
EVOLUTIONARY STRATEGIES FOR SOLVING FRUSTRATED

PROBLEMS

Werner Ebeling � Helge Ros�e y Johannes Schuchhardt z

Institut f�ur Theoretische Physik, Humboldt{Universit�at zu Berlin

Invalidenstra�e 110, 10099 Berlin, Federal Republic of Germany

Berlin, December 6, 1994

Abstract

The main elementary processes and strategies of

evolution are investigated and described by simple

mathematical models (stochastic networks). Special at-

tention is devoted to Fisher-Eigen type models as

well as to Boltzmann-, Darwin- and Haeckel-

strategies modelling basic elements of frustrated prob-

lems in biological evolution respectively. Several ap-

plications of evolutionary strategies to frustrated opti-

mization problems are discussed, in particular the evo-

lution of complex strings satisfying contradictory con-

ditions and the optimization of a network of streets

connecting a random distribution of points.

I. The main strategies of evolution

Analyzing the mechanisms of natural evolution we �nd
several basic strategies [1, 2, 3]:

Boltzmann strategy: One fundamental goal nature
is the optimization of certain thermodynamic func-
tions. The Boltzmann strategy has three important
elements:

1. Motion along gradients to reach steepest ascent of
entropy

2. Various stochastic processes including thermal
and hydrodynamic 
uctuations which avoid lock-
ing.

3. Decrease in temperature during the adiabatic ex-
pansion.

Darwin strategy: This second important natural
strategy appears in the universe only in the process of
biogenesis. The basic elements of a Darwin strategy
are:
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1. Self-reproduction of good species with maximal
�tness.

2. Mutation processes due to error reproductions.

3. Increase of the precision of self reproduction.

Haeckel strategy: With increasing complexity the
cell organisms developed a life-cycle consisting of sev-
eral periods as youth, period of growth and learning,
period of self-reproduction and death. We incorporate
further in this strategy the mating (sexual reproduc-
tion). The result of mating is a new individual which
is a combination of its parents.

II. Models of evolution processes

Let as consider a set of species which are characterized
by a set of strings, lists or matrices playing here the
role of the \genotypes". All possible objects may be
considered as elements of an abstract, metric space,
the genotype space G. We assume that each geno-
type is connected with a set of properties forming the
"phenotype"; in this way we introduce also a phe-
notype space Q. The phenotype is valuated in the
evolution. Mathematically this means that any ele-
ment i is associated with a set of real number Ei.
Our assumption is, that for each object i an occu-
pation number Ni (stochastic picture) or fraction xi
is de�ned. Here Ni denotes the number of represen-
tatives of the objects of kind i in the system and xi
a corresponding fraction. The most simple model of
an evolutionary dynamics is the Fisher-Eigen model
which is based on the assumption that the compet-
ing objects i = 1; 2; :::; s have di�erent reproduction
rates E1; E2; :::; Ei; :::; Es . These scalar quantities
play now the role of the values. The dynamics of the
fractions is given by the di�erential equations [4].

d

dt
xi = (Ei � k(t) )xi(t) (1)



The Fisher-Eigen model is the simplest of all mod-
els of competition. It refers to an oversimpli�ed case
since there is no real interaction between the species.
More realistic models take the coupling between the
competing objects into account [5].

A generalization of (1) takes into account that the
reproduction rates as well as the death rate (and possi-
bly also the other values) depend on the age of the indi-
viduals belonging to the species i [6, 7]. The stochastic
network model used in this work is a generalization of
Eigens deterministic equations [7]. We consider N

competing objects (N �xed in time) which are subject
to self-replication, death, mutation and selection. Let
Ni be the number of objects of type i. The elementary
transition is the one{step process

Ni ! Ni + 1; Nj ! Nj � 1 (2)

Two kinds of such transition are assumed. The �rst is

a simple change of type (modelling mutation) occur-
ring with the transition probability

W (Ni; Nj � 1 jNi; Nj) = Aij(�ij; �j)Ni (3)

Here �j is the individual age of the object j after ap-
pearance in the game and �ij = Ei�Ej the di�erence
of the values of the target i and the source j. A rea-
sonable assumption in the spirit of annealing strategies
is

Aij = A(�j)

�
1 : �ij � 0

exp(�
�ij

T
: �ij < 0

(4)

Here A(� ) is simple non{negative function which has
a maximum at �nite age and goes to zero for � !1.

The second kind of translation occurs after compar-

ison of two objects i and j. If object i has a higher
value, then object j is replaced by object i with the
transition probability

W (Ni; Nj � 1 jNi; Nj) =
1

N
Bij NiNj (5)

A reasonable choice for the matrix is for �ij > 0

Bij = B(�i)�ij (6)

for � !1, B(� ) is an increasing function which con-
verges for � >> �0 to a constant.

