P(t+1) are selected from the set of λ offspring generated in this way. Now the

fitness values F*(X) serve as the selection criterion; i.e. the µ individuals with the highest fitness

values F*(X) are selected. Because the parents are not involved in the selection process,

deteriorations during the search are permitted. Hence, the search may escape from bad local optima.
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By means of the coefficient µ/λ the global character of the search, explorative or exploitative, can

be influenced. A high value for this quotient leads to a low selection pressure. Accordingly, the

individuals in the calculated following populations display greater diversity and the character of the

search tends to be more explorative (see Hoffmeister and Bäck 1992).

The superior role of the mutation mechanism has already been mentioned. The solution vector X of

an individual I is mutated through small random variations of X by means of a mutation rule.

Critical is the choice of the mean size of the variations, the so-called mutation step size. A

characteristic feature of the (µ, λ)-evolution strategy is the dynamization of the mutation step size in

a way that enhances the success of the search. For this purpose the representation of an individual is

extended by a vector σ of strategy parameters as follows:

I = (X, σ), with: X = {xi| i = 1,..., n}, σ = {σi| i = 1,..., n}. (5)

Each element xi of the real-value solution vector X is allocated exactly one element σi of the real-

value vector σ of strategy parameters. In the given case, the strategy parameters σi, i = 1,..., n,

represent standard deviations of normally distributed random variables with the expectation value 0.

An individual is mutated by varying the elements of the solution vector according to the mutation

rule in equation (6).

X' = X + NORM (0
K

, σ), with: NORM (0
K

, σ) = {NORMi (0, σi)| i = 1,..., n}. (6)

For each element xi of the solution vector X the value of the variation therefore represents a

realization of the appropriate normal distribution NORMi (0, σi).

In the reproduction process, both parts, X and σ, of the respective parents are now inherited by the

generated offspring. Along with the solutions, the values of the strategy parameters, which were
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used to generate these solutions, are passed to the following population. This enables a twin-track

learning process which tends to lead to better solutions and to more suitable values for the strategy

parameters or mutation step sizes as well. According to the ES metaphor the vector σ of the strategy

parameters is evolved through recombination of the strategy parameters of the respective parents.

2.2 A general evolutionary metaheuristic for combinatorial optimization problems

The described (µ, λ)-evolution strategy cannot be applied directly to combinatorial optimization

problems since the discreteness of the solutions of combinatorial optimization problems is not

considered. The individual components of the (µ, λ)-evolution strategy, namely

- the (µ, λ)-selection mechanism on the meta-level,

- the representation of individuals composed from solution vectors and strategy parameters and

- the local search in the solution space realized by means of subordinate heuristics, such as, for

example, mutation,

are partly to be modified.

The strategy of the (µ, λ)-selection abstracts completely from the concrete representation of the

problem, and for this reason can be taken over without any amendments.

Amendments are unavoidable with the representation of individuals. The solution vector X consists

of n discrete elements. In the following we abbreviate a discrete solution vector to S, SVector or SV.

Depending on the problem, it may be practical to divide the vector elements into groups. The

previous form of the vector σ of the strategy parameters cannot be retained, but the idea behind it of

mutation and adaptation of the mutation step size can be retained. The vector σ is now replaced by
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information which "encodes" the transition from a given solution S to a solution S' in the

neighbourhood N(S) of S. Since two optimization criteria must be taken into account, additional

information is to be taken over in the representation of the individuals concerning the search

direction. When a new solution S' ∈ N(S) is generated, the weight may then be placed more on the

first or on the second optimization criterion.

The heuristic used on the level of the local search covers two conceptual elements, a neighbourhood

concept and a rule for generating neighbourhood solutions. The neighbourhood N(S) of a solution S

consists here of the set of feasible solutions that can be generated from S by means of a rule. The

rule for generating neighbourhood solutions can therefore be conceived as a "move-generation

mechanism" according to Osman (1995). Osman states:

"A move-generation mechanism generates the set of neighbours changing one attribute or a

combination of attributes of a given instance S. A move-generation is a transition from a solution S

to another solution S' ∈ N(S) in one step (or iteration)".

If a move defined in this way effects only relatively minor amendments of a given solution S, it can

be understood as a mutation operator. A simple concept for varying the mutation step size is now

obvious: when a new solution S' is generated either only a single move is carried out or several

moves.

A modification of the neighbourhood concept would be necessary if a "solution-generation

mechanism" based on Osman (1995) were used to generate a solution, because this mechanism

works on several solutions:



9

"A solution-generation mechanism works on a set of solutions rather than a set of attributes for a

single solution".

Here, the "solution-generation mechanism" is not used to generate new solution vectors, but it is

used to adapt the mutation rule or the "move-generation mechanism". This is always possible if a

suitable representation form, for example as a sequence vector, can be found for a move. In this

case, the different crossover operators described in the literature can be used for the recombination

of the mutation codes of two individuals. For example, the cycle crossover from Oliver et al. (1987)

or the uniform order-based crossover from Davis (1991).

Taken together, this results in the concept of an evolutionary metaheuristic for combinatorial

optimization problems illustrated in Figure 2.

Include Figure 2 here.

On the meta-level, the sequence of generated populations is controlled by means of the (µ, λ)-

selection. As before, the global character of the search can be varied through the quotient µ/λ. In the

same way, a twin-track learning process aimed at the improvement of the solutions is also enabled:

On the one hand, the mutation of individuals in combination with the (µ, λ)-selection tends to lead

to better solutions; on the other hand, the recombination of the mutation codes of individuals, again

in combination with the (µ, λ)-selection, tends to lead to more suitable realizations of the mutation

codes.

