

Evolutionary Strategies and Intrinsic Fault Tolerance

A.M. Tyrrell, G. Hollingworth and S.L. Smith
Bio-inspired Architectures Lab, Department of Electronics,

University of York YO10 5DD, UK
Andy.Tyrrell@bioinspired.com

Abstract

Redundancy is a critical component to the design of

fault tolerant systems; both hardware and software. This
paper explores the possibilities of using evolutionary
techniques to first produce a processing system that will
perform a required function, and then consider its
applicability for producing useful redundancy that can
be made use of in the presence of faults, ie is it fault
tolerant? Results obtained using Evolutionary Strategies
to automatically create redundancy as part of the
“design” process are given. The experiments are
undertaken on a Virtex FPGA with intrinsic evolution
taking place. The results show that not only does the
evolutionary process produce useful redundancy, it is
also possible to reconfigure the system in real-time on
the Virtex device.

1 Introduction

Fault tolerance is a technique used in the design and

implementation of dependable computing systems. With
the increase in complexity of systems complete fault
coverage at the testing phase of the design cycle is very
difficult to achieve, if not impossible. In addition,
environmental effects such as Radio Frequency and
Electromagnetic interference and misuse by users can
mean that faults will occur in systems. These faults will
cause errors and if left untreated, could cause system
failure. The role of fault tolerance is to deal with errors,
caused by faults, before they lead to failure.

Fault-tolerance is increasingly a crucial part of system
designs. More and more applications are using
programmable systems for their operation. Many of
these applications have part or all of their function
classified as critical in one form or another. Since the
testing of systems fully is generally unrealistic, critical
functions must be protected “on-line”. This is often
achieved by using fault-tolerance to cope with errors
produced during the operation of the system. The
traditional techniques are based around simple static
redundancy (such as N-version systems, eg [1]). These
are expensive in terms of equipment, time and design

costs. An alternative approach is to use a form of
reconfiguration to “bypass” the faulty item, which may
be a hardware process, a software process, or a
combination of the two.

Fault tolerance in a processing system implies the
mapping of a logical array onto a non-faulty physical
array. When faults arise, a mechanism must be provided
for reconfiguring the physical system such that the
logical array can still be represented by the remaining
non-faulty processing elements. All reconfiguring
mechanisms can be considered to be based on one of
two types of redundancy: time redundancy or hardware
redundancy [2].

In time redundancy the tasks performed by faulty
processors are distributed among its “neighbours”.
When reconfiguration occurs, processors dedicate some
time to performing their own tasks and some to
performing the faulty processors’ functions, resulting in
some degradation of the system's performance. In
addition, the algorithm being executed must be
sufficiently flexible to allow a simple and flexible
division of tasks in real-time.

In hardware redundancy physical spare processing
elements and links are used to replace the faulty ones.
For this process reconfiguring algorithms must optimise
the use of spares. In the ideal case, a processing system
with N spares must be able to tolerate N faulty
processors. However, in practice, limitations on the
interconnection capabilities of each cell prevents this
goal from being achieved.

The majority of hardware redundancy reconfiguration
techniques rely on complex algorithms to re-assign
physical resources to the elements of the logical array.
In most cases these algorithms are executed by a central
controller which also performs diagnosis functions and
accomplishes the reconfiguration of the physical system
[3,4]. This approach has been demonstrated to be
effective, but its centralised nature makes it prone to
collapse if the processor in control fails. These
mechanisms also rely on the designer making a prioi
decisions on reconfiguration strategies and data/code
movement, which are prone to error and may in practice
be less than ideal. Furthermore, the timing of signals
involved in the global control are often prohibitively

long and therefore, unsuitable for real-time fault
tolerance.

An alternative approach is to distribute the diagnosis
and reconfiguration algorithms among all the processing
elements in the system [5,6]. In this way no central
agent is necessary and consequently the reliability and
time-response of the system should improve. However,
this decentralised approach has tended to increase the
complexity of the reconfiguration algorithm and the
amount of communications within the network. In
addition, considerable work is required on producing
redundancy.

