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Abstract

Parallel Genetic Algorithms have often been reported to yield better performance than Ge-

netic Algorithms which use a single large panmictic population. In the case of the Island Model

genetic algorithm, it has been informally argued that having multiple subpopulations helps to

preserve genetic diversity, since each island can potentially follow a di�erent search trajectory

through the search space. It is also possible that since linearly separable problems are often

used to test Genetic Algorithms, that Island Models may simply be particularly well suited to

exploiting the separable nature of the test problems. We explore this possibility by using the

in�nite population models of simple genetic algorithms to study how Island Models can track

multiple search trajectories. We also introduce a simple model for better understanding when Is-

land Model genetic algorithms may have an advantage when processing some test problems. We

provide empirical results for both linearly separable and nonseparable parameter optimization

functions.

1 Introduction

Island Models are a popular and e�cient way to implement a genetic algorithm on both serial and

parallel machines[1, 15, 24, 8]. In a parallel implementation of an Island Model each machine

executes a genetic algorithm and maintains its own subpopulation for search. The machines work

in consort by periodically exchanging a portion of their populations in a process called migration.

For example, a total population Ntotal for a serial algorithm could be spread across M machines by

giving each machine a population size of Nisland = Ntotal=M . The Island Model introduces the two

parameters: migration interval, the number of generations (or evaluations) between a migration,

and migration size, the number of individuals in the population to migrate.

Parallel Island Models have often been reported to display better search performance than serial

single population models, both in terms of the quality of the solution found and e�ort as measured

in the total number of evaluations of points sampled in the search space [12, 24]. One reason for

the improved search quality is that the various "islands" maintain some degree of independence

and thus explore di�erent regions of the search space while at the same time sharing information

by means of migration. This can also be seen as a means of sustaining genetic diversity [14]. Some

researchers [12, 2] have gone back to the work of Fisher [4] and Wright [25] in biology to try to

better understand the role of locality (e.g., maintaining distinct islands or some other form of spatial

separation) in evolution.
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The partially isolated nature of the island populations suggests that Island Models may be well

adapted for use on problems that are loosely composed of many separate problems that can be

solved independently. Many test problems that have been used to measure the performance of

genetic algorithms turn out to have exactly this property in that they are linearly separable.

That is, the problem can be decomposed into the sum of a set of subproblems each of which can be

solved independently and each of which usually takes a limited subset of the entire set of function

arguments.

Island Model genetic algorithms have sometimes done well against single population models

on such test problems [14, 12]. We examine whether Island Model genetic algorithms, in fact,

do take advantage of the linear separability of a problem to improve performance by solving each

subproblem separately in island populations and assembling the partial solutions into a complete

solution through the use of migration.

We begin by reviewing the evidence which suggests that having multiple islands can generally

improve search performance. In particular, we show that islands can exploit separate and distinct

�xed points in the space of possible populations for a single population genetic algorithm. We then

propose a simpli�ed probabilistic model of Island Model genetic algorithms to further motivate

our explorations. We present the test problems and algorithms we used and discuss our results.

These results suggest that our hypothesis of improved performance for the Island Model on linearly

separable problems is only partly correct. We discuss possible mechanisms that might explain our

observations and explore the pros and cons of the Island Model genetic algorithm.

2 Initial Conditions and Island Model GAs

Vose [16] and Whitley et al. [18] independently introduced exact models of a simple genetic algo-

rithm using in�nite population assumptions. Whitley [23] provides one derivation of these models.

Vose [13] extends this model to look at �nite populations using Markov models.

One of the di�culties of using the in�nite population model is that one cannot take into account

the sampling bias introduced by using �nite populations. The �nite population Markov model on

the other hand, is too expensive to actually execute except for extremely small problems and

extremely small populations (e.g. [10]). One way in which we can introduce �nite e�ects into the

in�nite population model is by initializing the in�nite population model using a distribution taken

from a �nite population.

In this section, we present a very simple application of the in�nite population model to look

at the behavior of multiple simple genetic algorithms running in parallel which also exchange

information using an idealized form of migration. The multiple simple genetic algorithms have

di�erent behaviors due to the di�erent initial conditions that result from initializing the models

using di�erent �nite population samples.

In particular, we were interested to see if we could �nd behaviors consistent with the claims that

have been made regarding parallel Island Model genetic algorithms: we wanted to see if di�erent

islands following di�erent search trajectories could be a signi�cant source of genetic diversity. Mu-

tation is not used in these experiments, since we wanted to better isolate genetic diversity resulting

from the interaction between islands.