A simplified variant of the outlined metaheuristic results if the recombination of the mutation codes

is dispensed with. In this case, there is only a single-track learning process. On the other hand, more

complex variants are also conceivable. For example, the mutation code generated through
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recombination may be subjected additionally to a mutation. Only two variants are dealt with below,

the version shown in Figure 2 and the simplified version.

3 Adaptation of the general evolutionary metaheuristic to the VRPTW

In the following two sections the two versions of the general evolutionary metaheuristic are adapted

to the VRPTW: the simplified version in Section 3.1, and in Section 3.2 the version shown in Figure

2. The adaptation concerns primarily the representation of individuals and the design of the

mutation operators and of the recombination operator. The procedural components concerning the

evaluation of individuals and a refining of the (µ, λ)-selection are the same in both cases. For this

reason they are treated separately in Section 3.3. Finally, the configuration of the two evolution

strategies is described in Section 3.4.

3.1 Evolution strategy ES1

The recombination of the mutation codes is not included in evolution strategy ES1. Hence, a new

individual is generated as illustrated in Figure 3. In the following the representation of an individual

is first stated more precisely, and then the mutation rule.

Include Figure 3 here.

In Figure 3 SVector denotes a feasible solution of the VRPTW, i.e. a feasible route schedule. As

demonstrated in Figure 4, a route schedule can be represented in the form of a discrete solution

vector. For reasons of clarity, the connections with the depot of the first and final customers are

omitted in Figure 4a).

Include Figure 4 here.



11

The strategy-orientated parameters NMoves and RElimination serve the following purposes:

- NMoves indicates how often the move operator used is carried out during a mutation.

- The binary parameter RElimination ∈ {0, 1} is used to code the search direction within a

mutation step. The value 0 denotes the pure travel distance minimization within a mutation step

and the value 1 denotes a two-phase process in which, subsequently to an undirected search

step, an attempt is made to minimize the number of vehicles.

This means that the parameter NMoves sets only the mutation step size and has no further influence

on the sequence of a mutation. As Figure 3 shows, the values of NMoves and RElimination are

passed on without variation from one individual to a new individual. Multiple experiments, in

which the strategy parameters where evolved concurrently with the solutions, delivered no better

results.

In order to reproduce an individual its route schedule SVector is varied by means of a mutation rule.

The result is a feasible route schedule SVector' ∈ N(SVector) selected randomly from the

neighbourhood N(SVector). With regard to the choice of a suitable neighbourhood structure, the

more complex concept of the "compound move" is used. Compound moves consist of different

simple move operators. According to Glover (1991) and Osman (1993) they represent a particularly

effective concept. In the given case, two simple move operators are integrated in a compound move:

- a move operator randomly selected from the set MoveSet = {Or-opt move, 2-opt* move,

1-interchange move};

- a modified Or-opt move operator, which serves the aim of reducing the number of vehicles

through elimination of a route.
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However, this compound move is only applied to special individuals, in the case of the other

individuals the compound move is reduced to a simple move. For details see Figure 5, in which the

complete mutation rule is described.

Include Figure 5 here.

As Figure 5 shows, a compound move is only carried out if the mutated individual explicitly

demands this. A compound move only leads to success if it is actually possible to eliminate the

route. In other case, the number of routes is not changed. Restricting the compound move to a

subset of individuals is meaningful, because eliminating a route often leads to an increase in the

total travel distance.

Some remarks on the move operators are necessary to define the mutation rule even more closely.

The operators of the set MoveSet are due to the following authors: The Or-opt move is based on an

exchange concept of Or (1976). The 1-interchange move was introduced by Osman (1993) and the

2-opt* move by Potvin and Rousseau (1995). In the following the Or-opt move will be described

briefly as an example.

An Or-opt move consists of a removal and an insertion. With these operations a customer or a

sequence of customers is removed from a route R in a route schedule SVector and then inserted at

another position in SVector. Here, the customers to be removed as well as the insertion position are

determined at random. If there is only one customer the procedure is as follows:

- A customer k is removed from the route R, R = (0,..., k−, k, k+,..., 0), by serving the remaining

customers in route R in the original sequence with the exclusion of customer k. The resulting

route R1, now reduced by customer k, reads: R1 = (0,..., k−, k+,..., 0). If route R is a single route,
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i.e. the vehicle serves customer k only, customer k is removed from route R by eliminating the

route.

- A removed customer k is inserted into a route R2 of the route schedule by extending the set of

customers being served in route R2. If the insertion position is denoted by two consecutive

locations (i, i+), route R2 reads: R2 = (0,..., i, i+,..., 0). The insertion of customer k results in

route R3 = (0,..., i, k, i+,..., 0). In principle, it is not impossible that customer k is placed in the

route from which he was removed. However, the insertion position may differ from the removal

position.

According to Figure 5, the modified Or-opt operator tries to compute a route schedule with a

reduced number of vehicles. For this purpose an attempt is made to eliminate the route

R ∈ SVector' in the current route schedule SVector' which has the lowest number of customers, in

the following denoted as "smallest" route. Hence, customer insertions are defined more precisely as

follows: the customers of the smallest route R are inserted in accordance with their service sequence

consecutively in a route R' ≠ R, R' ∈ SVector', − provided the constraints of the VRPTW are not

violated. If there exist alternative insertion positions (i, i+) in other routes for a customer

k ∈ R, two cases must be differentiated:

- If an index i+ denotes a customer, the shift in the earliest possible departure time for customer

i+ resulting from the insertion is used as decision criterion.