Traditionally, fault tolerance has been added explicitly
to system designs by including redundant hardware
and/or software which will "take over" when an error
has been detected. A novel alternative approach would
be to design the system in such a way that the
redundancy was incorporated implicitly into the
hardware and/or software during the design phase [7,8].
This should provide a more holistic approach to the
design process. We already know that Genetic
Algorithms and Programming can adapt and optimise
their behaviour and structure to perform a specific task,
but the aim is that they should “learn” to deal with faults
within their operation space. This implicit redundancy
would make the system response invariant to the
occurrence of faults.

The Virtex devices now allow us to perform real-time
partial reconfiguration on hardware [9]. This paper
explores the possibilities of using evolutionary
techniques to first produce a processing system that will
perform a required function, and then consider its
applicability for producing useful redundancy that can
be made use of in the presence of faults, ie is it fault
tolerant?

The results shown in this paper are based around a
simple example, an evolved oscillator [10]. All
evolution was performed on a Virtex 1000.

2 Evolved Fault Tolerance

Faults can be viewed in a system similar to changes in

the environment for evolving biological entities. The
individuals compete in the new environment to produce
a species which is capable of living and reproducing
with the new changes. This method of adapting to faults
requires a change in the way most evolutionists view
evolutionary algorithms.

In general evolutionary algorithms are viewed as an
optimising process, where the algorithm is halted when
some maximal/average fitness is reached. For
evolutionary strategies to be used to provide fault
tolerance, the algorithm should be viewed as a
continuous real-time adaptation system, constantly
adapting to changes in the environment. These can come
from a number of sources, for example:

• hardware failures leading to faults;
• requirements/specification changes;
• environmental changes (eg EM interference).

When such a change occurs, the fitness of the

individuals will change correspondingly. As the
evolution progresses, the individuals will adapt to the
new changes until they regain their fitness.

Critical to any fault tolerant system is useful
redundancy, whether in the form of virtual
hardware/software or real hardware/software and
possibly design. One of the features of an evolutionary
system is its reliance on having a diverse population
from which to evolve from. The hypothosis tested in this
paper concerns the applicability of these diverse
members to provide useful redundancy in the presence
of faults, ie provide inherent fault tolerance [11,12]. In
[11], the authors considered Populational Fault
Tolerance, where they effected faults into a number of
transistor circuits. In this work high degrees of genetic
convergence was achieved and the authors speculated on
what might be providing redundancy within a given
population, and hence allowing fault tolerant properties
to exist. The work reported in this paper encourages
genetic convergence not to occur and hence considers a
related but different set of evolved circuits.

3 JBits

The work repoted in this paper involved the intrinsic

evolution on Virtex devices. This made considerable
use of JBits and a brief overview of JBits is now given.
JBits [13] is a set of Java classes which provide an
Application Program Interface (API) into the Xilinx
Virtex FPGA family bitstream. This interface operates
on either bitstreams generated by Xilinx design tools,
or on bitstreams read back from actual hardware. It
provides the capability of designing and dynamically
modifying circuits in Xilinx Virtex series FPGA
devices. The programming model used by JBits is a
two dimensional array of Configurable Logic Blocks
(CLBs). Each CLB is referenced by a row and column
index, and all configurable resources in the selected
CLB may be set or probed.

[10] showed an example application programmed
using JBits, the requirement was to change the
LookUp Table (LUT) entry so that the function of the
gate is changed from an OR gate to an AND gate (a
simple example). To perform this application a
baseline bitstream is created which contains the
required input and outputs to the LUT. The LUT is
forced to be in a specific CLB on the FPGA so that it
can later be located. Once this has been done the Java

 Input Vector OR AND
 G3 G2 G1 G0
 0 0 0 0 0 0
 0 0 0 1 1 0
 0 0 1 0 1 0
 0 0 1 1 1 0
 0 1 0 0 1 0
 0 1 0 1 1 0
 0 1 1 0 1 0
 0 1 1 1 1 0
 1 0 0 0 1 0
 1 0 0 1 1 0
 1 0 0 0 1 0
 1 0 0 1 1 0
 1 1 0 0 1 0
 1 1 0 1 1 0
 1 1 1 0 1 0
 1 1 1 1 1 1