2.1 The In�nite Population Model

Vose [16] uses the function G to represent the trajectory of the in�nite population simple genetic

algorithm [6]. The function G acts on a vector, p, where component pi of the vector is the proportion

of the population that samples string i. We denote the population at time t by pt. Note that pt
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may be the sampling distribution of a �nite or an in�nite population. Using function G we can

generate

pt+1 = G(pt)
where pt+1 is the next generation of an in�nitely large population. The vector pt+1 also is the

expected sampling distribution of a �nite population. Details on the construction of G are given

by Whitley [23]; the models have also been extended to include Hybrid Genetic Algorithms using

local search as a supplemental search operator [19].

The function G exactly corresponds to the behavior of a simple genetic algorithm when the

population is in�nitely large. In the short term, the trajectory of G moves to a �xed point in

the space of possible populations; in the long term, it may transition to other �xed points due to

the e�ects of mutation. When working with �nite populations, larger populations tend to track

the behavior of G with greater �delity than smaller populations [17]. Thus as the population size

approaches in�nity the trajectory followed by �nite populations converges toward the path followed

by the in�nite population model, G.
Populations can diverge from the trajectory of G if the actual trajectory followed by the �nite

population crosses over into the basin of attraction for a di�erent �xed point. Also, due to the

e�ects of sampling, the initial population p0 of a �nite population can sample only a small �nite

subset of the 2L strings of length L that make up the search space. Thus, �nite populations may

actually start in a di�erent basin of attraction than an in�nitely large population that uniformly

samples all 2L strings in the space. While the in�nite population model does not provide precise

information about where a �nite population will converge in general, we can study the e�ects of

initializing the in�nite population model using a �nite population sample and ask how this impacts

convergence.

The fact that smaller populations may converge to di�erent �xed points in the space of possible

populations suggests that there may be a potential advantage in running several smaller populations

for a shorter amount of time instead of running a single larger population for a longer amount of

time. The fact that small populations are less likely to follow the trajectory of the in�nite population

model could be an advantage because the di�erent subpopulations potentially move into \di�erent

basins of attraction", and thus, potentially explore di�erent parts of the search space. It should

be stressed that these \di�erent basins of attraction" exist with respect to the space of possible

populations con�gurations and these basins exist with respect to G, which is a single population

model. An Island Model induces a di�erent space of possible population con�gurations and of

course can only be in one con�guration at a time.

While the function G assumes an in�nitely large population, we can use G to examine the

impact of starting the single population genetic algorithm or the Island Models from di�erent

initial population distributions based on actual �nite population samples.

We can use G in a simple way to model an idealized Island Model genetic algorithm. The

Island Model assumes that the total population used by the genetic algorithm is broken down into

a number of subpopulations referred to as islands. Each island is in e�ect executing a version of

the genetic algorithm on each subpopulation. In the model used here, each island is executing a

separate copy of G for the standard simple genetic algorithms using 1-point crossover. Migration

occurs between subpopulations in a restrictive fashion based on temporal and spatial considerations.

The crossover rate is 0.6.

The Island Model used here is based on a popular scheme in which migration occurs every X

generations and copies of the individuals that make up the most �t 5% of the island population

are allowed to migrate [14, 7]. This top 5% may be copies of the same string, or it may be

some combination of strings. The island receiving these strings deletes the least �t 5% of its
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Figure 1: The Proportional Representation of Strings in 2 out of 4 Islands When Migration Occurs

Every Generation.

own population. The migration scheme assumes that the islands are arranged in a ring. On the

�rst migration, strings move from their current island to their immediate neighbor to the left.

Migrations occur between all islands simultaneously. On the second migration, the islands send

copies of the top 5% of their current population to the island which is two moves to the left in the

ring. In general, the migration destination address is incremented by 1 and moves around the ring.

Migrations occur every X generations until each island has sent one set of strings to every other

island (not including itself); then the process is repeated.

2.2 Modeling Island Trajectories

Four subpopulations are modeled. The distribution of strings in the in�nite subpopulations are

initialized by generating distinct �nite subpopulations. The initial distribution for each island was

based on a sample of 80 random strings (80 = 24 � 5). However, in�nite population sizes are still

assumed after the initial generation. Thus, the trajectories only model the e�ects of having di�erent

starting points in the di�erent subpopulations.

