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Abstract 
 
Redundancy is a critical component to the design of 

fault tolerant systems; both hardware and software. This 
paper explores the possibilities of using evolutionary 
techniques to first produce a processing system that will 
perform a required function, and then consider its 
applicability for producing useful redundancy that can 
be made use of in the presence of faults, ie is it fault 
tolerant? Results obtained using Evolutionary Strategies 
to automatically create redundancy as part of the 
“design” process are given. The experiments are 
undertaken on a Virtex FPGA with intrinsic evolution 
taking place. The results show that not only does the 
evolutionary process produce useful redundancy, it is 
also possible to reconfigure the system in real-time on 
the Virtex device. 

 
 

1 Introduction 
 
Fault tolerance is a technique used in the design and 

implementation of dependable computing systems. With 
the increase in complexity of systems complete fault 
coverage at the testing phase of the design cycle is very 
difficult to achieve, if not impossible. In addition, 
environmental effects such as Radio Frequency and 
Electromagnetic interference and misuse by users can 
mean that faults will occur in systems. These faults will 
cause errors and if left untreated, could cause system 
failure. The role of fault tolerance is to deal with errors, 
caused by faults, before they lead to failure. 

Fault-tolerance is increasingly a crucial part of system 
designs. More and more applications are using 
programmable systems for their operation. Many of 
these applications have part or all of their function 
classified as critical in one form or another. Since the 
testing of systems fully is generally unrealistic, critical 
functions must be protected “on-line”. This is often 
achieved by using fault-tolerance to cope with errors 
produced during the operation of the system. The 
traditional techniques are based around simple static 
redundancy (such as N-version systems, eg [1]). These 
are expensive in terms of equipment, time and design 

costs. An alternative approach is to use a form of 
reconfiguration to “bypass” the faulty item, which may 
be a hardware process, a software process, or a 
combination of the two. 

Fault tolerance in a processing system implies the 
mapping of a logical array onto a non-faulty physical 
array. When faults arise, a mechanism must be provided 
for reconfiguring the physical system such that the 
logical array can still be represented by the remaining 
non-faulty processing elements. All reconfiguring 
mechanisms can be considered to be based on one of 
two types of redundancy: time redundancy or hardware 
redundancy [2]. 

In time redundancy the tasks performed by faulty 
processors are distributed among its “neighbours”. 
When reconfiguration occurs, processors dedicate some 
time to performing their own tasks and some to 
performing the faulty processors’ functions, resulting in 
some degradation of the system's performance. In 
addition, the algorithm being executed must be 
sufficiently flexible to allow a simple and flexible 
division of tasks in real-time. 

In hardware redundancy physical spare processing 
elements and links are used to replace the faulty ones. 
For this process reconfiguring algorithms must optimise 
the use of spares. In the ideal case, a processing system 
with N spares must be able to tolerate N faulty 
processors. However, in practice, limitations on the 
interconnection capabilities of each cell prevents this 
goal from being achieved. 

The majority of hardware redundancy reconfiguration 
techniques rely on complex algorithms to re-assign 
physical resources to the elements of the logical array. 
In most cases these algorithms are executed by a central 
controller which also performs diagnosis functions and 
accomplishes the reconfiguration of the physical system 
[3,4]. This approach has been demonstrated to be 
effective, but its centralised nature makes it prone to 
collapse if the processor in control fails. These 
mechanisms also rely on the designer making a prioi 
decisions on reconfiguration strategies and data/code 
movement, which are prone to error and may in practice 
be less than ideal. Furthermore, the timing of signals 
involved in the global control are often prohibitively 



long and therefore, unsuitable for real-time fault 
tolerance.  

An alternative approach is to distribute the diagnosis 
and reconfiguration algorithms among all the processing 
elements in the system [5,6]. In this way no central 
agent is necessary and consequently the reliability and 
time-response of the system should improve. However, 
this decentralised approach has tended to increase the 
complexity of the reconfiguration algorithm and the 
amount of communications within the network. In 
addition, considerable work is required on producing 
redundancy. 

