
'

&

$

%

Constraint Satisfaction Problems

and

Evolutionary Computation

Jano van Hemert

jvhemert@liacs.nl

http://www.liacs.nl/~jvhemert

LIACS

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Constraint Satisfaction Problems 2'

&

$

%

Contents

① Theoretical introduction

✔ Constraint satisfaction

✔ Binary constraint satisfaction

✔ Randomly generated instances

✔ Using evolutionary computation

② Practical introduction

✔ Things you get

✔ How to get it all up and running

✔ What’s in it for you

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 3'

&

$

%

What is a constraint satisfaction problem?

Definition 1 A Constraint Satisfaction Problem (csp) is a tuple
〈Z,D,C〉 where

• Z is a set of variables,

• D is a function that maps a finite set of objects of arbitrary type to Z

• and C is a set of constraints that restrict certain simultaneous object
assignments.

Thus each xi ∈ Z has a corresponding discrete domain Di from which they
can be instantiated, denoted as 〈xi, di〉, where di ∈ Di. Every element
c ∈ C is a constraint over a subset of variables of X, it contains tuples of
objects that are not allowed to be assigned simultaneously.

✎ Abbreviation: Constraint Satisfaction Problem → csp

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 4'

&

$

%

So what is the problem?

☞ Assign to each xi ∈ Z an object from Di such that no c ∈ C is violated

Extended objectives:

✔ Finding all possible instantiations of variables that do not violate a
constraint

✔ Proving that there is no solution (object assignment) for a given
problem

✔ Finding a partial solution with the most instantiated variables for an
unsolvable problem instance

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 5'

&

$

%

Examples

✔ Graph colouring: given a graph find a k-colouring of the nodes such
that nodes connected are coloured with a different colour

✔ n-Queens: given a n× n chess board and n queens, place the queens
on the board such that no queen attacks another queen

✔ sat: given a boolean formula, find an assignment of variables such
that the formula evaluates to true

✎ These are all decision problems

✎ In general all these problems belong to the class of np-complete
problems

EvoNet Summer School 2001 Jano van Hemert

Theory: Constraint Satisfaction Problems 6'

&

$

%

Example: graph-k colouring with k = 3

���������	��
��
�	����
��	�����
�	�������	�����
�	����
��	���������������	���������
���������� ��!"�	#%$	&'$	(�%) ! * �,+-�	#%$	&'$�(�%)

.0/
.21 .03

.04
.05

� ����6 ��7�&'(� ��8 �����	9 �
���:������
��	�����	���;�����<�

= $�&'(�>
?'$ 9�@ � � � � ����6A) � �
 �	7�&'(�) � � � � ���	6A) � � � �	8 �����	9�) � � � � �%�	6

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 7'

&

$

%

Binary Constraint Satisfaction Problems

Definition 2 (Binary Constraint Satisfaction Problem) A Binary
Constraint Satisfaction Problem (bincsp) is a csp where all constraints
are associated with at most two variables. More precisely: Given the csp

〈Z,D,C〉 the following must hold : ∀cX̂ ∈ C : |X̂| ≤ 2.

✎ This is not a restriction as every csp can be transformed into a binary
csp (Tsang, 91)

✎ Multiple transformations may exist, where each transformation has its
own impact on the efficiency of solving the problem (not in the scope
of this summer school)

✎ Abbreviation: Binary Constraint Satisfaction Problem → bincsp

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 8'

&

$

%

Example: transforming 4-Queens into a bincsp

14
11

16

1 2 3 4
5 6 7
9 10 12

13 15

Q1

101112131415161 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

8

Q2

Q3Q4

Qi

Qj

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 9'

&

$

%

Why the need for bincsps?