- On the other hand, if an index i+ denotes the depot, the shift in the earliest possible arrival time

at the depot i+ serves as decision criterion.

The insertion position with the shortest shift in time PTk(i, i+) is selected:
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If there exist several feasible insertion positions with the same minimal shift times, the insertion

position is selected for which the additional travel distance PDk(i, i+) is a minimum. PDk(i, i+) is

determined as follows:

PDk(i, i+) = di,k + dk,i+ – di,i+. (8)

If no customer in route R can be inserted in another route R' ≠ R, R' ∈ SVector' without violating the

constraints then the route schedule SVector' remains unchanged.

The search behavior of the evolution strategy ES1 can be changed by varying the strategy

parameters NMoves and RElimination. Higher values for the mutation step size favor escapes from

bad local optima, whereas lower values lead to a more intensive local search. An intensification is

indicated, for example, if − for a fixed number of vehicles − the total travel distance is to be

minimized. Greater values of NMoves will therefore be connected with the aim of minimizing the

number of vehicles (RElimination = 1), and lower values with the aim of minimizing the total travel

distance (RElimination = 0).

3.2 Evolution strategy ES2

Evolution strategy ES2 is based on the concept of an evolutionary metaheuristic shown in Figure 2.

This concept has already been explained and will be adapted below to the VRPTW. The interplay

between recombination and mutation, and the design of the recombination process and the mutation

rule are in the foreground.
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Include Figure 6 here.

Figure 6 shows how recombination and mutation interlock. Starting from three parents, an offspring

is generated in two consecutive steps. The temporary offspring found after the first step establishes

the connection between both steps.

In the first step, a temporary offspring is generated through

- recombination of the mutation codes of two parents and take over of the resulting mutation

code MC'3 in the temporary offspring;

- copying the solution vector SV3 and the mutation direction RE3 of a third parent into the

temporary offspring.

The generation of the mutation code MC'3 of the temporary offspring imitates the principle of sexual

reproduction. In contrast, the subsequent copying procedure is based on the principle of biological

replication, i.e. doubling of genetic material. After the recombination no progress has been achieved

in the solution space. The generated temporary offspring represents the same solution as the third

parent.

For the purpose of recombining two mutation codes proven crossover operators from the area of

genetic algorithms may be used. Here, the uniform order-based crossover, proposed by Davis

(1991), was selected. This operator is tailored to codes that represent permutations or sequences.

In the second step, the temporary offspring is transferred to the definite offspring by subjecting the

inherited route schedule SV3 to a mutation. In this case, a mutation covers a set of removal and

insertion operations whose sequence is controlled through the mutation code. In contrast to the

evolution strategy ES1 the mutation code consists here of a so-called sequence vector of length 2n.
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The elements of the sequence vector represent customer numbers; each customer number occurs

exactly twice in a sequence vector. The first occurrence of a customer number identifies a removal

operation and the second an insertion operation. The following applies to the removal or insertion of

a customer:

- The removal of a customer is performed exclusively with the removal operation of the Or-opt

operator.

- The insertion of a customer is based on the following insertion heuristic: For each route R ∈

SV3 of route schedule SV3 it is proved whether an extension of the route R by inserting customer

k is feasible. If an extension of one or more routes by inserting customer k is feasible, the

insertion position is selected so that the additional travel distance according to equation (8) is

minimal. If the insertion of customer k into each of the routes violates the given constraints, a

single route serving customer k is added to the route schedule.

Eventually, the removal and insertion operations are followed by an additional operation:

- If the parameter RElimination of the generated offspring has the value 1, a modified Or-opt

move is carried out in the same way as with evolution strategy ES1. Here as well the target is to

reduce the number of vehicles by eliminating a route.

Include Figure 7 here.

Figure 7 illustrates the control of removal and insertion operations with a sequence vector. The

vector is processed from left to right. At each position it is checked whether a customer number

occurs for the first or second time. In the first case a removal operation is carried out and in the

second an insertion operation. In Figure 7 the first occurrence of the customer numbers 8, 4 and 3

causes the removal of these customers from the route schedule. Subsequently, the second
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occurrence of customer number 4 causes the insertion of this customer in the route schedule.

Finally, customers 1, 8 and 9 are inserted in the route schedule.

The removal and insertion operations carried out according to a sequence vector can neutralize each

other's effects to different degrees. Depending on the extent of this compensation, variations to the

route schedule or the mutation steps with different sizes occur randomly. In the course of the

algorithm, however, the convergence of the mutation codes leads to reduced mutation step sizes.

Initially, therefore, the mutation step sizes are greater and towards the end of the search they are

smaller.