Table 1: Truth Table for AND/OR gates

program as shown in [10] can be written. The
program is written to first load in the baseline
bitstream, this bitstream is then modified to change
the function of the cell (in this case change the OR
gate into an AND gate), the LUT entries for the
AND and OR gates are calculated by taking the truth
table and writing the outputs into a single 16bit (4
nibble) value:

OR 1111 1111 1111 1110 0xfffe
AND 1000 0000 0000 0000 0x8000

Once the LUT has been changed (within JBits), the

bitstream is then retrieved and sent to the Virtex
Chip.

Since the JBits interface can modify the bitstream
in this way it is still possible to create a ’bad’
configuration bitstream; for this reason it is
important to make sure that the circuit which is
downloaded to the chip is always a valid design. This
is done by only ever modifying a valid design to
implement the evolvable hardware. This is a method
similar to that demonstrated in Delon Levi’s work on
GeneticFPGA in [14] where the XC4000 series
devices were programmed to implement evolvable
hardware. The major obstacle in that implementation,
the speed with which the devices could be
programmed, is no longer a problem here.

The hardware interface is the XHWIF (Xilinx
Hardware InterFace). This is a Java interface which
uses native methods to implement the platform
dependent parts of the interface. It is also possible to
run an XHWIF server, which receives configuration

instructions from a remote computer system and
configures the local hardware system. This enables
the evolvable hardware to be evaluated in parallel on
multiple boards. This interface is also part of
Xilinx’s new Internet Reconfigurable Logic (IRL)
methodology, where the computer houses a number
of Xilinx parts which can easily be reconfigured
through the Java interface.

4 Evolutionary Strategies and Evolvable
Hardware (EHW)

The DNA sequence (the genotype) carried by all

living things is used, through a process known as
embryological development, to build the phenotype
(the body), which is a sequence of chemical
interactions within each cell that distinguishes it from
other cells and describes its action. The body is subject
to environmental pressures where its fitness for
reproduction is assessed; fitter individuals have a
higher rate of reproduction. This means that genes
within the DNA that code specific 'good' traits (traits
which describe better reproduction abilities) will have
a higher probability of existing in future populations.
Genetic Algorithms were first explored by John
Holland [15]; he showed that it is possible to evolve a
set of binary strings which describe a system’s
characteristics and that a measure of fitness can be
applied to the system’s output(s). The binary strings
are analogous to the DNA, and the implementation to
the phenotype.

In artificial evolution, a binary string usually
describes the system. This is achieved directly or
indirectly through some form of embryological
development. The system is then assessed within the
environment to determine its fitness relative to the
other individuals (eg does one circuit have a better
filter characteristic than another?). This measure can
then be used to weight the probability of deleting a
system from the population, so that through many
generations good genes survive and bad genes die out.
The chromosomes of different members of a
population can have segments exchanged or crossed
over, and part of a chromosome can be randomly
mutated. Both of these operations will create a new
population to be considered for fitness (and hence,
survival). The circuits produced will gradually move
towards an optimal condition where the mutations and
crossovers have no improved effect on the
performance of the circuit. In the majority of situations
this evolutionary process is performed in simulation,
with only the final fittest circuit being implemented in
hardware.

A further extension to the domain of evolutionary
techniques came with the creation of Field
Programmable Gate Array (FPGA) [16] devices and
Programmable Logic Devices (PLD), since these can
be programmed using a binary string or by coding a
binary logic tree. The electronic circuits can then be
evaluated either electronically, to compare their
outputs with the required output (intrinsic EHW) [17,
18], or in simulation (extrinsic EHW) to create some
measure of the fitness [19].

For simplicity a 16*(1+1) Evolutionary Strategy
(ES) was used for the majority of experiments reported
in this paper. The (1+1)ES simply works by creating a
parent, mutating this parent to created a child and
comparing the fitness of the parent and the child. The
best individual becomes the parent for the next
generation. In the 16*(1+1)ES this process was
replicated 16 times, with little interaction between the
16*(1+1)ES, allowing increased diversity.