Results for a 4 bit fully deceptive problem [22] are shown in Figs. 1 and 2 with a global optimum

of 1111 and a local optimum of 0000. The exact function is also given in section 3.2 of this paper.

The choice of fully deceptive functions is in no way critical to illustrate the computational behavior

of the models. It is important, however, to use a function with competing solutions that are some

distance removed from one another in Hamming Space and that the GA-surface induced by G
for a single population GA have multiple �xed points. On functions with a single optimum, the

GA produces predictable behavior: quick monotonic convergence to the global optimum in all

subpopulations.

The graphs in Fig. 1 show the computation of two out of four islands when migration occurs

every generation. In this case, the islands all show the same convergence behavior, although the

islands vary in the low level details of their behavior. The other two islands (not shown) had
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Figure 2: The Proportional Representation of Strings in 2 out of 4 Islands When Migration Occurs

Every Second Generation.

behavior that was quite similar to one of these two. Thus, two of the islands quickly converge to

the global optimum, while two of the islands initially moved toward the local optimum at 0000 and

are later drawn toward 1111, the global optimum.

It should be noted that a single population model started with a uniform representation of

strings converges to 0000. One reason that the Island Models converge to 1111 is that migration

of the best strings acts as an additional selection mechanism. The best strings are not only in-

creasing due to �tness proportionate selection; the strings that migrate also tend to double their

representation, while the worst strings are deleted.

The graphs in Fig. 2 show two out of four islands when migration is occurring every second

generation. Migration produces the spike-like jumps in representation, since local representations

will rise or fall when migration occurs.

Figures 1 and 2 show that the migration of the best strings acts to increase selection due

to �tness. Convergence is faster in the graphs in Fig. 1 where migration occurs every generation.

Furthermore, the additional selective pressure produced by migration helps to drive the convergence

to the global optimum in Fig. everygen�g. With migration every generation, all subpopulations

converge to 1111. With migration every second generation, only one of the four subpopulations

converges to 1111 and convergence is more gradual. (The results for the two islands not shown are

similar to the computation represented by the leftmost graph.) In additional runs, not shown here,

migrating every 3 generations resulted in all subpopulations converging to the local optimum 0000

(just as in the single population case when there is no additional selection boost due to migration)

and again the convergence rate is slower.

The results presented in the �gures also suggest that the isolation of subpopulations a�orded

by the Island Model maintains diversity even with the additional selective pressure of migration.

Although the Island Model equations are restricted by the assumption of in�nite populations after

the �rst generation, the models nevertheless show that having di�erent starting points for the

individual islands may be su�cient to cause each island to follow a unique search trajectory. And
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although migration will tend to cause the set of equations representing the various islands to become

more similar over time, surprisingly, the results using migration every second generation show that

it is possible for di�erent islands to converge to di�erent solutions. When these results are extended

forward in time, the pattern emerging in the graphs in Figure 2 around generation 35 appears to

be stable.

These results also show how convergence to distinct populations that would be near di�erent

�xed points in the in�nite single population case actually can help to preserve genetic diversity.

Normally, without a mutation operator a population would converge to a single string and thus

become stuck. However, with the two islands converging to di�erent solutions and with migration

to generate low level mixing; new strings are constantly generated at a relatively low rate.

3 Linearly Separable Problems

In the previous section, a general argument was presented to explain why Island Model genetic

algorithms can display improved search performance compared to single population models. In

this section, we speci�cally look at the application of Island Models to decomposable separable

functions.

3.1 A Probabilistic Argument for Better Performance

A probabilistic argument can be made for why an Island Model genetic algorithm may display

more rapid convergence to a given quality of answer for a linearly separable problem. Consider an

evaluation function F composed of the sum of S independent nonlinear subproblems Gi:

F (V1; V2; :::VS) = G1(V1) +G2(V2) + :::+GS(VS):

Assume we apply a genetic algorithm with population size Nx, which solves a speci�c subproblem

Gi from F in t evaluations with probability Xt. Similarly, a genetic algorithm with population Ny

solves the same subproblem in t evaluations with probability Yt. Let Ny = M � Nx. In this case

Nx represents an island population size for M processors giving a total population size of Ny.

For simplicity, we make several strong assumptions. First, we assume all the subfunctions Gi

are identical. We assume that each subproblem Gi is solved independently during genetic search,

regardless of whether a single population or multiple subpopulations are used. We assume that

migration and recombination between subpopulations will build a solution in a post-hoc fashion

from the best solution for each subproblem out of the various subpopulations. And �nally, we

assume the amount of time it takes to assemble to full solution is small in comparison with the

time to �nd the individual solutions. Strictly speaking, this model is not speci�c to the Island

Model genetic algorithm, but rather treats each island as if it were an independent subpopulation.