Traditionally, fault tolerance has been added explicitly 
to system designs by including redundant hardware 
and/or software which will "take over" when an error 
has been detected. A novel alternative approach would 
be to design the system in such a way that the 
redundancy was incorporated implicitly into the 
hardware and/or software during the design phase [7,8]. 
This should provide a more holistic approach to the 
design process. We already know that Genetic 
Algorithms and Programming can adapt and optimise 
their behaviour and structure to perform a specific task, 
but the aim is that they should “learn” to deal with faults 
within their operation space. This implicit redundancy 
would make the system response invariant to the 
occurrence of faults. 

The Virtex devices now allow us to perform real-time 
partial reconfiguration on hardware [9]. This paper 
explores the possibilities of using evolutionary 
techniques to first produce a processing system that will 
perform a required function, and then consider its 
applicability for producing useful redundancy that can 
be made use of in the presence of faults, ie is it fault 
tolerant? 

The results shown in this paper are based around a 
simple example, an evolved oscillator [10]. All 
evolution was performed on a Virtex 1000. 

 
2 Evolved Fault Tolerance 

 
Faults can be viewed in a system similar to changes in 

the environment for evolving biological entities.  The 
individuals compete in the new environment to produce 
a species which is capable of living and reproducing 
with the new changes.  This method of adapting to faults 
requires a change in the way most evolutionists view 
evolutionary algorithms. 

In general evolutionary algorithms are viewed as an 
optimising process, where the algorithm is halted when 
some maximal/average fitness is reached.  For 
evolutionary strategies to be used to provide fault 
tolerance, the algorithm should be viewed as a 
continuous real-time adaptation system, constantly 
adapting to changes in the environment. These can come 
from a number of sources, for example: 

 
• hardware failures leading to faults; 
• requirements/specification changes; 
• environmental changes (eg EM interference). 

 
When such a change occurs, the fitness of the 

individuals will change correspondingly. As the 
evolution progresses, the individuals will adapt to the 
new changes until they regain their fitness. 

Critical to any fault tolerant system is useful 
redundancy, whether in the form of virtual 
hardware/software or real hardware/software and 
possibly design. One of the features of an evolutionary 
system is its reliance on having a diverse population 
from which to evolve from. The hypothosis tested in this 
paper concerns the applicability of these diverse 
members to provide useful redundancy in the presence 
of faults, ie provide inherent fault tolerance [11,12]. In 
[11], the authors considered Populational Fault 
Tolerance, where they effected faults into a number of 
transistor circuits. In this work high degrees of genetic 
convergence was achieved and the authors speculated on 
what might be providing redundancy within a given 
population, and hence allowing fault tolerant properties 
to exist. The work reported in this paper encourages 
genetic convergence not to occur and hence considers a 
related but different set of evolved circuits. 
 
3 JBits 

 
The work repoted in this paper involved the intrinsic 

evolution on Virtex devices. This made considerable 
use of JBits and a brief overview of JBits is now given. 
JBits [13] is a set of Java classes which provide an 
Application Program Interface (API) into the Xilinx 
Virtex FPGA family bitstream. This interface operates 
on either bitstreams generated by Xilinx design tools, 
or on bitstreams read back from actual hardware. It 
provides the capability of designing and dynamically 
modifying circuits in Xilinx Virtex series FPGA 
devices. The programming model used by JBits is a 
two dimensional array of Configurable Logic Blocks 
(CLBs). Each CLB is referenced by a row and column 
index, and all configurable resources in the selected 
CLB may be set or probed.  