☞ Idea: Generate random problem instances based on the bincsp model
to do experiments

☞ Technique: by introducing parameters we will try to control the
difficulty of a randomly generated problem instance

☞ Parameters:

① Number of variables (n)

② Domain size of each variable (|D| or m)

③ Density of the constraint network (p1 or d), between 0 and 1

④ Average tightness of a constraint (p2 or t), between 0 and 1

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 10'

&

$

%

Example: a very simple instance

1 2

3 4

1 2 3
1
2
3

1 2 3
1
2
3

1 2 3
1
2
3

3 out of 9 possible conflicts
in each constraint (p m)

3 out of a maximum of 6
constraints (p n(n-1))

conflicts tables of size 3x3
(m)

4 variables (n)

2
2

1
1
2

2

4, 3, 1
2

1
3

,< > = <n, m, p1, p2>

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 11'

&

$

%

Difficult problem instances

☞ Assumption of B. Smith: Difficult problem instances have only one
solution

☞ Using the assumption and a predictor for the expected number of
solutions, we can estimate the values of the four parameters to identify
difficult instances:

E(#solutions) = mn(1− p2)
n(n−1)p1

2 = 1

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 12'

&

$

%

The landscape of solvability

0 0.2 0.4 0.6 0.8 1

Density

0
0.2

0.4
0.6

0.8
1

Tightness

0

0.2

0.4

0.6

0.8

1

E

The expected number of solutions for fixed n = 10,m = 10

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 13'

&

$

%

The other way around

☞ We can devise methods that generate instances in such a way that we
know the parameters beforehand

☞ Six methods exist in the literature: Models A–D, Model E, Model F

☞ Model E works as follows, pick randomly two variables, then from each
variable’s domain pick randomly an object. If no conflict exists
between the two, create one. Model E repeats this process pe

(
n
2

)
|D|2

times, where pe can be used to set the conflict density, which has a
direct influence on the difficulty

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 14'

&

$

%

Performance and difficulty

✔ We measure the percentage of instances where a solution is found ⇒
success rate

✔ We measure the average number of conflict checks performed

✔ We generate a test suite of instances using Model E by varying pe from
0.10 to 0.38 in steps of 0.02 where for each step 25 unique instances are
created

✔ When testing evolutionary algorithms, we let an algorithm do 10 runs
on one instance, each time with a different random seed

EvoNet Summer School 2001 Jano van Hemert

Theory: Binary Constraint Satisfaction Problems 15'

&

$

%

Some results

0

0.2

0.4

0.6

0.8

1

0.12 0.16 0.2 0.24 0.28 0.32 0.36

su
cc

es
s

ra
te

�

conflict density in model E

backtracker
EA with mutation

EA with crossover & mutation
EA with crossover
difficulty predictor

p2

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0.12 0.16 0.2 0.24 0.28 0.32 0.36

av
er

ag
e

nu
m

be
r

of
 c

on
fli

ct
 c

he
ck

s

conflict density in model E

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs 16'

&

$

%

Solving csps with Evolutionary Algorithms

✔ Representation — simple

✔ Initialisation — random object assignment

✔ Genetic operators

- Mutation — 1
l

- Crossover — uniform

✔ Fitness — counting violated constraints

✔ Selection

- Parent selection — linear ranked bias (bias = 2)

- Survivor selection — replace worst

✔ Stop condition — solution found or 100,000 evaluations

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs 17'

&

$

%

Representing the problem (or rather the solution)

☞ Simple representation

1 3 1 1 2 2

x1
x2

x3 x4

xn

x5

objects from the domains D1...Dn

☞ Advantages are the use of simple genetic operators and easy evaluation
of an individual

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs 18'

&

$

%

Representing the problem (or rather the solution)

☞ More difficult, using a decoder

7 4 9 n 3 1

permutation of the variables x1...xn

<x1, 1>, <x2, 3>, <x3,3>, ... , <xn, 2>

greedy decoder

☞ Advantage is that it works much better, especially on easy to solve
instances

EvoNet Summer School 2001 Jano van Hemert

Theory: Evolutionary Computation & BINCSPs 19'

&

$

%

Determining the quality of your solution

☞ Difficult because we are searching only for a no/yes question
(solved/not solved)

☞ Common solution is to count the number of violated constraints,
minimising this number to zero leads to a solution