3.3 Evaluation and selection of individuals

As to the evaluation and selection of individuals in the reproduction process, the above arguments

result in the following concept: from λ, λ > 0, generated individuals, the µ, µ < λ, individuals with

the highest fitness values F*(SVector) are inserted into the following population. Here, F*(SVector)

represents a lexicographic order relation which takes into account the number of vehicles with first

priority and the total travel distance with second priority. However, a test of this concept led to

unsatisfactory results for two reasons:

- If, for a given number of vehicles, the further search direction is determined exclusively

through the secondary criterion, i.e. minimization of the total travel distance, the achievement

of the primary criterion, i.e. minimization of the number of vehicles, may be impeded. Retzko

(1995) shows that usually the total travel distance increases if the number of vehicles falls

below a defined value. Vice versa it appears plausible that minimization of the total travel

distance does not inevitably lead to a reduction in the number of vehicles.
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- The given neighbourhood structure seems not to favor the achievement of the primary

optimization criterion. On the one hand, new solutions are generated by subjecting existing

individuals to relatively minor variations. On the other hand, a route usually serves a larger

number of customers. Hence, the generation of a new route schedule will very rarely lead to a

reduction in the number of vehicles. This applies all the more as the time window constraints

render it more difficult to distribute the customers over a smaller number of routes.

Therefore, the question arises how the search can be guided in a direction reducing the number of

vehicles. For this purpose, a third evaluation criterion is introduced, which consists of two indices.

Both indices refer to the smallest route R of a route schedule SVector and estimate in different ways

how easily route R can be eliminated in the course of the further search.

The first, simple index is the number CR of the customers served in route R. It is assumed that a

lower value CR favors the elimination of route R.

The second index is the so-called "minimal delay" DR for all customers on route R. The property DR

results from the addition of appropriate customer-related values Dk over all customers k, k ≠ 0, of

route R:

∑
∈

=
Rk

kR DD . (9)

The property Dk denotes the "minimal delay" caused by inserting customer k ∈ R into another route

R', R' ≠ R, of the route schedule.

When a customer k is inserted between two consecutive locations i and i+ in a route R', three cases

must be differentiated:



19

(1) There exist several other routes that can be extended by the service for customer k without a

violation of the relevant constraints. In this case there is no delay and Dk = 0.

(2) There is no other route that can be extended by the service for customer k without a violation of

the appropriate vehicle capacity constraint. In this case, customer k cannot be inserted into

another route and Dk is set to infinite: Dk = ∞.

(3) There exist one or more routes that can be extended by the service for customer k under the sole

violation of time window constraints. In this case, the so-called "delay" Dk(i, i+) is calculated

for all pairs of consecutive locations (i, i+) between which the customer k can be inserted.

Dk(i, i+) is composed by adding the two time shifts V1k(i, i+) and V2k(i, i+). V1k(i, i+) indicates

how many time units the time window's upper bound fk for the inserted customer k is delayed

through the insertion of customer k in route R'. And V2k(i, i+) indicates by how many time units

- the latest feasible arrival time αi+ for customer i+, if i+ denotes a customer, or

- the latest feasible arrival time α0  at the depot, if i+ denotes the depot,

is delayed through the insertion of customer k in route R'. In detail:

Dk(i, i+) = V1k(i, i+) + V2k(i, i+), whereby: (10)

V1k(i, i+) = max{δi + d'i,k − fk, 0}, (11)

V2k(i, i+) = max{max{δi + d'i,k, ek} + sk + d'k,i+ − αi+, 0}. (12)

The formulae for computing V1k(i, i+) and V2k(i, i+) are illustrated by the example shown in

Figure 8. In this example, customer k = 4 is inserted between locations i = 2 and i+ = 3.

Include Figure 8 here.

After customers 1 and 2 were serviced within their time window, the vehicle reaches the

inserted customer k = 4 outside the service time window. Service for the customer is delayed, in
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relation to the latest feasible start of service, by the forward shift in time V14(2, 3) shown. By

means of backward calculation starting from the depot the latest feasible arrival time α3 at

customer i+ = 3 can be calculated for the case that the vehicle returns to the depot just in time.

However, if the vehicle returns after time α3, as is assumed in Figure 8, there is a positive time

difference, the forward shift in time V24(2, 3) also shown in Figure 8.

Taking this differentiation into account, the rule for determining the "minimal delay" Dk for a

customer k ∈ R can be given. Let Ak denote the set of all pairs of locations (i, i+) which have to be

considered in case (3), then:

(3). case for the  
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(1), case for the
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(13)

The index DR is only a very rough estimate with regard to the question how easily route R can be

eliminated. On the one hand, interdependencies of time, which may arise when all customers from

route R are inserted simultaneously into other routes, are not taken into consideration. On the other

hand, the determination of property Dk is based on an optimistic concept. A pessimistic concept

would also be plausible, or an expectation concept.

In the third evaluation criterion, which is designated below as the "terminability of the smallest

route", the two indices CR and DR are considered in the sense of a lexicographic order relation. The

evaluation of an individual is the higher, the smaller the number of customers CR is, and, in the case

of individuals with the same number of customers, the lower the value DR is.
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For the inclusion of the third evaluation criterion in the evaluation rule F*(SVector) there exist

several alternatives. For example, the previous lexicographic order relation can be extended by

considering the terminability of the smallest route with third priority. However, more success is

promised by a procedure in two phases with different search directions. Kursawe (1992) reports on

the successful application of a multiphase (µ, λ)-selection in multicriterion optimization with

evolution strategies. A two-phase concept for evaluation and selection was realized in conformity

with Kursawe:

- In the first phase, the generated λ individuals of a generation are transformed to a lexicographic

order which takes into consideration the number of vehicles with first priority and the

terminability of the smallest route with second priority. The κ, κ < µ, individuals with the best

evaluation are taken into the following population.

- In the second phase, once again all λ individuals of a generation are transformed to a

lexicographic order. After the number of vehicles, however, the total travel distance is now

taken into consideration with second priority. The µ − κ individuals with the best evaluation are

taken into the following population.