[10] showed an example application programmed 
using JBits, the requirement was to change the 
LookUp Table (LUT) entry so that the function of the 
gate is changed from an OR gate to an AND gate (a 
simple example). To perform this application a 
baseline bitstream is created which contains the 
required input and outputs to the LUT. The LUT is 
forced to be in a specific CLB on the FPGA so that it 
can later be located. Once this has been done the Java 



 
    Input Vector     OR  AND  
 G3    G2    G1    G0         
  0  0  0  0  0  0  
  0  0  0  1  1  0  
  0  0  1  0  1  0  
  0  0  1  1  1  0  
  0  1  0  0  1  0  
  0  1  0  1  1  0  
  0  1  1  0  1  0  
  0  1  1  1  1  0  
  1  0  0  0  1  0  
  1  0  0  1  1  0  
  1  0  0  0  1  0  
  1  0  0  1  1  0  
  1  1  0  0  1  0  
  1  1  0  1  1  0  
  1  1  1  0  1  0  
  1  1  1  1  1  1  

 
Table 1: Truth Table for AND/OR gates 

 
 

program as shown in [10] can be written. The 
program is written to first load in the baseline 
bitstream, this bitstream is then modified to change 
the function of the cell (in this case change the OR 
gate into an AND gate), the LUT entries for the 
AND and OR gates are calculated by taking the truth 
table and writing the outputs into a single 16bit (4 
nibble) value:  

 
OR 1111 1111 1111 1110 0xfffe 
AND 1000 0000 0000 0000 0x8000 
 
Once the LUT has been changed (within JBits), the 

bitstream is then retrieved and sent to the Virtex 
Chip.  

Since the JBits interface can modify the bitstream 
in this way it is still possible to create a ’bad’ 
configuration bitstream; for this reason it is 
important to make sure that the circuit which is 
downloaded to the chip is always a valid design. This 
is done by only ever modifying a valid design to 
implement the evolvable hardware. This is a method 
similar to that demonstrated in Delon Levi’s work on 
GeneticFPGA in [14] where the XC4000 series 
devices were programmed to implement evolvable 
hardware. The major obstacle in that implementation, 
the speed with which the devices could be 
programmed, is no longer a problem here.  

The hardware interface is the XHWIF (Xilinx 
Hardware InterFace). This is a Java interface which 
uses native methods to implement the platform 
dependent parts of the interface. It is also possible to 
run an XHWIF server, which receives configuration 

instructions from a remote computer system and 
configures the local hardware system. This enables 
the evolvable hardware to be evaluated in parallel on 
multiple boards. This interface is also part of 
Xilinx’s new Internet Reconfigurable Logic (IRL) 
methodology, where the computer houses a number 
of Xilinx parts which can easily be reconfigured 
through the Java interface.  
 
4 Evolutionary Strategies and Evolvable 
Hardware (EHW) 

 
The DNA sequence (the genotype) carried by all 

living things is used, through a process known as 
embryological development, to build the phenotype 
(the body), which is a sequence of chemical 
interactions within each cell that distinguishes it from 
other cells and describes its action. The body is subject 
to environmental pressures where its fitness for 
reproduction is assessed; fitter individuals have a 
higher rate of reproduction.  This means that genes 
within the DNA that code specific 'good' traits (traits 
which describe better reproduction abilities) will have 
a higher probability of existing in future populations. 
Genetic Algorithms were first explored by John 
Holland [15]; he showed that it is possible to evolve a 
set of binary strings which describe a system’s 
characteristics and that a measure of fitness can be 
applied to the system’s output(s). The binary strings 
are analogous to the DNA, and the implementation to 
the phenotype. 



In artificial evolution, a binary string usually 
describes the system. This is achieved directly or 
indirectly through some form of embryological 
development.  The system is then assessed within the 
environment to determine its fitness relative to the 
other individuals (eg does one circuit have a better 
filter characteristic than another?). This measure can 
then be used to weight the probability of deleting a 
system from the population, so that through many 
generations good genes survive and bad genes die out. 
The chromosomes of different members of a 
population can have segments exchanged or crossed 
over, and part of a chromosome can be randomly 
mutated. Both of these operations will create a new 
population to be considered for fitness (and hence, 
survival). The circuits produced will gradually move 
towards an optimal condition where the mutations and 
crossovers have no improved effect on the 
performance of the circuit. In the majority of situations 
this evolutionary process is performed in simulation, 
with only the final fittest circuit being implemented in 
hardware. 