This nevertheless provides insight into why certain problems may be easier to solve using an Island

Model genetic algorithm.

A subproblem Gi is solved when the correct value is found to optimize Gi, or alternatively,

when a solution within � of the optimal solution is found. The exact conditions for a problem being

solved in our empirical tests are speci�ed for each problem in our test suite.

Given these assumptions we may reason as follows. Consider an Island Model genetic algorithm

with M islands. Let Xt=M be the probability of any one island solving a speci�c Gi in t=M

evaluations and Yt be the probability of the total population, in a single population model, solving

the same Gi. Note that the probabilitiesXt=M and Yt are the same for allGi under our assumptions.

It is clear that the M Island Model and the single population model will use t total evaluations but
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the probability of solution may be di�erent. It is this di�erence that may justify our expectation

of a performance improvement.

Since we have M subpopulations, we have M chances of solving the subproblem Gi. Under our

model, Gi is solved if it is solved in any subpopulation. The probability that Gi is not solved by

any island population is given by

(1�Xt=M )M

therefore the probability that it is solved is

1� (1�Xt=M )M

Since there are S subproblems with identical probabilities to solve and we assumed they are

solved independently, the probability of solving all S is

(1� (1 �Xt=M )M )S

In the case of a single population, any one of the subproblems will be solved with a probability

Yt, hence it solves all S independent problems with probability (Yt)
S .

Under what conditions would we expect the probability to be greater by using islands than

using a single population? The reasoning above gives us an upper bound on Yt for this condition:

1� (1�Xt=M )M > Yt

From �xed values of Xt=M and Yt an estimate of the number of islands necessary for equivalent

performance can be made as follows. If we assume

1� (1�Xt=M )M
0

= Yt

we can solve for M 0

ln(1� Yt)

ln(1�Xt=M )
=M 0

which is the number of islands, M', of population Ntotal=M running for t=M evaluations each that

would be necessary to have the same likelihood of solving F as a single population of size Ntotal

running for t evaluations.

For example, if we know the probabilitiesXt=M = 0:05 and Yt = 0:1 forM = 10 and populations

of size Nisland = 200, Ntotal = 2000 then the model predicts that withM 0 = 2 subpopulations of 200

each running for t=10 evaluations will yield approximately the same results as a single population

of 2000 running for t evaluations. That is:

(1� (1�Xt=M )M
0

) � Yt
(1� (1� 0:05)2)S � :1S

In cases where M 0 �M we can conclude that increasing the number of machines fromM 0 to M

will only improve the odds of �nding the solution. In this case, an Island Model genetic algorithm

with 10 subpopulations of 200 each (i.e., a total population of 2000) will probably yield much better

performance than just two subpopulations of 200 or a single population of 2000. In general, when

the ratio ln(1� Yt)= ln(1�Xt=M ) is less than M then the Island Model may display a performance

advantage over a single population.
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For example, if Xt=M = 0:01 and Yt = 0:1 when M = 10, the single population will have a slight

advantage. (Note that for the range of small probability values we have used in these examples, the

ratio between Xt=M and Yt directly tracks the linear scaling of the number of subpopulations.) In

reality, the 10 subpopulations will probably be at a real disadvantage because the various distributed

subsolutions have to be migrated and assembled, and this process is not trivial.

It should be noted that this model also generalizes to cover nonseparable problems. Assuming

that all bits interact with one another, we must know the probability that the entire problem is

solved as opposed to subproblems. In other words, the model also covers the special case where we

have a single subproblem.

There are obviously also many e�ects that are ignored by this model. For example, Hitch-

hiking occurs when strings that carry bit values that solve one subproblem, say Gi, carry bit values

elsewhere in the string that do not solve other subproblems Gk; i 6= k. As a string propagates

due to selection, it also propagates other bit values that do not solve Gk. Overall however, the

model makes the point that for separable problems if the ability to solve multiple subproblems does

not scale with population size, then there may be an advantage to using several small populations

rather than one large single population.