Depending on the choice of the quotient κ/µ the minimization of the number of vehicles is

emphasized more or less in comparison to the minimization of the total travel distance.

3.4 Configuration of the evolution strategies ES1 and ES2

The configuration of the evolution strategies ES1 and ES2 concerns the initialization, the (µ, λ)-

selection and the termination. These elements were specified as follows:
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(1) Initialization of the starting population: the individuals of a starting population were generated

both for ES1 and for ES2 by means of a stochastic approach which was based on the savings

algorithm from Clarke and Wright (1964). In this approach, the stochastic element consists of

the random selection of savings elements from the savings list. For both evolution strategies,

ES1 and ES2, the values of the parameter RElimination are determined randomly, and in the

case of strategy ES2 the mutation codes of the individuals in the starting population were also

determined as random sequence vectors. Finally, for evolution strategy ES1 the mutation code,

i.e. the mutation step size NMoves, for each individual in the starting population was chosen

randomly from the interval [1,..., 10]. As tests have shown, evolution strategy ES1 reacts

relatively robustly to changes of the upper bound for this parameter. However, values which

were selected too low for NMoves frequently led to premature convergence against local

optima.

(2) (µ, λ)-selection and population size: the values chosen for λ, µ and κ are given in Table 1. Here

a suggestion from Schwefel (1987) was taken into account which recommends a value of µ/λ ≈

1/7 for the quotient µ/λ. The reason for selecting relatively large parameter values in ES2 is as

follows: low values of the population size favor a premature convergence of the sequence

vectors with the consequence that the search ends rapidly in local optima.

Include Table 1 here.

(3) Termination condition: all computations were terminated after a given time limit TL = 1800

seconds. However, at a much earlier time solutions were usually found which could not be

improved with regard to the number of vehicles and the total travel distance; the respective

computation times are reported in Section 4.2.
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4. Evaluation

4.1 Test problems

In order to demonstrate the solution behavior of the evolution strategies for different problem sizes,

two groups of problem instances were selected. These groups differ in the number of customers per

instance.

The first group consists of the 56 problem instances described by Solomon (1987). Each instance of

this group comprises 100 customers. The location of the customers and the depot are given in a

Cartesian coordinate system. The location coordinates are integer values between 0 and 100.

The second group comprises the two instances D-417 and E-417 given by Russell (1995) which are

both taken from practice. Both instances comprise 417 customers. The customer locations and the

depot are also given in a Cartesian coordinate system and the location coordinates are again integer

values.

In accordance with the procedure usually found in the literature, the Euclidean distances di,j and

travel times d'i,j were calculated exactly to two decimal places. To verify the feasibility and

accuracy, final results were recalculated with the greatest degree of accuracy fixed by the computer.

4.2 Computational results

Optimal solutions are known only for some simple problem instances. For this reason, it seems

obvious to evaluate methods on the basis of best solutions. The results obtained with ES1 and ES2

will be contrasted with results published in the literature or in the Internet. All calculations were
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carried out on a PC (Pentium processor, 200 MHz). ES1 and ES2 were implemented in C and

compiled with Borland 5.02.

Each of the 56 problem instances from Solomon was calculated 10 times with method ES1 and

method ES2, respectively. Each calculation of a problem instance was based on a starting

population generated at random and a set of constant parameters as described in Section 3.4. In the

following, the achieved results are presented on three levels: averages over each class of problems

(C1, C2, R1, R2, RC1, RC2), best achieved solution for each of the 56 problem instances and

complete solutions with the sequence of customers for certain instances.

Averages over each problem class are given in Table 2. In this table, MNV denotes the mean number

of vehicles, MND the mean travel distance and MCT the mean computing time. The calculation of

MNV, MND and MCT is always based on the best solutions that were achieved for the problem

instances of the respective problem class. In the bottom line, the cumulated number of vehicles CNV

and the cumulated total travel distance CND are shown. A direct comparison of the results reported

in Table 2 is difficult, because they have been obtained on different computer plattforms.

Furthermore, the number of independent runs used to calculate the averages differs from author to

author.

Insert Table 2 here.

The results of the comparative test presented in Table 2 may be summarised as follows:

- For problem class R1 both methods, ES1 and ES2, lead to new best means MNV; for the

remaining problem classes, the best known mean MNV is also achieved either with both

methods (see C1, C2, R2, RC2) or with one of them (see RC1).
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- The mean travel distances MND calculated for ES1 and ES2 are partly equivalent to the best

known mean values (see C1, C2) and partly (considerably) higher (see R1, R2, RC1, RC2).

- The cumulated number of vehicles CNV amounts to 406 for ES1 and ES2; in comparison with

the other methods this value is the lowest. However, the cumulated total travel distance CND

for ES1 and ES2 is higher than the respective values for some other methods.

With respect to the primary optimization criterion, ES1 and ES2 tend to outperform previous

methods. This tendency is definitely not caused by a general superiority of the evolution strategy

over other metaheuristics such as genetic algorithms, tabu search and simulated annealing. It rather

has to be assumed that developed evaluation function and neighbourhood operators explain the

above finding. These methodical components consider explicitly the primary optimization criterion

and initiate repeated attempts to reduce the number of vehicles. Thus, the generation of

neighbourhood solutions with lower vehicle numbers is favoured.

