
 1

Tabu Search and Finite Convergence

Fred Glover
Hearin Center for Enterprise Science
School of Business Administration

University of Mississippi
University, MS 38677 USA

Saïd Hanafi
LAMIH - UMR CNRS n° 8530

Unité de Recherche Opérationnelle et d’Aide à la Décision
Université de Valenciennes et du Hainaut-Cambrésis

Le Mont Houy - B.P. 311 - 59304 Valenciennes Cedex – France

September, 1999

We establish finite convergence for some tabu search algorithms based on recency memory or

frequency memory, distinguishing between symmetric and asymmetric neighborhood

structures. These are the first demonstrations of explicit bounds provided by such forms of

memory, and their finiteness suggests an important distinction between these ideas and those

underlying certain "probabilistic" procedures such as annealing. We also show how an

associated Reverse Elimination Memory can be used to create a new type of tree search.

Finally, we give designs for more efficient forms of convergent tabu search.

To appear in: Discrete Applied Mathematics, Special Issue on “Foundations of Heuristics in Combinatorial

Optimization.”

 2

1. Introduction
We consider a combinatorial optimization problem stated in the form :

(P) Minimize c(x) subject to x ∈ X ⊆ E

where E is the space of potential solutions that satisfy certain fundamental constraints and

X is the set of feasible solutions that must satisfy additional (usually more complex)

constraints defined by the problem application. The objective function c is a linear or

nonlinear mapping that assigns a real cost value c(x) to each solution x. The problem is to

find a globally optimal solution x* ∈ X such that c(x*) ≤ c(x) for all x ∈ X.

Many optimization techniques (both heuristic and exact) for solving problem (P) are

iterative procedures that start with an initial solution (feasible or infeasible) and repeatedly

construct new solutions from current solutions by searching neighborhoods. The process

continues to generate neighboring solutions until a certain stopping criterion is satisfied.

Each solution x ∈ E has an associated neighborhood N(x), a subset of E, and the step by

which the solution x' ∈ N(x) is reached from the solution x is called a move.

From a graph perspective an iterative solution search method can be viewed as a

walk in a digraph GN = (V, A) induced by the structure of the neighborhood N, where the

node set V is the set of solutions E and where an arc (x, x') ∈ A exists if and only if x ∈

N(x'). Generally, the imprint of the trajectory in graph GN is an elementary path in the case

of local methods (forms of a descent method), while for certain meta-heuristics the

itinerary constitutes a more complex path that may be neither node-simple nor arc-simple.

The adaptive memory of Tabu Search (TS) includes a mechanism that forbids the

search to revisit solutions already encountered unless the intervening trajectory is modified

(see Glover and Laguna (1997)). The main goal of memory structures in TS is not simply

to forbid cycling, and in fact, the choice of a given neighborhood and a decision criterion

for selecting moves with TS can force some solutions to be revisited before exploring other

new ones. An example occurs in a proposal of Glover (1990), which identifies a simple

rule for revisiting solutions accompanied by a conjecture that such a rule has implications

for finiteness in the zero-one integer program and optimal set membership problems.

Hanafi (1998) proves Glover's conjecture under the assumption that the graph of the

neighborhood space is connected and symmetric. In this paper, we provide new proofs that

yield specific bounds establishing the finite convergence of this tabu search proposal. Our

 3

results provide insights into the sequences of solutions generated by the search which

disclose interesting contrasts with the more rigid rules underlying tree search methods.

Based on these outcomes, we also give designs for more efficient forms of convergent tabu

search, and provide special rules that create a new type of tree search.

The outline of this paper is as follows. Section 2 describes two convergent tabu

search algorithms (CTS) based on Recency-Memory and Frequency-Memory respectively.

We show that the complexity of the search differs according to whether the neighbor graph

GN is symmetric or asymmetric, and for the asymmetric case demonstrate that the number

of steps required by the CTS algorithm to visit all solutions in X is an exponential function

of the cardinality of X. In section 3, we propose an approach for accelerating the classical

tabu search Aspiration by Default rule in this setting, which may transform an exponential

search into a much faster polynomial search. Section 4 presents a Tabu Tree Search (TTS)

for the symmetric case, with enhancements of TTS for reducing the number of operations

that are devoted to scanning neighbors of solutions visited. Section 5 gives some

comparisons with other approaches in the literature. Finally, some practical considerations

are described in section 6.

2. A Convergent Tabu Search (CTS) Algorithm

2.1. A Convergent Algorithm Based on Recency-Memory
Let Time(x) = the most recent time (iteration) that solution x was visited by a search

process, whose form is determined as follows.