3.2 The Test Problems

We conducted our experiments using two linearly separable problems and two nonseparable prob-

lems. The two linearly separable problems were chosen as test problems because they represent

examples from a well known set of linearly separable test problems. Fortunately they also display

di�erent behavior under our tests and lead to a better understanding of what factors contribute

to Island Model performance. The two nonseparable problems were chosen to provide a baseline

and to illustrate how the added interactions between parameters can a�ect the performance of the

genetic algorithms.

The �rst separable problem is based on deceptive functions. The following is the fully decep-

tive order-4 function used in the examples presented in Figures 1 and 2.

f(1111) = 30 f(0000) = 28

f(0111) = 0 f(1011) = 2

f(1101) = 4 f(1110) = 6

f(1100) = 8 f(1010) = 10

f(1001) = 12 f(0110) = 14

f(0101) = 16 f(0011) = 18

f(1000) = 20 f(0100) = 22

f(0010) = 24 f(0001) = 26

In a fully deceptive function, every hyperplane competition is misleading, i.e. deceptive. For

example, for a 3 bit function this implies the following hyperplane �tness relationships:

f(0**) > f(1**) f(00*) > f(11*), f(01*), f(10*)

f(*0*) > f(*1*) f(0*0) > f(1*1), f(0*1), f(1*0)

f(**0) > f(**1) f(*00) > f(*11), f(*01), f(*10)

where f(H) is the average �tness of the strings in the hyperplane denoted by H. The function is fully

deceptive because the global optimum is at 111 while all hyperplanes support 000 as a potential

solution. Fully deceptive functions are clearly arti�cial constructs; yet it would also seem unlikely

for a function to have no deception. What is important for the current study is that there is

strong competition between two complementary points in the space, 000 and 111, or in the case

of our 4 bit fully deceptive function, 0000 and 1111. As already seen in the experiments using
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in�nite population models, a genetic algorithm can converge toward 0000 in some circumstances

and toward 1111 in other situations. This makes this an interesting test function for Island Models.

Goldberg, Korb and Deb [5] de�ned a 30 bit function constructed from 10 copies of a fully

deceptive 3-bit function. The problem is made more di�cult when the bits are arranged so that

each of the 3 bits of the subfunctions are uniformly and maximally distributed across the encoding.

Thus each 3 bit subfunction, i, has bits located at positions i, i+ 10, and i+ 20.

For our experiments we constructed a 40 bit function composed of 10 copies of our 4-bit fully

deceptive function with the 4 bits of the 10 subfunctions distributed at positions i, i + 10, i+ 20,

i+30, for subfunctions i = 1 to 10. We also picked this problem because parallel Island Models have

previously been shown to have better results than single population approaches [14] on this problem.

Our genetic algorithm is designed to minimize, so the evaluation function is g(x) = 300�f(x) where
f(x) is the deceptive function result for the 40-bit string x.

The second linearly separable test function is Rastrigin's Function.

f(xi ji=1;N ) = 10N +
NX
i=1

�
x2i � 10 cos(2�xi)

�
; xi 2 [�5:12; 5:11]

We used N = 10 and 10 bits per argument giving us a 100 bit representation. Each 10 bit argument

is Gray coded and the bits are contiguous. The minimum for this function is 0. Furthermore, all

bits are treated uniformly and no information about parameter boundaries was used in crossover

and mutation.

The two nonseparable functions that we chose to use are Powell's Singular function [11] and

Rana's function [20]. Powell's Singular Function is de�ned as:

f(x1; x2; x3; x4) = (x1 + 10x2)
2 + ((x2 � 2x3)

2)2 + (
p
5(x3 � x4))

2 + (
p
10(x1 � x4)

2)2

Powell's function is normally treated as an unbounded, continuous optimization problem [11].

For our experiments, we use a bit representation with each argument encoded as a 20-bit Gray

coded string. When decoded, each input value was scaled to fall in the interval [�512; 512). The

minimum for this function is 0.

Rana's Function is:

f(x; y) = x sin(
q
jy + 1� xj) cos(

q
jx+ y + 1j) + (y + 1) cos(

q
jy + 1� xj) sin(

q
jx+ y + 1j)

Rana's function was designed to be a multi-modal scalable parameter optimization problem.

It was also designed so that it is not symmetric (i.e. f(x; y) 6= f(y; x) when x 6= y). The two

dimensional primitive function can be scaled to higher dimensions by using the weighted wrap

method for expanding functions [20]. For example, the expansion of a two dimensional function

f(x; y) to a four dimensional function is:

g(x1; x2; x3; x4) = w1f(x1; x2) + w2f(x2; x3) + w3f(x3; x4) + w4f(x4; x1)

The wrap method allows every parameter to occur as input to every argument of the underlying

primitive function. This scaling technique is particularly e�ective at generating di�cult functions

when the the primitive function is nonsymmetric. Random weights are used for each term in the

summation because an unweighted expansion can smooth the surface of the higher dimensional

function. Notice that the parameter combinations used in Powell's function are the same as in a

four dimensional wrap.