A further extension to the domain of evolutionary 
techniques came with the creation of Field 
Programmable Gate Array (FPGA) [16] devices and 
Programmable Logic Devices (PLD), since these can 
be programmed using a binary string or by coding a 
binary logic tree. The electronic circuits can then be 
evaluated either electronically, to compare their 
outputs with the required output (intrinsic EHW) [17, 
18], or in simulation (extrinsic EHW) to create some 
measure of the fitness [19]. 

For simplicity a 16*(1+1) Evolutionary Strategy 
(ES) was used for the majority of experiments reported 
in this paper. The (1+1)ES simply works by creating a 
parent, mutating this parent to created a child and 
comparing the fitness of the parent and the child. The 
best individual becomes the parent for the next 
generation. In the 16*(1+1)ES this process was 
replicated 16 times, with little interaction between the 
16*(1+1)ES, allowing increased diversity.  

Further selection pressure is created through the 
overwriting of consistantly bad (1+1)ES's by another 
random (1+1)ES.  The environment is similar to a 
number of species evolving, where each (1+1)ES is a 
species (even though there is only ever one 
individual!). Each species competes for its fitness with 
fifteen other species; if a species’ fitness drops due to 
a change in the environment (which could be a literal 
change in the environment or a change in the genotype 
due to a mutation for example), the species will be 
deleted (xenocide) and replaced with one of the other 
species, the choice as to which one is used for 
replacement is done randomly.  Although the number 
of species would seem to decrease with this method, it 
in fact does not appear to be the case, since once the 

new species has been in existence for a number of 
generations it will be significantly different from the 
other species due to mutations. 

All experiments were performed on a Xilinx Virtex 
FPGA system, which allowed partial reconfiguration 
to be performed using JBits [13]. The application was 
to evolve a simple 3KHz oscillator on this device [10]. 
A fitness level of 200 was set to be an acceptable 
answer. The hardware configuration is shown in figure 
1. Rather than checking the actual frequency of the 
signal by polling the output value and checking to see 
when it is high and when it is low, the fitness is 
evaluated by including a counter which counts the 
number of positive edges within a certain time period. 
This proved to be a more accurate method of 
frequency measurement. 

The results for three different mutation rates are 
shown in figures 2-4. The fault model used to test the 
fault tolerance of the system was one that considered 
only stuck-at-faults (stuck-at-one - SA1 and stuck-at-
zero - SA0) and short circuits. These faults were 
emulated and inserted into the bitstream of the device. 
The position and fault type were specified by the 
setting of particular LUTs within a device. Further 
faults were introduced into the circuit until, in most 
cases, the system failed.  

 
5 Results 

 
An important measure when implementing the fault 

tolerant hardware is the rate of mutation implemented 
in the 16*(1+1)ES. The measure by which the rate of 
mutation is decided is the rate of change of the 
genotype, and in a related way the disruption created 
by the mutation operator. These two measures are 
orthogonal to each other; the higher the mutation the 
faster the genotypes can respond to change (faults) but 
the higher the mutation the more disruption caused to 
the genotype. With low mutation rates the system 
becomes less responsive but is more stable once a 
good fitness has been reached. Three mutation rates 
are shown in figures 2-4, high mutation level (5 
mutations/individual/generation), medium level (2 
mutation/individual/generation) and low level (1 
mutation/individual/generation). 

The most striking feature observed from figures 2-4 
is that when faults are injected into the best individual 
there is another individual in the population that can be 
identified as the new best with a fitness sufficiently 
high to be acceptable for use, until a sufficient number 
of faults are injected and the whole population fails. 
There does appear to be sufficient redundancy 
produced by the 16*(1+1)ES to provide fault tolerance 
for these type of faults. A more detailed consideration 
of the results highlights the different characteristics of 
the three mutation rates. With low mutation rates the 



“jitter” in the fitness is low and when faults occur, 
which require the circuit to evolve around the fault, the 
regaining of fitness levels is relatively slow. When 
mutation rates are high, the “jitter” in the best 
individual is much more pronounced, but with this 
mutation rate the fitness of the best individual climbs 
much more rapidly than with a low mutation rate. The 
medium mutation rate appears to give the best overall 
response in terms of both these measures. The “jitter” 
in the fitness is less pronounced than with a high 
mutation rate, but when a fault occurs the individuals 
regain fitness more quickly than for low mutation 
rates. 

