Constraint Satisfaction Problems
and
Evolutionary Computation

Jano van Hemert
jvhemert@liacs.nl

http://www.liacs.nl/"jvhemert

LIACS

Niels Bohrweg 1
2333 CA Leiden
The Netherlands

lih
iII

|
J

LIACS

LEIDEN INSTITUTE OF ADVANCED COMPUTER SCIENCE

/

Constraint Satisfaction Problems

-

[1 Theoretical introduction

[1 Constraint satisfaction

[1 Practical introduction

[1 Things you get

[1 What’s in it for you

N

Contents

[1 Binary constraint satisfaction
[1 Randomly generated instances

[1 Using evolutionary computation

[How to get it all up and running

/

EvoNet Summer School 2001

Jano van Hemert

Theory: Constraint Satisfaction Problems

/ What is a constraint satisfaction problem?

B

Definition 1 A Constraint Satisfaction Problem (CSP) is a tuple
(Z,D,C) where
e Z is a set of variables,

e D is a function that maps a finite set of objects of arbitrary type to Z
e and C' is a set of constraints that restrict certain simultaneous object

assignments.
Thus each x; € Z has a corresponding discrete domain D; from which they

can be instantiated, denoted as (x;,d;), where d; € D;. Every element
c € C is a constraint over a subset of variables of X, it contains tuples of

objects that are not allowed to be assigned simultaneously.

\D Abbreviation: Constraint Satisfaction Problem — CSP /

Jano van Hemert

EvoNet Summer School 2001

Theory: Constraint Satisfaction Problems 4

4 N

So what is the problem?

[J Assign to each x; € Z an object from D; such that no ¢ € C is violated

Extended objectives:

[1 Finding all possible instantiations of variables that do not violate a

constraint

[0 Proving that there is no solution (object assignment) for a given

problem

[1 Finding a partial solution with the most instantiated variables for an

unsolvable problem instance

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 5

4 N

Examples

[1 Graph colouring: given a graph find a k-colouring of the nodes such

that nodes connected are coloured with a different colour

[0 n-Queens: given a n X n chess board and n queens, place the queens

on the board such that no queen attacks another queen

[1 SAT: given a boolean formula, find an assignment of variables such

that the formula evaluates to true

[1 These are all decision problems

[] In general all these problems belong to the class of NP-complete

problems

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 6

4 N

Example: graph-£ colouring with £ = 3

7 = { Xy, Xo, X3, X4, Xg }
D = {red, blue, green}
C ={(x}, %), (Xp, X5), (X3, X,), (X, X,), (X, X5) } ,

where <x;, colour> != <x;, colour>
Solution: { <x,, red>, <x,, blue>, <x;, red>, <x,, green>, <x., rec

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 7

/ Binary Constraint Satistaction Problems \

Definition 2 (Binary Constraint Satisfaction Problem) A Binary
Constraint Satisfaction Problem (BINCSP) is a CSP where all constraints

are associated with at most two variables. More precisely: Given the CSP
(Z,D,C) the following must hold : Vcy € C : X < 2.

[1 This is not a restriction as every CSP can be transformed into a binary
csp (Tsang, 91)

[1 Multiple transformations may exist, where each transformation has its
own impact on the efficiency of solving the problem (not in the scope

of this summer school)

\D Abbreviation: Binary Constraint Satisfaction Problem — BINCSP /

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 8

/ Example: transforming 4-Queens into a BINCSP \

123456 7C§ 9 101112131415161
100000000000 00000:
©000000000000000O0:
3000000000000000O0
/0000000000000 000:
50000000000 00000O
60000000000 O00O00:
70000000000000000
800000000000 O0O0O00:
900000000000 O0O0O0O
1000000000000 0O0O0OO:
10000000000000000:
120000000000000000:
130000000000000000:
140000000000000000:
150000000000000000:

\\ i 1600000000000000080: 4//

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 9

4 N

Why the need for BINCSPS?