For our experiments, we used a 10-dimensional weighted expansion of Rana's function with

random weights ranging from 0 to 1 chosen from a uniform distribution. Each input parameter
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is encoded using a 10-bit Gray coded string and is scaled to the range [�512; 511]. The global

optimum for this function occurs when all parameters are simultaneously set to �512. Additionally,
we normalize our output for the scaled function so the optimum value is always f(�512;�512) �
�511:70.

4 Experimental Results

The search engine in our experiments is GENITOR [21], a steady-state genetic algorithm with

a biased (bias = 1:25) rank based selection. In the �rst set of experiments, each problem was

run with a �xed total population size of 5000 but with varying numbers of islands as shown in

Table 1. The migration interval in the table is the number of evaluations per island between

migrations. The parameters in Table 1 were chosen to be the same as those used in a previous

study by Starkweather, Whitley, and Mathias [14]. 30 trials were run for each parameter set. The

plots represent the overall best evaluation for each of the genetic algorithm con�gurations averaged

over the 30 runs. All of the results are scaled so that the x-axis is the total number of evaluations

across all subpopulations. The genetic algorithms were run until solution was found or until a

maximum number of function evaluations was reached for that trial. The genetic algorithms were

run for a maximum of 200; 000 evaluations on the separable functions and 400; 000 evaluations on

the nonseparable functions. The added time was necessary to allow most of the populations to

converge to a solution on the nonseparable functions. No mutation was used; the crossover rate

was 1.0 since this is a steady-state genetic algorithm.

Island Number of Number of Migration

Population Islands Emigrants Interval

50 100 2 250

100 50 2 500

500 10 5 2500

1000 5 5 5000

5000 1 N/A N/A

Table 1: Experimental Population and Migration Sizes for a total population size 5000.

The results in Figs. 3 and 4 show that increased parallelism helps on the deceptive problem,

but not for Rastrigin's function. Note that when run without migration, the islands are really just

independent runs of Genitor using di�erent population sizes. Tanese referred to these independent

runs as the partitioned genetic algorithm [15].

Larger populations do not help for the deceptive problem but do help a great deal for Rastri-

gin's function. This would also partially explain why the Island Model is e�ective on the deceptive

problem: it bene�ts from having multiple distinct populations converging to di�erent �xed points

rather than one large population converging to a single �xed point. The �xed points for the de-

ceptive problem each contain varying numbers of optimal subsolutions. This behavior is consistent

with the insights associated with our abstract model of the Island Model Genetic Algorithm; if

increasing the size of the population does not increase the probability of solving a subproblem (i.e.,

if Yt is not signi�cantly better than Xt=M ) then the Island Model has an advantage.

We should also point out that these results are peculiar in the following way: the answers for the

various subproblems are likely contained in the initial population of 5000. On Rastrigin's function

using a 10 bit encoding and random initialization, each population member has a 1 chance in 1024

of containing the optimal solution to a given subproblem yielding a 99.2% chance over the whole

10



10

12

14

16

18

20

22

24

0 50000 100000 150000 200000

B
es

t F
itn

es
s

Number of Evaluations

Deceptive Function with Migration

Baseline
5 Subpops

10 Subpops
50 Subpops

100 Subpops

10

12

14

16

18

20

22

24

0 50000 100000 150000 200000

B
es

t F
itn

es
s

Number of Evaluations

Deceptive Function without Migration

Baseline
5 Subpops

10 Subpops
50 Subpops

100 Subpops

Figure 3: The Deceptive Function with and without Migration.
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Figure 4: Rastrigin's Function with and without Migration.

population of 5000. This is also a typical situation for deceptive problems; the deception is usually

de�ned over subfunctions constructed using a small number of bits and the subfunctions do not

interact. For our deceptive function, there is a 1 in 16 chance that the optimal subsolution occurs

in the initial setting for any given subproblem. Hence, the optimal subsolutions to the deceptive

subfunctions are almost surely contained in the initial population for all con�gurations tested. By

having many isolated populations that are each able to maintain solutions to the subfunctions, it is

increasingly likely that each of the optimal subsolutions will occur in at least one of the populations.

