Genetic Algorithms vs. Simulated Annealing: A
Comparison of Approaches for Solving the Circuit
Partitioning Problem

by

Theodore W. Manikas
James T. Cain

Technical Report 96-101
May 1996

Department of Electrical Engineering
The University of Pittsburgh
Pittsburgh, PA 15261

Abstract

An important stage in circuit design is placement, where components are assigned
to physical locations on a chip. A popular contemporary method for placement is
the use of simulated annealing. While this approach has been shown to produce good
placement solutions, recent work in genetic algorithms has produced promising results.
The purpose of this study is to determine which approach will result in better placement
solutions.

A simplified model of the placement problem, circuit partitioning, was tested on
three circuits with both a genetic algorithm and a simulated annealing algorithm.
When compared with simulated annealing, the genetic algorithm was found to produce
similar results for one circuit, and better results for the other two circuits. Based on
these results, genetic algorithms may also yield better results than simulated annealing
when applied to the placement problem.

Group A Group B

\
/o

Figure 1: Graph representation of circuit partitioning.

1 Introduction

An important stage in circuit design is placement, where components are assigned to physical
locations on a chip. A popular contemporary method for placement is the use of simulated
annealing (Sechen[1]). While this approach has produced good results, recent work in ge-
netic algorithms has also produced promising results (Cohoon [2], Shahookar [3], Sait [4]).
The purpose of this study is to determine which approach, genetic algorithms or simulated
annealing, will result in better placement solutions.

A simple model of the placement problem is the circuit partitioning problem. A circuit
may be represented by a graph G=(V,E), where the vertex set V represents the components
of the circuit, and edge set E represents the interconnections between components. The par-
titioning process splits the circuit into groups of relatively equal sizes. The objective is assign
components to groups such that the number of interconnections between groups is minimal.
An example of a circuit partition is shown in Figure 1. The number of interconnections
between groups is called a cutsize, thus the goal is to minimize the cutsize.

Partitioning was tested on three circuits using both genetic algorithm and simulated
annealing approaches. This report describes the method used for this experiment, and
discusses the results.

2 Method

Both a genetic algorithm and simulated annealing approach were tested on a set of circuits.
This chapter explains both approaches, and describes the method used for testing these
approaches.

2.1 Genetic Algorithm

A genetic algorithm (Holland[5]) is an iterative procedure that maintains a population of
individuals; these individuals are candidate solutions to the problem being solved. FEach
iteration of the algorithm is called a generation. During each generation, the individuals
of the current population are rated for their effectiveness as solutions. Based on these
ratings, a new population of candidate solutions is formed using specific genetic operators.
Each individual is represented by a string, or chromosome; each string consists of characters
(genes) which have specific values (alleles). The ordering of characters on the string is
significant; the specific positions on the string are called loci.

A genetic algorithm for partitioning, based on Bui’s approach[6], was used for this study
(Figure 2). A graph partitioning solution is encoded as a binary string of C genes, where C
= total number of components. Fach gene represents a component, and the allele represents
the group (0 or 1), where the component is assigned. For example, the chromosome [00111]
represents a graph of five components: components 1 and 2 are in partition 0, while compo-
nents 3, 4 and 5 are in partition 1. The following sections explain the steps of the genetic
algorithm.

Create Initial Population

A population of P chromosomes are randomly generated to create an initial population.
Individuals are created by generating a random number in the range 1 to 2 — 2; each
individual must represent a wvalid partitioning solution. A valid partitioning solution is
balanced: each group has approximately the same number of components.

Select Parents

Each individual has a fitness value, which is a measure of the quality of the solution

represented by the individual. The formula from Bui[6] is used to calculate the fitness value
I for individual i

GENETIC ALGORITHM
begin
create initial population of size P
repeat
select parent_1 and parent_2 from the population
offspring = crossover(parent_1,parent_2)
mutation(offspring)
update_population
until stopping criteria met
report the best answer
end

Figure 2: Genetic algorithm.

Cyw—C
Fi:(Cw—Ci)—l-ig ’
where (', is the largest cutsize in the population, C} is the smallest cutsize in the popu-
lation, and C; is the cutsize of individual i.

Each individual is considered for selection as a parent; the probability of selection of
a particular individual is proportional to its fitness value. Bui[6] recommends that the
probability that the best individual is chosen should be 4 times the probability that the worst
individual is chosen. Thus, the P chromosomes are sorted in ascending order according to
their fitness values, and a probability distribution function is created. The probability factor
ris found by

1
r =471

Assume that the probabilities assigned to each individual is a geometric progression,
where the sum of all these probabilities S is given by

1 —rP
1—r

S=l+r+r’+.. +r7 "=

Therefore, the probability that chromosome i is selected, Pr{i}, is found by

Parent 1 011 o 101
Parent 2 1101011

Offspring 1 0111011
Offspring 2 0110100

Figure 3: Crossover example.

rzl

Prii} = ;

Crossover

After two parents are selected, crossover is performed on the parents to create two off-
spring. A chromosome split point is randomly selected, and is used to split each parent
chromosome in half. The first offspring is created by concatenating the left half of the first
parent and the right half of the second parent, while the second offspring is created by con-
catenating the left half of the first parent and the complement of the right half of the second
parent. An example of crossover is shown in Figure 3.