Further selection pressure is created through the
overwriting of consistantly bad (1+1)ES's by another
random (1+1)ES. The environment is similar to a
number of species evolving, where each (1+1)ES is a
species (even though there is only ever one
individual!). Each species competes for its fitness with
fifteen other species; if a species’ fitness drops due to
a change in the environment (which could be a literal
change in the environment or a change in the genotype
due to a mutation for example), the species will be
deleted (xenocide) and replaced with one of the other
species, the choice as to which one is used for
replacement is done randomly. Although the number
of species would seem to decrease with this method, it
in fact does not appear to be the case, since once the

new species has been in existence for a number of
generations it will be significantly different from the
other species due to mutations.

All experiments were performed on a Xilinx Virtex
FPGA system, which allowed partial reconfiguration
to be performed using JBits [13]. The application was
to evolve a simple 3KHz oscillator on this device [10].
A fitness level of 200 was set to be an acceptable
answer. The hardware configuration is shown in figure
1. Rather than checking the actual frequency of the
signal by polling the output value and checking to see
when it is high and when it is low, the fitness is
evaluated by including a counter which counts the
number of positive edges within a certain time period.
This proved to be a more accurate method of
frequency measurement.

The results for three different mutation rates are
shown in figures 2-4. The fault model used to test the
fault tolerance of the system was one that considered
only stuck-at-faults (stuck-at-one - SA1 and stuck-at-
zero - SA0) and short circuits. These faults were
emulated and inserted into the bitstream of the device.
The position and fault type were specified by the
setting of particular LUTs within a device. Further
faults were introduced into the circuit until, in most
cases, the system failed.

5 Results

An important measure when implementing the fault

tolerant hardware is the rate of mutation implemented
in the 16*(1+1)ES. The measure by which the rate of
mutation is decided is the rate of change of the
genotype, and in a related way the disruption created
by the mutation operator. These two measures are
orthogonal to each other; the higher the mutation the
faster the genotypes can respond to change (faults) but
the higher the mutation the more disruption caused to
the genotype. With low mutation rates the system
becomes less responsive but is more stable once a
good fitness has been reached. Three mutation rates
are shown in figures 2-4, high mutation level (5
mutations/individual/generation), medium level (2
mutation/individual/generation) and low level (1
mutation/individual/generation).

The most striking feature observed from figures 2-4
is that when faults are injected into the best individual
there is another individual in the population that can be
identified as the new best with a fitness sufficiently
high to be acceptable for use, until a sufficient number
of faults are injected and the whole population fails.
There does appear to be sufficient redundancy
produced by the 16*(1+1)ES to provide fault tolerance
for these type of faults. A more detailed consideration
of the results highlights the different characteristics of
the three mutation rates. With low mutation rates the

“jitter” in the fitness is low and when faults occur,
which require the circuit to evolve around the fault, the
regaining of fitness levels is relatively slow. When
mutation rates are high, the “jitter” in the best
individual is much more pronounced, but with this
mutation rate the fitness of the best individual climbs
much more rapidly than with a low mutation rate. The
medium mutation rate appears to give the best overall
response in terms of both these measures. The “jitter”
in the fitness is less pronounced than with a high
mutation rate, but when a fault occurs the individuals
regain fitness more quickly than for low mutation
rates.

Another possible measure of diversity would be to
actually look at the “circuit” layout of individuals in a
population. The problem is how to identify which
matrix elements in the FPGA are providing useful
functionality and which are not. An experiment was
devised to help provide this information. The genotype
is tested by first inserting a Stuck At 0 fault (SA0) and
retesting the fitness, inserting a Stuck At 1 fault (SA1)
and retesting. Finally, the faults are removed and
testing takes place again, just to be sure that the
genotype still works even without faults. If the results
for the best individual have a fitness which was
reduced by at least half, the individual is considered
dead and that particular element in the overall matrix
is considered critical to the functionality. There is an
extra bit (which is not used in the genotype/phenotype
map) that describes whether that individual matrix
element is used by the circuit. This bit and the
corresponding matrices can then be used to build a
map of the useful/useless elements within the matrix in
the current best solution.