This gives the opportunity for these subsolutions to be assembled into the full answer. In this case,

the real question is whether or not the optimal subsolutions propagate under crossover.

The last two problems in our test suite are the two nonseparable functions. None of the genetic

algorithm con�gurations tested solved either of the nonseparable problems. The plot for Powell's

function is given in Figure 5. Note that the results for Powell's function are given using a log scale.

Without migration, the set of isolated small populations are clearly at a disadvantage compared

to a single population. When migration is added, the single population is still better in general;

however, the con�guration using 50 subpopulations of size 100 appears to outperform the single

population. The results of running the genetic algorithms on Rana's function are given in Figure

6. Again, without migration, the population size used dramatically a�ects the performance of the

genetic algorithm. In this case, when migration is used, the convergence behavior of the Island

11



Model genetic algorithm mimics that of the single population.
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Figure 5: Powell's Function with and without Migration.

Although we cannot solve for each function argument independently for the nonseparable func-

tions, there is still a nonzero probability that the optimal solution for a particular argument will

occur in the initial population. For separable problems, we would call an optimal setting for a func-

tion argument an optimal subsolution. While we know that these individual arguments can form

the optimal solution, the �tness of strings containing subsets of the optimal parameter settings may

not be highly �t in nonseparable functions. When optimizing nonseparable functions, the success

of the genetic algorithm is dependent on the ability of optimal subsolutions to propagate under

both selection and crossover.

Since Powell's function uses a 20-bit encoding for each argument, it is unlikely (:48%) that an

optimal parameter setting for a speci�c subfunction will occur in any of the initial subpopulations.

Rana's function, however, uses a 10 bit encoding. There is a 1 in 1024 chance that an optimal pa-

rameter setting for any parameter will occur in the initial population. Thus, the initial populations

of 5000 will contain optimal parameter settings even for the nonseparable functions. However, the

best solutions found over the set of runs rarely contained instances of the optimal setting �512.
This indicates that Rana's function is somewhat deceptive. The quality of the solutions found was

dependent on population size for the partitioned genetic algorithms. The Island Model genetic

algorithms performed similarly to a single population since migration was used. Even for nonsepa-
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Figure 6: Rana's Function with and without Migration.
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Island Number of Number of Migration

Population Islands Emigrants Interval

50 10 2 250

100 5 2 500

500 1 N/A N/A

Table 2: Experimental Population and Migration Sizes for a population size 500.

rable functions, it is still possible for useful genetic information to be transferred across populations

in Island Model genetic algorithms.

Population size may also be more of a factor on other test problems than many researchers

may realize. Thus, what we are looking at in Figs. 3, 4, 5, and 6 are how readily subsolutions

spread in the populations and how much the solutions are disrupted by crossover. Of course, the

\ugly" deceptive problem is designed so that crossover is disruptive. However, by looking at the

experiments involving Rastrigin's function, it can clearly be seen that the various subsolutions are

distributed across the population (or subpopulations) and monotonically increase their distribution

in the population over time. Distributing the total population across islands in this case only makes

it harder for the subsolutions to spread. Although there are dependencies between parameters in

Powell's and Rana's function, migration is still e�ective at transferring useful genetic material across

populations and crossover is e�ective at combining that material to produce better individuals.

However, in these experiments the single large population still performs best on the nonseparable

problems.

4.1 Experimental Results for Small Populations

In the previous experiment, the population size was so large that the convergence of the genetic

algorithm was very slow. In fact, when migration was used, many of the genetic algorithms were still

making progress when they reached the cuto� for the maximum number of evaluations. However,

the purpose of those experiments was to estimate what the convergence behavior of a genetic

algorithm using an in�nite population might be with and without migration.

The use of migration categorically improved the performance of the Island Model genetic algo-

rithms in the large population experiments. In some cases, the convergence behavior of the Island

Model genetic algorithms were approaching or surpassing that of a single population. But in prac-

tice, genetic algorithms are used with relatively small populations and mutation. It is important

to determine what e�ect migration coupled with mutation has on the performance Island Model

genetic algorithms using a smaller total population size. In the following experiments we use a

smaller total population size of 500.

Table 2 lists the population sizes, number of islands, migration rate and migration interval used

for these experiments. The mutation rate for all test problems was set to 2

L
where L is the length

of the string. The cuto� for each test problem is set to 200; 000 evaluations or 400 generations for

the separable problems and 400; 000 or 800 generations for the nonseparable problems. The results

presented here were generated by averaging the evaluations of the overall best individuals from 30

di�erent runs of each algorithm con�guration.