☞ On the other hand this can easily get your algorithm stuck in a local
minima, therefore you will need to guide its search somehow

☞ Ideas to do this exist and will be explained on request or similarity of
proposal ;-)

☞ Other difficulties for an evolutionary algorithm exists, such as
symmetry and deception

EvoNet Summer School 2001 Jano van Hemert

Practice: starting 20'

&

$

%

The things you get, documentation

✔ The Online Guide to Constraint Programming by Roman Barták
(html, 1998)

✔ Pages from the Handbook on Evolutionary Computation on Constraint
Satisfaction by G. Eiben & Zs. Ruttkay (ps, 1996)

✔ Assorted papers to help you get ideas, and a list to even more papers
(ps, 1991–2001)

✔ Full web site of RandomCsp, the library you may use, comes with
complete manual and reference guide (html & ps, 2001)

✔ These slides (ps & pdf, 2001)

EvoNet Summer School 2001 Jano van Hemert

Practice: starting 21'

&

$

%

The things you get, for you to work with

✔ Set of problem instances that are currently used in empirical research

✔ RandomCsp library setup and ready to go

✔ Some results to compare with

✔ An example to show the basic usage of the library

✔ An experiments manager that takes care of doing all the experiments
for you

EvoNet Summer School 2001 Jano van Hemert

Practice: example usage 22'

&

$

%

It really is easy to use

#include <static_csp.h>

#include <strstream>

int main (int argc, char * argv [])

{

istrstream input (argv[1]); // Read in random seed

int RandomSeed = 0; input >> RandomSeed; srand(RandomSeed); // Set random seed

StaticCspC csp(argv[2]); // Read in CSP instance

ValueT * solution = new ValueT [csp.GetNumberOfVariables() * sizeof(ValueT)]; // Create a random solution

for (unsigned int i = 0; i < csp.GetNumberOfVariables(); i++)

{

solution[i] = (ValueT) (csp.GetDomainSize(i)*(rand()/(RAND_MAX+1.0)));

}

cout << csp.GetNumberOfConflicts(solution) << ","; // Output number of conflicts

for (unsigned int i = 0; i < csp.GetNumberOfVariables(); i++) // Output solution

{

cout << solution[i] << " ";

}

cout << "," << RandomSeed << "," << argv[2] << endl; // Output random seed and CSP filename

return 0;

}

EvoNet Summer School 2001 Jano van Hemert

Practice: example usage 23'

&

$

%

It really is easy to use

☞ To run this example first do a make then start the experiment manager
with the appropriate experiments:
./experiment.pl problem instances/experiments

☞ Output looks like this:
16,12 5 11 11 13 2 5 11 4 8 7 9 5 7 14 ,1,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

9,10 12 1 1 5 6 10 0 8 9 14 4 4 1 14 ,2,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

11,8 3 5 6 4 2 8 12 13 3 0 6 2 9 14 ,3,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

8,13 2 2 3 3 5 6 9 2 4 7 1 8 10 13 ,4,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

11,4 0 14 1 2 1 4 6 7 13 0 4 14 3 6 ,5,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

8,2 14 11 6 1 12 9 3 4 14 7 14 13 11 6 ,6,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

11,7 13 8 3 0 7 14 0 9 0 7 1 11 12 13 ,7,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

11,5 11 13 0 14 3 13 12 13 9 8 4 10 5 13 ,8,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

10,3 10 3 5 13 6 10 9 10 10 0 13 1 13 13 ,9,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

4,8 9 7 2 12 2 8 6 0 4 0 1 14 14 13 ,10,problem_instances//csp-t=0.10/00.solvable.me_v15_d15_c_t0.1_s1.csp

#conflicts, solution, random seed, problem file

EvoNet Summer School 2001 Jano van Hemert

Practice: last slide 24'

&

$

%

Blatant advertisement

☞ Serious problem, serious work

☞ All the boring stuff has been done

☞ You just focus on creating a novel solving method

☞ Leaving you with plenty of fun time

EvoNet Summer School 2001 Jano van Hemert