[1 Idea: Generate random problem instances based on the BINCSP model

to do experiments

[1 Technique: by introducing parameters we will try to control the
difficulty of a randomly generated problem instance
[1 Parameters:
[0 Number of variables (n)
[Domain size of each variable (|D| or m)
[J Density of the constraint network (p; or d), between 0 and 1

[0 Average tightness of a constraint (py or t), between 0 and 1

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 10

-

N

Example: a very simple instance

3 out of 9 possible conflicts

> in each constraint (p, nf’)

» 3 outof amaximum of 6
constraints (p, 3n(n-1))

— conflicts tables of size 3x3 :
(m*)

— 4 variables (n)

EvoNet Summer School 2001

Jano van Hemert

Theory: Binary Constraint Satisfaction Problems

11

4 N

Difficult problem instances

[J Assumption of B. Smith: Difficult problem instances have only one

solution

[1 Using the assumption and a predictor for the expected number of
solutions, we can estimate the values of the four parameters to identify

difficult instances:

E(#solutions) =m"(1 —p3)~ 2 =1

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 12

/ The landscape of solvability \

0.8
0.6
04
0.2

0.2

_ 0.4
Tightness 0.6

0.8

1 0.4 0.6 0.8 !
Density

\ The expected number of solutions for fixed n = 10, m = 10 /

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems

13

-

N

The other way around

[1 We can devise methods that generate instances in such a way that we

know the parameters beforehand

Six methods exist in the literature: Models A-D, Model E, Model F

Model E works as follows, pick randomly two variables, then from each
variable’s domain pick randomly an object. If no conflict exists
between the two, create one. Model E repeats this process pe (%)|D|?

times, where p. can be used to set the conflict density, which has a

direct influence on the difficulty

<

/

EvoNet Summer School 2001

Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 14

-

N

<

Performance and difficulty

We measure the percentage of instances where a solution is found =

success rate
We measure the average number of conflict checks performed

We generate a test suite of instances using Model E by varying p. from
0.10 to 0.38 in steps of 0.02 where for each step 25 unique instances are
created

When testing evolutionary algorithms, we let an algorithm do 10 runs

on one instance, each time with a different random seed

/

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems

Some results

* ——_ ¥ KB - T T T 456"‘06
\\‘ "0,‘
[} | o
\ g 4e+06 |
0.8 L .
\ \ e
3.5e+06 |-
\‘O \\. e / /,'
| | o
0.6 | ‘ \ . | e
o) v ® 3e+06 f P .
1] k L k < o .
= N i O - » *
a B a : ks 7 '
8 | o \ E ,f'/)
& Vo ! S 2.5e+06 | - 3 .
i \ o g /
? 04rf 8 ! 1 5 o7
o | . 5 -
€ 2e+06 | 7 -
\‘ -\\ o - / ;
02t | : . - > P
-8 Y > o 1.5e+06 | @ y |
y 3 ; ;
\D‘ \\l\ o //, *
. o 1le+06 ¢ / 7
0 ! ! ! O- - .4 | T a & / / ’r’
0.12 0.16 0.2 0.24 0.28 0.32 0.36 3
conflict density in model E 500000 - g - v 1
backtracker % y .) X
EA with mutation ---=-- o e
EA with crossover & mutation ---e--- Y N o I S ‘ ‘
EA with crossover --o--
difficulty predictor 0.12 0.16 0.2 0.24 0.28 0.32 0.36
p2 conflict density in model E
EvoNet Summer School 2001

Jano van Hemert

Theory: Evolutionary Computation & BINCSPs 16

<

/ Solving csps with Evolutionary Algorithms

[1 Representation — simple
[1 Initialisation — random object assignment

[l Genetic operators
- Mutation — 7

- Crossover — uniform

[1 Fitness — counting violated constraints

[Selection
- Parent selection — linear ranked bias (bias = 2)

- Survivor selection — replace worst

\D Stop condition — solution found or 100,000 evaluations

/

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs

17

4 N

Representing the problem (or rather the solution)

[l Simple representation

-
* "
.........

.