Figures 5, 6, 7 and 8 show the best fitness genotype
of the 16*(1+1)ES. The output bit of the circuit is the
top right corner, and the results show just how varied
the different runs of the 16*(1+1)ES are. Now, as
indicated earlier, these figures cannot accurately tell us
how much of the circuit is being used because there
may be redundant parts to the circuit which mean that
although they are being used, the fitness does not
decrease to half the maximum value when a fault is
inserted. Instead, what can be noticed from these
diagrams are the parts of the circuit which are
definitely required, ie figures 7 and 8 are more likely
to be damaged through faults than figures 5 and 6.

6 Conclusions

The initial results presented in this paper indicate

that when individuals within a population are
prevented from having genetic convergence the
population as a whole does present characteristics that
might be very useful in safety critical environments.

The work presented here assumes that an initial
evolutionary stage has taken place before the system
goes “on-line”. This alleviates to some extent the
problems of on-line evolution and the fact that many
of the mutants are less than fit. This allows for the on-
line system to consist on mostly “useful” individuals.
In addition, the evolutionary strategy used means that
these are relatively unrelated individuals enhancing the
probability of useful diversity. Evolution, once on-line,
takes place on all individuals apart from the current
“best”. This reduces the effect of low fitness outputs
caused by mutation.

It is not the aim of this work to try and test out all
possible fault conditions within a particular design, in
practice this would never be possible. What is being
tested here is the hypothesis that within an evolved
population of individuals, there is a high probability
that a fault which “kills” one member of the
population will not significantly effect the
performance of another, useful, member of the
population.

It seems clear from the initial experiments that
evolutionary strategies can be used to produced
redundant versions of systems which increase the fault
tolerance of an application. Further work is required to
investigate other evolutionary strategies such as
Genetic Algorithms, but the results presented here
contribute to this exciting and rapidly expanding
subject.

Acknowledgements

This work is supported by an EPSRC studentship in
the UK and by Xilinx Inc.

References

[1] Avizienis, A. and Kelly, J.P.J.: 'Fault Tolerance by
Design Diversity: Concepts and Experiments', IEEE
Computer, August 1984, 17 (8), pp 67-80.

[2] Chean, M. and Fortes, J. (1990) 'A Taxonomy of
Reconfiguration Techniques for Fault-Tolerant Processor
Arrays', IEEE Computer, pp 55-69, January.

[3] Dutt, S. and Mahapatra, N. (1997) 'Node-covering, Error-
correcting Codes and Multiprocessors with Very High
Average Fault Tolerance', IEEE Transactions on Computers
46 (9), pp 997-1014.

[4] Fortes, J. and Raghavendra, C. (1985) 'Gracefully
Degradable Processor Arrays', IEEE Transactions on
Computers, 34 (11), pp 1033-1043.

[5] D. Mange, M. Sipper, A. Stauffer, G. Tempesti. Towards
Robust Integrated Circuits: The Embryonics Approach.
Proceedings of the IEEE, 88 (4), April 2000, pp. 516-541.

[6] Ortega, C., Mange, D., Smith, S.L. and Tyrrell, A.M.
Embryonics: A Bio-Inspired Cellular Architecture with

Fault-Tolerant Properties, Journal of Genetic Programming
and Evolvable Machines, 1 (3), July 2000, pp 187-215.

[7] A. Thompson. Evolving Fault Tolerant Systems. Proc.
1st IEE/IEEE Int. Conf. on Genetic Algorithms in
Engineering Systems: Innovations and Applications
GALESIA'95, IEE Conf. Publication No. 414, 1995, pp 524-
529.

[8] A. Thompson. Evolutionary Techniques for Fault
Tolerance. Proc. UKACC Int. Conf. on Control
(CONTROL'96), IEE Conference Publication No. 427,
1996, pp 693-698.