Mutation

Each offspring must meet the same constraints as its parents: the number of ones and
zeroes in the bit pattern should be nearly equal. However, the crossover operation may
produce an offspring that do not meet this requirement. An offspring is altered via mutation,
which randomly adjusts bits in the offspring so that its bit pattern is valid. The mutation
procedure determines the value b, which is the absolute value of the difference in the number
of ones and zeroes. A bit location on the offspring is randomly selected, then starting at that
location, b bits are complemented (zeroes become ones, ones become zeroes). This operation
results in offspring that represent valid partitions.

Update Population

The creation of two offspring increases the size of the population to P+ 2. Since we want
to maintain a constaint population size of P, two individuals will need to be eliminated from
the population. The goal of the algorithm is to converge to the best quality solution, thus
the two individuals with the lowest fitness values are removed from the population.

Stopping Criteria

Bui[6] uses a swing value W to determine when the algorithm stops. If there is no
improvement after W generations, then the algorithm stops. No improvement means that
there are no changes in the maximum fitness value of the population. The final solution is
the individual with the highest fitness value.

2.2 Simulated Annealing

Simulated annealing (Kirkpatrick[7]) is an iterative procedure that continuously updates
one candidate solution until a termination condition is reached. A simulated annealing
algorithm for circuit partitioning was created, and is shown in Figure 4. A candidate solution
is randomly generated, and the algorithm starts at a high starting temperature Ty, The
following sections explain the steps of the simulated annealing algorithm.

Calculate Gain

The gain of a partitioning solution is calculated by use of the ratio cut formula (Wei[8]):

cutsize
Gain = ———
Al 1B]
where |A| = the number of vertices in group A, and |B| = the number of vertices in

group B.

Accepting Vertex Moves

M is the number of move states per iteration. For each move state, a vertex is randomly
selected as a candidate to move from its original group to the other group. When a vertex V
is randomly selected for movement from one partition to another, its score, or acceptance of

begin
T ="1Ts
Ustop = ts
Current_Gain = Calculate_Gain()
while ¢, > 0 do
Accept Move = FALSE
fori=1to M do
randomly select vertex V to move from one partition to another
New_Gain = Calculate_Gain()
AGain = New_Gain — Current_Gain
if Accept_Gain_Change(AGain,T) then
Current_Gain = New_Gain
Accept Move = TRUE
else
return V to original partition
if Accept_Move then
Ustop = ts
else
stop = tstop — 1
T=Tx«
end

Figure 4: Simulated annealing algorithm.

Accept_Gain_Change(AGain,T)
begin
if move results in unbalanced partition then
reject move
else if AGain < 0 then
accept move
else
R = random number (0 < R < 1)
e
if R <Y then
accept move
else
reject move
end

Figure 5: Simulated annealing scoring function

move, is evaluated according to the function shown in Figure 5. A move is always rejected
if it will result in an unbalanced partition, while a move is always accepted if it will improve
the solution. Otherwise, a move is randomly accepted, with the probability of acceptance
dependent on the system temperature T. The higher the temperature, the greater the prob-
ability that an inferior move will be selected. This process allows the candidate solution to
explore more regions of the solution space at the early stages of the algorithm. The objective
is to keep the solution from converging to a local optimum.

Stopping Criteria

After each iteration, the temperature T is scaled by a cooling factor o, where 0 < a < 1.
The algorithm stops if there have been no changes to the solution after ¢, iterations.

3 Experiment and Results

Three circuits were selected for data sets; the graphical representations of these circuits are
shown in Figures 7, 8, and 9. For the genetic algorithm,the population size P and swing
value W were varied during testing. For simulated annealing, the starting temperature T,
cooling factor «, number of move state M, and stopping value ¢;. were varied during testing.
Each set of parameter combinations forms a treatment; there were approximately 20 trials

Circuit p W
1 {5,10,15,20} {2,5,10}
2 {15,30,50,100} {2,5,10}
3 {15,30} {2,5,10}
Table 1: Experimental parameter ranges for the genetic algorithm.
Circuit To o M ts
1 {1000} {0.8,0.9,0.995} {5,10,20} {3,5,10}
2 {1000,5000,10000} {0.8,0.9,0.995} {5,10,20} {3,5,10}
3 {1000} {0.995} {20} {3,5}

Table 2: Experimental parameter ranges for simulated annealing.

per treatment. The parameter ranges used for each circuit are shown in Table 1 for the
genetic algorithm, and in Table 2 for the simulated annealing algorithm.