‘e
.,
",
b

“
o,
“““
. .
“
*

DV AL B U -
1131111 2|—~—-1| 2
O S S T LY Xn
..... X5
X1 "
X2 X3 X4

[1 Advantages are the use of simple genetic operators and easy evaluation

of an individual

N /

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs

18

-

N

Representing the problem (or rather the solution)

Instances

[J More difficult, using a decoder

ta
Q .
SN Ta,
“a
"
«
e
‘e,
a

R
LRSI
.
’’’’’
*
o
*

greedy | decoder

<X;, 1>, <X,, 3>, <X;3,3>, ..., <X, 2>

[J Advantage is that it works much better, especially on easy to solve

<

/

EvoNet Summer School 2001

Jano van Hemert

Theory: Evolutionary Computation & BINCSPs

19

-

[]

N

Determining the quality of your solution

Difficult because we are searching only for a no/yes question
(solved /not solved)

Common solution is to count the number of violated constraints,

minimising this number to zero leads to a solution

On the other hand this can easily get your algorithm stuck in
minima, therefore you will need to guide its search somehow

Ideas to do this exist and will be explained on request or similarity of

proposal ;-)

Other difficulties for an evolutionary algorithm exists, such as

symmetry and deception

<

a local

/

EvoNet Summer School 2001

Jano van Hemert

Practice: starting

20

-

[]

N

The things you get, documentation

The Online Guide to Constraint Programming by Roman Bartak

(HTML, 1998)

Pages from the Handbook on Evolutionary Computation on Constraint

Satisfaction by G. Eiben & Zs. Ruttkay (ps, 1996)

Assorted papers to help you get ideas, and a list to even more papers

(Ps, 1991-2001)

Full web site of RandomCsp, the library you may use, comes with

complete manual and reference guide (HTML & Ps, 2001)

These slides (Ps & PDF, 2001)

<

/

EvoNet Summer School 2001

Jano van Hemert

Practice: starting

21

-

The things you get, for you to work with

Set of problem instances that are currently used in empirical r
RandomCsp library setup and ready to go
Some results to compare with

An example to show the basic usage of the library

N [I I I I B A

for you

N

An experiments manager that takes care of doing all the experiments

<

esearch

/

EvoNet Summer School 2001

Jano van Hemert

Practice: example usage

22

{

EvoNet Summer School 2001

It really is easy to use

#include <static_csp.h>

#include <strstream>

int main (int argc, char * argv [])

istrstream input (argv[1]);
int RandomSeed = 0; input >> RandomSeed; srand(RandomSeed) ;
StaticCspC csp(argv[2]);

ValueT * solution = new ValueT [csp.GetNumberOfVariables() * sizeof(ValueT)];

for (unsigned int i = 0; i < csp.GetNumberOfVariables(); i++)

{
solution[i] = (ValueT) (csp.GetDomainSize(i)*(rand()/(RAND_MAX+1.0)));

cout << csp.GetNumberOfConflicts(solution) << ",";
for (unsigned int i = 0; i < csp.GetNumberOfVariables(); i++)

{

cout << solution[i] << " ";

cout << "," << RandomSeed << "," << argv[2] << endl;

return O;

//
//
//

//

//
//

//

Read in random seed
Set random seed

Read in CSP instance

Create a random solution

Output number of conflicts

Output solution

Output random seed and CSP filename

Jano van Hemert

Practice: example usage 23

It really 7s easy to use

[0 To run this example first do a make then start the experiment manager
with the appropriate experiments:

./experiment.pl problem instances/experiments

[Output looks like this:

16,12 5 11 11 13 25 11 48 7 9 5 7 14 ,1,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
9,10 12 1156 10 089 14 4 4 1 14 ,2,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
11,8 3564281213306 29 14 ,3,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
8,13223356924718 10 13 ,4,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
11,4014 121467 1304 14 3 6 ,5,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp

8,2 14 11 6 1 12 9 3 4 14 7 14 13 11 6 ,6,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
11,7 1383 07 14 0907 1 11 12 13 ,7,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
11,5 11 13 0 14 3 13 12 13 9 8 4 10 5 13 ,8,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
10,3 10 3 5 13 6 10 9 10 10 0 13 1 13 13 ,9,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp
4,897 212286040114 14 13 ,10,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_sl.csp

#conflicts, solution, random seed, problem file

EvoNet Summer School 2001 Jano van Hemert

Practice: last slide

24

-

Blatant advertisement

[1 Serious problem, serious work
[1 All the boring stuff has been done
[J You just focus on creating a novel solving method

[1 Leaving you with plenty of fun time

N

/

EvoNet Summer School 2001

Jano van Hemert