A comparison of the best achieved solutions for each of the 56 problem instances is shown in Table

3. The results may be summarised as follows:

- For one instance (R101) ES1 and ES2 calculate solutions with one vehicle more than the best

known solution, and for two instances (R104, R112) ES1 and ES2 calculate solutions with one

vehicle less than the previous best solutions.

- For 51 of the remaining 53 instances the vehicle numbers NV determined by ES1 and ES2 are

equal to the respective NV-value of the best published solutions, and for two instances either

ES1 (see R109) or ES2 (see RC106) found a solution with the same vehicle number as reported

for the best published solution.
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- In the case of equal vehicle numbers NV the quality of compared solutions depends on the

respective travel distances ND. Here, in 8 of the above-mentioned 53 relevant cases ES1

achieved the lowest value of ND, in 9 cases ES2 and in 18 cases other methods (see column

„Reference“ in Table 3); in the remaining 18 cases the compared travel distances ND are

(supposed to be) equal.

Insert Table 3 here.

The performance of ES1 and ES2 relative to the seven known optimal solutions to the Solomon test

problems is also of interest. The seven problem instances in question are R101, R102, C101, C102,

C106, C107, and C108. For R101, ES1 and ES2 calculate solutions with one vehicle more than the

optimal solution and for R102 the achieved vehicle numbers are equal to the vehicle number of the

optimal solution. In the case of the remaining five clustered problem instances the vehicle numbers

and the travel distances calculated by ES1 and ES2 are equal to the respective values of the optimal

solutions; the differences occurring between the travel distances are caused by different

computational accuracies (truncation to one decimal place versus greatest degree of accuracy fixed

by the computer).

It should be noted that each of the methods included in the comparison uses the minimization of the

vehicle number as primary optimization criterion. The methods of Potvin and Bengio (1996), Potvin

et al. (1996), Russell (1995), Chiang and Russell (1996) consider the total route time as their second

priority. The remaining methods, as well as ES1 and ES2, use the minimization of the total travel

distance as the secondary objective criterion.

Three complete solutions that include the sequence of customers are described in Table 4. The

respective problem instances are R104, R112, and RC202. As already mentioned, the solutions for

R104 and R112 comprise one vehicle less than the previous best solutions. RC202 is an



27

representative example of the group of those 17 problem instances, for which either ES1 or ES2

determines a new best solution with respect to the total travel distance only.

Insert Table 4 here.

Further, Table 5 presents corresponding computing results for the two instances D-417 and E-417

from Russell (1995). Each instance was calculated only 5 times with both method ES1 and method

ES2. As Table 5 shows, only those best solutions reported by Liu and Shen (1998) are slightly

better than the best solutions generated with ES1. Due to the small experimental basis, this

observation may only be interpreted as a weak tendency.

Insert Table 5 here.

In summary it can be stated that the developed evolution strategies are certainly on a par with other

heuristics for solving the VRPTW. Other combinatorial optimization problems can probably also be

solved successfully with evolution strategies. Finally, it should be noted that the proposed

metaheuristics are generalizable to extended VRPTW models, such as those requiring different fleet

vehicle capacities Q, mandated driver break time, etc. Additional restrictions of this kind may

always be considered when a new individual is generated by means of a mutation rule.
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Evolution strategiesParameter
ES1 ES2

λ 50 450
µ 8 45
κ 4 20

Table 1. Values of the parameters λ, µ und κ.



33

P
ro

bl
em

 C
la

ss

V
al

ue
s

R
oc

ha
t a

nd
 T

ai
lla

rd
19

95

R
us

se
ll

19
95

C
hi

an
g 

an
d 

R
us

se
ll

19
96

P
ot

vi
n 

et
 a

l.
19

96

P
ot

vi
n 

an
d 

B
en

gi
o

19
96

T
ai

lla
rd

 e
t a

l.
19

96

B
ac

he
m

 e
t a

l.
19

97

C
hi

an
g 

an
d 

R
us

se
ll

19
97

Li
u 

an
d 

S
he

n
19

98

E
S

1

E
S

2

R1 MNV 12.58 12.66 12.50 12.60 12.60 12.25 12.25 12.17 12.17 11.92 12.00
MND 1197.42 1317.00 1308.82 1294.70 1296.83 1216.70 1264.24 1204.19 1249.57 1228.06 1226.38
MCT 2700 81 206 639 679 13774 611 5395 2657 750 1176

R2 MNV 3.09 2.91 2.91 3.10 3.00 3.00 2.91 2.73 2.82 2.73 2.73
MND 954.36 1167.00 1166.42 1185.90 1117.70 995.38 1100.33 986.32 1016.58 969.95 1033.58
MCT 9800 116 273 722 2384 20232 674 6115 398 960 1302

C1 MNV 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
MND 828.45 930.00 909.80 861.00 838.00 828.45 829.50 828.38 830.06 828.38 828.38
MCT 3200 71 139 435 601 14630 - 644 1320.60 522 570

C2 MNV 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
MND 590.32 681.00 684.10 602.50 589.90 590.30 591.88 591.42 591.03 589.86 589.86
MCT 7200 76 166 431 2482 16375 - 1440 215 780 1062

RC1 MNV 12.38 12.38 12.38 12.60 12.10 11.88 11.75 11.88 11.88 11.63 11.50
MND 1369.48 1523.00 1473.90 1465.00 1446.20 1367.51 1414.63 1397.44 1412.87 1392.57 1406.58
MCT 2600 67 177 586 673 11264 570 2840 1828 660 1407