Another possible measure of diversity would be to 
actually look at the “circuit” layout of individuals in a 
population. The problem is how to identify which 
matrix elements in the FPGA are providing useful 
functionality and which are not. An experiment was 
devised to help provide this information. The genotype 
is tested by first inserting a Stuck At 0 fault (SA0) and 
retesting the fitness, inserting a Stuck At 1 fault (SA1) 
and retesting. Finally, the faults are removed and 
testing takes place again, just to be sure that the 
genotype still works even without faults. If the results 
for the best individual have a fitness which was 
reduced by at least half, the individual is considered 
dead and that particular element in the overall matrix 
is considered critical to the functionality. There is an 
extra bit (which is not used in the genotype/phenotype 
map) that describes whether that individual matrix  
element is used by the circuit. This bit and the 
corresponding matrices can then be used to build a 
map of the useful/useless elements within the matrix in 
the current best solution. 

Figures 5, 6, 7 and 8 show the best fitness genotype 
of the 16*(1+1)ES. The output bit of the circuit is the 
top right corner, and the results show just how varied 
the different runs of the 16*(1+1)ES are. Now, as 
indicated earlier, these figures cannot accurately tell us 
how much of the circuit is being used because there 
may be redundant parts to the circuit which mean that 
although they are being used, the fitness does not 
decrease to half the maximum value when a fault is 
inserted. Instead, what can be noticed from these 
diagrams are the parts of the circuit which are 
definitely required, ie figures 7 and 8 are more likely 
to be damaged through faults than figures 5 and 6. 

 
6 Conclusions 

 
The initial results presented in this paper indicate 

that when individuals  within a population are 
prevented from having genetic convergence the 
population as a whole does present characteristics that 
might be very useful in safety critical environments. 

The work presented here assumes that an initial 
evolutionary stage has taken place before the system 
goes “on-line”. This alleviates to some extent the 
problems of on-line evolution and the fact that many 
of the mutants are less than fit. This allows for the on-
line system to consist on mostly “useful” individuals. 
In addition, the evolutionary strategy used means that 
these are relatively unrelated individuals enhancing the 
probability of useful diversity. Evolution, once on-line, 
takes place on all individuals apart from the current 
“best”. This reduces the effect of low fitness outputs 
caused by mutation. 

It is not the aim of this work to try and test out all 
possible fault conditions within a particular design, in 
practice this would never be possible. What is being 
tested here is the hypothesis that within an evolved 
population  of individuals, there is a high probability 
that a fault which “kills” one member of the 
population will not significantly effect the 
performance of another, useful, member of the 
population. 

It seems clear from the initial experiments that 
evolutionary strategies can be used to produced 
redundant versions of systems which increase the fault 
tolerance of an application. Further work is required to 
investigate other evolutionary strategies such as 
Genetic Algorithms, but the results presented here 
contribute to this exciting and rapidly expanding 
subject. 
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Figure 1: Virtex hardware set up 
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Figure 2: Fitness of the best individual when subjected to faults, with a low mutation rate 
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Figure 3: Fitness of the best individual when subjected to faults, with a medium mutation rate 
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Figure 4: Fitness of the best individual when subjected to faults, with a high mutation rate 
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Figure 5: Run of the 16 – 1+1 (4) 
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Figure 6: Run of the 16 – 1+1 (3) 
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Figure 7: Run of the 16 – 1+1 (2) 
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Figure 8: Run of the 16 – 1+1 (1) 
 

 