For each graph, the mean cutsizes of the genetic algorithm and simulated annealing are
compared. We want to estimate the differences between the means with a 95% degree of

confidence. According to Freund[9], if #; and &, are the values of the means of independent
random samples of size n; and ny from the normal populations with known variances 0% and

o of o0} o o? o}
(1 = Z9) = Zaje (| — + = <1 —p2 < (T1 = T2) + 20p2 | — + —
ny Mg ny o N2

is a (1 — a)100% confidence interval for the difference between the population means.

2
o3, then

For a 95% confidence interval, (1 — a) = 0.95, so a = 0.05, and «/2 = 0.025. From
the z-tables for standard normal distribution (Table III in Freund[9]), zo.025 = 1.96. For this
study, index 1 refers to the genetic algorithm, while index 2 refers to the simulated annealing
method. Table 3 shows the results, which are used to calculate the confidence intervals. A
bar graph that compares the mean cutsizes is shown in Figure 6.

For data set 1, the 95% confidence interval is

Circuit 1 o1 ny T o9 N9
1 3.004 0.065 240 | 4.860 0.618 400
2 5.333 1.127 240 | 4.978 0.277 1620
3 6.640 1.159 100 | 8.875 0.563 40

Table 3: Table of results.

N W s~ 01 OO N 00 ©

=

Mean Cutsizes

Circuit 1 Circuit 2 Circuit 3

] Genetic Algorithm
B Simulated Annealing

Figure 6: Comparison of mean cutsizes.

—1.917 < H1 — 2 < —1.795

Since both limits are negative, we can conclude that, with 95% confidence, the genetic
algorithm produces a solution with a smaller average cutsize than simulated annealing.

For data set 2, the 95% confidence interval is

0.212 < 1y — piz < 0.498

Both limits are positive, but the difference is less than one. Since cutsizes are integer
values, no significant difference can be found between the genetic algorithm and simulated
annealing.

For data set 3, the 95% confidence interval is

—2.521 < py — iy < —1.949

Since both limits are negative, we can conclude that, with 95% confidence, the genetic
algorithm produces a solution with a smaller average cutsize than simulated annealing.

Thus, the genetic algorithm produced a smaller average cutsize than simulated annealing
for circuits 1 and 3, while no significant difference was found between the methods when
applied to circuit 2.

10

Figure 7: Graph 1

11

4

Conclusion

Based on the results of the study, the genetic algorithm was shown to produce solutions equal

to or better than simulated annealing, when applied to the circuit partitioning problem.

Recall that the circuit partitioning problem was used to model the placement problem.

Simulated annealing is a popular contemporary placement method; however, the results of
this study indicate that genetic algorithms may lead to better results.

References

1]

3]

[9]

Sechen, C. and Sangiovanni-Vincentelli, A. “The TimberWolf Placement and Routing
Package”. [EFE Journal of Solid-State Circuits, Vol. SC-20 No. 2, pp. 510-522, April
1985.

Cohoon, J.P. and Paris, W.D. “Genetic Placement”. [FEE Trans. on Computer-Aided
Design of Integrated Circuits, Vol. CAD-6 No. 6, pp. 956-964, November 1987.

Shahookar, K. and Mazumder, P. “A Genetic Approach to Standard Cell Placement
Using Meta-Genetic Parameter Optimization”. IEEE Trans. on Computer-Aided Design
of Integrated Circuits, Vol. 9 No. 5, pp. 500-511, May 1990.

Sait, et al. “Timing Driven Genetic Algorithm for Standard-cell Placement”. In Proc.

14th Phoeniz Conf. on Computers and Communications, pp. 403-409. IEEE, 1995.

Holland, John H. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. University of Michigan
Press, 1975.

Bui, T. and Moon, B. “Genetic Algorithms for Graph Bisection”. Technical Report
(CS-93-07, Pennsylvania State University, Dept. of Computer Science, April 1993.

Kirkpatrick, Gelatt, and Vecchi. “Optimization by Simulated Annealing”. Seience, Vol.
220 No. 4598, pp. 671-680, May 1983.

Wei, Y. and Cheng, C. “Ratio Cut Partitioning for Hierarchical Designs”. IEEE Trans.
on Computer-Aided Design of Integrated Circuits, Vol. 10 No. 7, pp. 911-921, July 1991.

Freund, John. Mathematical Statistics, chapter 11. Prentice-Hall, 5th edition, 1992.

13

14