RC2 MNV 3.62 3.38 3.38 3.40 3.40 3.38 3.38 3.25 3.25 3.25 3.25
MND 1139.79 1398.00 1401.50 1476.10 1360.60 1165.62 1341.35 1229.54 1204.87 1144.43 1175.98
MCT 7800 103 238 662 2134 11596 499 3866 427 990 1280

All CNV 427 424 422 427 422 416 414 411 412 406 406
CND 57120 65827 65201 64679 62572 57993 61523 58502 59317 57876 58921

Table 2. Comparison of results for the problem instances from Solomon (1987).
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Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
R101 18 1607.70 Desrochers et al. (1992) 19 1650.80 19 1656.79

R102 17 1434.00 Desrochers et al. (1992) 17 1486.12 17 1490.39

R103 13 1207.00 Thangiah et al. (1994) 13 1292.85 13 1292.88

R104 10 982.01 Rochat and Taillard (1995) 9 1013.32 9 1030.78

R105 14 1377.11 Rochat and Taillard (1995) 14 1378.88 14 1377.11
R106 12 1252.03 Rochat and Taillard (1995) 12 1272.83 12 1260.12

R107 10 1124.72 Chiang and Russell (1997) 10 1139.00 10 1120.85
R108 9 968.59 Taillard et al. (1996) 9 970.05 9 973.69

R109 11 1214.54 Taillard et al. (1996) 11 1194.73 12 1217,02

R110 10 1174.49 Chiang and Russell (1997) 10 1182.49 10 1188.44

R111 10 1104.83 Taillard et al. (1996) 10 1160.90 10 1099.46
R112 10 953.63 Rochat and Taillard (1995) 9 1003.73 9 1009.04

Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
R201 4 1254.80 Taillard et al. (1996) 4 1255.76 4 1252.37
R202 3 1214.28 Taillard et al. (1996) 3 1199.80 3 1198.45
R203 3 948.74 Rochat and Taillard (1995) 3 942.64 3 1139.11

R204 2 855.21 Chiang and Russell (1997) 2 854.88 2 940.77

R205 3 1035.60 Chiang and Russell (1997) 3 1013.47 3 1162.06

R206 3 833.00 Thangiah et al. (1994) 3 913.68 3 973.47

R207 2 914.39 Chiang and Russell (1997) 2 980.57 2 971.34

R208 2 738.60 Rochat and Taillard (1995) 2 732.61 2 731.23
R209 3 855.00 Thangiah et al. (1994) 3 910.55 3 982.12

R210 3 967.50 Rochat and Taillard (1995) 3 955.39 3 998.38

R211 2 923.80 Taillard et al. (1996) 2 910.09 2 1020.08

Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
C101 10 827.30 Desrochers et al. (1992) 10 828.94 10 828.94
C102 10 827.30 Desrochers et al. (1992) 10 828.94 10 828.94
C103 10 828.06 Rochat and Taillard (1995) 10 828.06 10 828.06
C104 10 824.78 Rochat and Taillard (1995) 10 824.78 10 824.78
C105 10 828.94 Potvin and Bengio (1993) 10 828.94 10 828.94
C106 10 827.30 Desrochers et al. (1992) 10 828.94 10 828.94
C107 10 827.30 Desrochers et al. (1992) 10 828.94 10 828.94
C108 10 827.30 Desrochers et al. (1992) 10 828.94 10 828.94
C109 10 828.94 Potvin and Bengio (1993) 10 828.94 10 828.94

Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
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C201 3 591.56 Potvin and Bengio (1993) 3 591.56 3 591.56
C202 3 591.56 Potvin and Bengio (1993) 3 591.56 3 591.56
C203 3 591.17 Rochat and Taillard (1995) 3 591.17 3 591.17
C204 3 590.60 Potvin and Bengio (1993) 3 590.60 3 590.60
C205 3 588.88 Potvin and Bengio (1993) 3 588.88 3 588.88
C206 3 588.49 Potvin and Bengio (1993) 3 588.49 3 588.49
C207 3 588.29 Rochat and Taillard (1995) 3 588.29 3 588.29
C208 3 588.32 Rochat and Taillard (1995) 3 588.32 3 588.32

Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
RC101 14 1669.00 Thangiah et al. (1994) 14 1701.06 14 1697.43

RC102 12 1554.75 Taillard et al. (1996) 12 1571.89 12 1558.07

RC103 11 1110.00 Thangiah et al. (1994) 11 1263.09 11 1272.51

RC104 10 1135.83 Rochat and Taillard (1995) 10 1143.25 10 1138,57

RC105 13 1643.38 Taillard et al. (1996) 13 1693.70 13 1637.15
RC106 11 1448.26 Taillard et al. (1996) 12 1384.11 11 1432.12
RC107 11 1230.54 Taillard et al. (1996) 11 1232.26 11 1369.52

RC108 10 1139.82 Taillard et al. (1996) 10 1151.22 10 1147.26

Best published solution Best computed solutionProblem
instance ES1 ES2

NV ND Reference NV ND NV ND
RC201 4 1249.00 Thangiah et al. (1994) 4 1415.00 4 1418.86

RC202 3 1445.86 Liu and Shen (1998) 3 1389.57 3 1665.56

RC203 3 1078.73 Chiang and Russell (1997) 3 1060.45 3 1065.02

RC204 3 806.75 Rochat and Taillard (1995) 3 806.48 3 799.12
RC205 4 1322.81 Liu and Shen (1998) 4 1321.01 4 1302.42
RC206 3 1158.81 Taillard et al. (1996) 3 1196.12 3 1196.12