 [9] Hollingworth, G.S., Smith, S.L. and Tyrrell, A.M. ‘The
Intrinsic Evolution of Virtex Devices through Internet
Reconfigurable Logic’, in Lecture Notes in Computer
Science, Springer-Verlag, April 2000, pp 72-79.

[10] Hollingworth, G.S., Smith, S.L. and Tyrrell, A.M. ‘Safe
Intrinsic Evolution of Virtex Devices’, 2nd NASA/DoD
Workshop on Evolvable Hardware, July 2000.

[11] P. Layzell and A. Thompson. Understanding Inherent
Qualities of Evolved Circuits: Evolutionary history as a
predictor of fault tolerance. Proc. 3rd Int. Conf. on
Evolvable Systems (ICES 2000): From biology to hardware,
Springer-Verlag, LNCS 1801 Ed. J. Miller and A. Thompson
and P. Thomson and T. Fogarty, 2000, pp 133-144.

[12] D. Keymeulen and A. Stoica and R. Zebulum. Fault-
tolerant evolvable hardware using field-programmable
transistor arrays. IEEE Transactions on Reliability, 49 (3),
2000.

 [13] Xilinx. Jbits documentation, 1999. Published in JBits
2.0.1 documentation.

[14] D. Levi and S. Guccione. Geneticfpga: Evolving stable
circuits on mainstream fpga devices. In The First
NASA/DoD Workshop on Evolvable Hardware. IEEE
Computer Society, 1999.

[15] Holland, J.H.: ‘Adaptation in Natural and Artifical
Systems’, University of Michigan Press, 1975.

[16] Xilinx Inc.: ‘XC6200 Field Programmable Gate Array
Data Book’, http://www.xilinx.com/partinfo/6200.pdf, 1995.

[17] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya,
M. Iwata, and T. Higuchi. Hardware evolution at functional
level. In International conference on Evolutionary
Computation: The 4th Conference on Parallel Problem
Solving from Nature, pages 62–71, 1996.

[18] Yao, X. and Higuchi, T.: ‘Promises and Challenges of
Evolvable Hardware’, International Conference on
Evolvable Systems: From Biology to Hardware, Lecture
Notes in Computer Science 1062, Springer Verlag, 1996, pp
55-78.

[19] J. F. Miller. Evolution of digital filters using a gate
array model. In Poli et al., editor, Evolutionary Image
Analysis, Signal Processing and Telecommunications,
volume 1596 of LNCS, pages 17–30. Springer, 1999.

JBits API

Baseline
Bitstream

Configured
Bitstream

Genetic
Algorithm

Genotype-
Phenotype
Mapping

Changes

Genotype

PC

Foundation

Virtex
FPGA

I/O

Evolution

Figure 1: Virtex hardware set up

16x(1+1)ES Low Mutation

0
50

100
150
200
250
300

1

71 14
1

21
1

28
1

35
1

42
1

49
1

56
1

63
1

70
1

77
1

84
1

91
1

Generations

Fi
tn

es
s

Faults

Figure 2: Fitness of the best individual when subjected to faults, with a low mutation rate

16x(1+1)ES Medium Mutation

0
50

100
150
200
250
300

1

36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

Generations

Fi
tn

es
s

Faults

Figure 3: Fitness of the best individual when subjected to faults, with a medium mutation rate

16x(1+1)ES High Mutation

0
50

100
150
200
250
300

1

62 12
3

18
4

24
5

30
6

36
7

42
8

48
9

55
0

61
1

67
2

73
3

79
4

Generations

Fi
tn

es
s

Faults

Figure 4: Fitness of the best individual when subjected to faults, with a high mutation rate

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Figure 5: Run of the 16 – 1+1 (4)

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Figure 6: Run of the 16 – 1+1 (3)

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Figure 7: Run of the 16 – 1+1 (2)

QuickTime™ and a
Photo - JPEG decompressor

are needed to see this picture.

Figure 8: Run of the 16 – 1+1 (1)