Figures 7, 8 and 9 are the results of running the three genetic algorithm con�gurations on

Rastrigin, Powell, and Rana's functions respectively. The plots on the right correspond to the

genetic algorithms run with mutation but without migration.

The results for the deceptive function were not included in the �gures because the Island Model

genetic algorithms exhibited similar behavior for the small population experiments as they did for
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Figure 7: Rastrigin's Function with and without Migration Using a Total Population of 500.
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Figure 8: Powell's Function with and without Migration Using a Total Population of 500.
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Figure 9: Rana's Function with and without Migration Using a Total Population of 500.
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the large population experiments. With or without migration, the Island model genetic algorithms

performed better than a single population on the deceptive problem. Furthermore, the performance

improves as the number of populations increases.

The smaller population sizes mean that it is less likely that optimal subsolutions for each

parameter appear in the initial population as they did for the population size of 5000. For example

for problems with 10 bit subproblems and a population size of 100 there is only a 9:3% chance of

a speci�c optimal subsolution appearing the population versus 99:2% for a population of 5000.

The graphs illustrate that the use of mutation had an equalizing e�ect on the partitioned

genetic algorithm (i.e. when migration was not used). While the partitioned genetic algorithms

still perform worse than a single large population, the use of mutation improves the performance

on the smaller populations.

When migration is used, the performance of all con�gurations of the genetic algorithm becomes

even more similar. We compared the performance of the Island Model genetic algorithms to the

single large population using a one-tailed Student's T-Test with p � 0:05 to determine when the

Island Model genetic algorithms outperformed the single population genetic algorithm. When

migration is introduced, the performance of all Island Model genetic algorithms improves so that

they perform as well or better than the single population. For Rastrigin's function, all three genetic

algorithm con�gurations solve the problem in approximately 50; 000 evaluations. However, the

Island Model genetic algorithm using 5 subpopulations of 100 solves the problem with signi�cantly

fewer evaluations than the single population when migration is used. For Powell's function, both

variants of the IslandModel arrive at signi�cantly better solutions than the single population. There

is no signi�cant di�erence between the solutions found by the Island Model genetic algorithms and

the single population genetic algorithm for Rana's function.

While the large population experiments serve to illustrate what the convergence behavior of

an in�nite population might be for the di�erent con�gurations of Island Model genetic algorithms,

they may not be characteristic of what happens when a more traditional set of parameters are

used. These experiments illustrate what the performance of a practical genetic algorithm { using a

small population and mutation { might be for separable and nonseparable parameter optimization

problems. In the context of our abstract model of Island Model genetic algorithms, the use of

mutation just alters the probability that subsolutions will be found by some population. When

mutation is used, isolated populations tend to improve their performance to approach that of a

large population. When migration is used with mutation, the performance of the Island model

genetic algorithms is as good or better than the performance of the single population.

5 Discussion

We present an abstract model of when we might expect Island Model genetic algorithms to out-

perform single population models on linearly separable problems. Our model suggests that Island

Models may be at an advantage when increasing the population size does not help to solve the

problem. There are many factors that our model does not consider however. Our empirical results

suggest that IslandModel genetic algorithms can still display very complex and unexpected behavior

even when applied to separable problems.

We are well aware of the limitations of using separable problems for testing optimization algo-

rithms and have argued for more diverse types of test problems with di�erent degrees of nonlinearity

[20, 9]. Island Model genetic algorithms typically use larger total population sizes; 10 subpopu-

lations of size 500 would not be an unusual or unreasonable design. Yet, for separable functions

larger overall population sizes will mean that there is an increased chance of the optimal solution
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being in the initial population{which can produce anomalous experimental results. On the other

hand, separable functions are a special subclass of problems and studying how they are processed

in Island Models may still prove useful despite anomalies. In particular, separable functions are

nice for studying migration because the subproblems are independent.

Our experiments have also included nonseparable functions. Although none of the genetic

algorithms solved either of the nonseparable functions, it would appear that the performance of the

Island Model genetic algorithm is still consistent with our abstract model at a high level. When

the performance of the partitioned genetic algorithm is similar to that of the large population, the

use of migration causes the performance to equal or surpass that of the large population. The use

of migration transfers information between populations and that information is used e�ectively to

improve the performance of each subpopulation.
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