RC207 3 1082.32 Taillard et al. (1996) 3 1116.78 3 1112.60

RC208 3 833.97 Rochat and Taillard (1995) 3 850.02 3 848.10

Table 3. Best results for the problem instances from Solomon (1987).
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Number of customers Tours

R104
13 6-94-96-59-93-99-84-17-45-83-5-60-89
12 12-80-68-24-29-79-78-34-81-33-77-3
10 18-82-48-46-8-47-36-49-19-7
10 21-75-56-23-67-39-55-4-25-54
11 28-1-69-76-53-26-40-13-95-97-58
11 42-43-15-57-87-2-73-72-74-22-41
11 52-88-62-11-64-63-90-32-10-31-27
10 70-30-20-66-9-35-65-71-51-50
12 92-98-14-44-38-86-16-61-85-91-100-37

Number of vehicles: 9 Total travel distance: 1013.32
R112

11 2-41-22-72-74-75-56-23-67-39-4
11 5-61-16-86-38-14-44-91-100-37-96
11 21-73-40-53-26-12-80-24-25-55-54
11 27-31-88-7-82-8-46-36-49-47-48
11 28-76-79-78-34-35-71-65-66-20-1
10 52-62-19-11-64-63-90-32-10-70
11 69-30-51-9-81-33-50-29-3-77-68
12 92-98-85-93-87-57-15-43-42-97-13-58
12 95-59-99-94-6-18-83-84-17-45-60-89

Number of vehicles: 9 Total travel distance: 1003.73
RC202

33 65-82-12-14-47-15-11-83-64-19-23-21-48-18-76-51-22-86-87-
9-57-52-10-97-59-74-13-17-7-4-60-100-70

35 91-92-95-85-63-33-28-26-27-29-31-30-62-67-71-61-41-38-40-
81-90-84-49-20-66-56-50-34-32-89-24-25-77-75-58

32 98-45-5-3-1-42-36-39-44-69-88-73-16-99-53-78-79-8-6-46-2-
55-68-54-43-35-37-72-96-93-94-80

Number of vehicles: 3 Total travel distance: 1389.57

Table 4. New best-known solutions.
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Problem instance D-417 Problem instance E-417Reference

NV ND NV ND

Thangiah et al. (1991) 54 4866 55 4149

Kontoravdis and Bard (1995) 55 4273 55 4986

Rochat and Taillard (1995) 54 6265 54 7212
Russell (1995) 55 4964 55 6092

Chiang and Russell (1996) 55 4232 55 4397

Taillard et al. (1996) 55 3440 55 3707

Chiang and Russell (1997) 55 3455 55 3797

Liu and Shen (1998) 54 3747 54 4569

Homberger and Gehring ES1 54 4703 54 4732

Homberger and Gehring ES2 54 9708 55 5174

Table 5. Comparison of results for two problem instances from Russell (1995).
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population P(t)

random selection
of parents

selection of the
best offspring

population P(t+1)

offspring

F*(X)

selectionevaluationreproduction

recombination mutation

F*(X)

F*(X)

F*(X)

F*(X)

F*(X)

F*(X)

Figure 1. (µ, λ)-evolution strategy.
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meta-level

mutation

(move-generation
  mechanism)

recombination

(solution-generation
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local search

individuals
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mutation
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Figure 2. Concept of an evolutionary metaheuristic.



40

RElimination

mutation

old individual

new individual

NMoves

SVector' REliminationNMoves

SVector

Figure 3. Generation of a new individual in the case of evolution strategy ES1.
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SVector = (0,1,6,8,0,0,4,2,0,0,5,9,3,7,0)
where:

(0,1,6,8,0)

(0,4,2,0)

(0,5,9,3,7,0)

a) Representation
    as a graph

b) Representation as a 
    solution vector

1

6
8

50

7

3

9

R2 :
 R1 :

R3 :

 

2

4

depot

R1
R2

R3

Figure 4. Representation of a route schedule.
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Read individual ( SVector, NMoves, RElimination )

Initialize number of iterations: m := 0

WHILE  m     NMoves  DO

Select at random a move operator from the set MoveSet

THEN
IF ( RElimination = 1 )

ELSE

Generate a solution vector
SVector" by eliminating 
a route of solution vector
SVector' using a modified
Or-opt operator

Take over mutation result:
SVector := SVector''

Increase number of iterations: m := m + 1

Generate a solution vector SVector'     N (SVector) using
the selected move operator

Take over mutation result:
SVector := SVector'

Figure 5. Mutation rule of evolution strategy ES1.
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mutationrecombination

SV1

SV2

SV3

MC2

MC3

RE1

RE2

RE3

SV3 MC'3 RE3

SV'3 MC'3 RE3

Figure 6. Generation of a new individual in the case of evolution strategy ES2.
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remove insert 

mutated solution
vector

insert ...

...

mutation codesolution vector
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1
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Figure 7. Simplified example of the mutation of an individual.
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Sample route:

Time windows of the customers:

V14 (2,3)

V24 (2,3)

tDepot

t1

t2

t3

t4

Legend:

Time window

Sequence of service

Service time

Waiting time

δ 2 

α 3

f4

1

2

3
4

0

Figure 8. Computation of the time shifts V1k(i, i+) and V2k(i, i+).