This assumption includes that rate of this kind of
transitions is proportional to the improvement and fur-
ther that objects younger than �0 are not subject to
competition. The model described above is surpris-
ingly general and includes the Eigen model as well as
annealing models as special cases.

III. Applications to the Optimization

of Strings and Street Networks

In the �rst application we considered the evolution of
strings consisting of four kinds of letters A, B, C, D.
A valuation of the strings si

E = E(si) (7)

was introduced by the following simple rules

E(A) = E(B) = E(C) = E(D) = 1 (8)

E =

�
E + a : MID(si;p;2)2fAB;BC;CD;DAg

E + b : MID(si;p;1)=MID(si;p+g;1)
(9)

The �rst rule (9) favours alphabetic order "ABCD-

ABCDABC..." which leads to the second periodic
rule with the period 4. This favours periodic repeti-
tions with the period g. If g 6= 4 then the tendencies
to generate strings with periodicity 4 or g are contra-
dictory, i.e. the system is frustrated.

Our simulations show the Selforganization of struc-
tures with a typical long range order showing a correla-
tion length which is as large as the string length l. Our
game is a stochastic one and there are permanently N
strings participating in it (N = 2 ::: 32). Good strings
have the chance to make "o�spring" which in our game
are identical or slightly modi�ed strings. We have used
the following types of mutations:

1. point mutations, i.e. changing one position in the
string,

2. associations , i.e. addition of one are two letters

to the right or to the left of the string,

3. recombination, i.e. making a new string from the
left end of one member of the ensemble and the
right end of another member of the ensemble.

Any new string which appeared in the game at the
time tn was associated with the age � = t � tn. �0
denotes the time of maturity. In the game we have
assumed that the mutation rates m(� ) are decreasing
with the age and tend to zero for � > �0. In the op-
posite the reproduction and selection rate r(� ) were
assumed to be small in the youth � < �0 and to con-
verge to a constant value at � > �0 . We have made
many simulations using several sets of parameters.
The present model may be considered as a prototype
of realistic models of the evolution of biomolecules.

In our second application we simulated the opti-
mization of street networks. As a concrete example
we apply evolutionary search to a street network. A
street network is a graph g connecting a given set of
points p1; ::; pn in the plane. The edges of the graph g

correspond to streets or highways the nodes to houses
or towns. There are two obvious factors to be mini-
mized:



1.) The distance from each point to each other point
shall be as small as possible.
2) The network shall be as short as possible to mini-
mize the cost of construction.
Thus the functional V we intend to optimize consists
of two parts:

V(g) = (1� �)�(g) + �L(g): (10)

The �rst part � is the mean of the length of the short-
est path from point i to point j averaged over all
pairs (i; j)

� =
1

n(n� 1)

X
i<j

l(
min(i; j)) (11)

with l(
min(i; j)) being the the length of the shortest
path 
min(i; j) from i to j. The second part L is sim-
ply the length of the whole network.

The objects of evolutionary search are all connected
graphs g on the set of points p1; ::; pn the number
is of order 2n(n�1)=2. The parameter � allows us to
weighten the importance of short path or construction
cost respectively. If building routes is cheap we have
a small � resulting in a dense graph (see �g 1) which
approaches the fully coupled graph for � ! 0. If on
the other hand construction costs are very high the
resulting graph is only sparsely coupled and approxi-
mates the minimum spanning tree in the limit �! 1.

Figure 1: Right: randomly coupled initial graph � =
0:005. Left: optimized graph � = 0:05. The number
of points is n = 15.

IV. Discussion

The number of representatives (objects) in the ensem-
ble was varied between 2 and 32 . We have calcu-
lated the mean value, the dispersion and the best re-
sults. It was shown that the proposed algorithm gives

reasonable results. We �nd signi�cant improvements
by including Darwinian and Haeckelian elements into
the search strategy [4-6]. Boltzmann, Darwin and
Haeckel strategies show several parallels but also
essential di�erences [8]. All these strategies are well
suited to �nd the extrema in landscapes of potential
functions. In general it will depend on the structure
of this landscape, what search strategy is the better
one. The qualitative analysis carried out in this work
suggests that in the case that no knowledge about the
structure of the landscape is available, it will be advan-
tageous to apply the Boltzmann strategy combined
with annealing. This strategy seems to be more uni-
versal; it will always work. However, thermodynamic
processes have the tendency to be locked in relative
extrema surrounded by high thresholds. On the other
hand Darwinian and Haeckelian processes are able to
cross high barriers by tunneling if the next minimum

is close.
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