Initialization Assumption (IA): The values Time(x), x ∈ X, begin as arbitrary nonnegative

integers, and the starting solution x* for the search is assigned a value so that Time(x*) >

Time(x) for all x other than x*. (The "step counter" that is incremented by 1 at each

successive move to determine the new value of Time(x), each time a solution x is visited,

begins at the initial value of Time(x*).)

This assumption of course includes the case where the method begins with Time(x) = 0

for all x ∈ X except x*.

 4

Method Assumption (MA): From any current solution x', the search will choose next to visit

a previously unvisited solution, x" ∈ N(x') if one exists, and otherwise will choose to visit a

solution x" = argmin{Time(x): x ∈ N(x')}.

Remark 1: By convention, we may define Time(x) = 0 if x has never been visited. Then MA

simplifies to say that we always move to a solution x" that satisfies x" = argmin{Time(x): x ∈

N(x')}. (Note x" may not be uniquely determined in the set given by Time(x) = 0.) Moreover,

the term Time(x) can be replaced with Time(x’, x), identifying the most recent iteration x was

visited from x', and all the observations following continue to hold.

The “min{Time(x)} rule” is the one called the Aspiration by Default rule in the TS literature.

This rule might also be called the earliest time stamped neighbor rule, since the "last label" is

a time stamp that tells when a node was visited. This time stamp is a dynamic one, because

the Time stamp label can write over itself, and thus erase an earlier time stamp. This is

important, because if the method under consideration only used a simple version of an earliest

time stamped neighbor rule, without allowing the time stamp to write over itself, then it might

avoid some duplications but it could also fail to search the entire space.

Neighborhood Assumption (NA): X is finite and there exists a neighborhood path from

every solution in X to every other solution in X.

The three preceding assumptions IA, MA and NA define the framework for a particular

method we will call CTS-Simple. We identify properties of this method as follows.

Denote the cardinality of X by n = |X|, and consider a value Vn for n ≥ 2 which is given

recursively by V2 = 1 and Vn+1 = n(Vn + 1). The value Vn is a very loose upper bound for

establishing finiteness of a search that operates according the assumption MA, given a

neighborhood space that satisfies assumption NA.

Theorem 1: Starting from any solution in X, the CTS-Simple method will visit every other

solution in X in a number of steps bounded above by Vn.

Proof: The value V2 is evident. By induction, suppose the theorem is true for a given value n

and consider the case for n + 1 (i.e., where |X| = n + 1.) Let X' denote a subset of X consisting

of solutions visited in Vn steps. If X' is not X, then by assumption we are assured that X'

contains all of X except a single solution x. Assumption NA implies there exists some x' ∈ X'

that includes x in its neighborhood.

 5

Let v be the number of steps required to visit x' the first time, where v ≤ Vn. Possibly x is

visited on step v + 1, but if not, step v + 1 visits another solution x" ∈ X', and Time(x")

becomes greater than Time(x). Then, either x will be visited in the next Vn steps or else the

search continues to be confined to X', in which case x' will be visited. Continuing in this way,

each time x' is visited but x is not, some x" ∈ N(x') is visited and assigned a value Time(x") >

Time(x). Each new x" visited from x' must be different from all others previously visited from

x', or else Time(x) would have a value smaller than all other elements of N(x'). The number of

times this process can continue is bounded by |N(x')|; i.e., after visiting x' for the first time on

step v ≤ Vn, once x' is visited an additional number of times vAdd ≤ |N(x')| - 1, the search

process is compelled to move to x on the next step. A count of the number of steps required

to reach x is therefore bounded above by v + vAdd(Vn + 1) + 1 (where vAdd is multiplied by 1

more than Vn because of the extra step that moves from x' back into X' to restart each round).

Given v ≤ Vn, vAdd ≤ |N(x')| - 1 ≤ n -1, the number of steps is bounded by Vn + (n - 1)(Vn + 1)

+ 1, which equals n(Vn + 1). This completes the proof.

Remark 2. The considerable looseness of the bound Vn is evident by the fact that it already

gives an overestimate of the number of iterations required by CTS-Simple to perform an

exhaustive search, even for small values of n. For example, V3 = 2(1 + 1) = 4, whereas an

upper bound of 3 is accurate. Another indication of the looseness of the bound is that the

foregoing proof applies to the case where Time(x) is replaced by Time(x', x), though the latter

can sometimes involve lengthier search processes. Note also that the form of assumption MA

is not arbitrary. That is, it is easy to demonstrate that a search may fail to visit all of X if the

rule is changed to select x" = argmax{Time(x): x ∈ N(x')}.

The bound implied by Vn+1 = n(Vn + 1) is more than n!. We now provide a more

compact proof of the theorem that gives a better bound. Define U1 = 0 and define Un+1 = 2Un

+ 1, for n ≥ 1. The bound implied by Un+1 = 2Un + 1 may equivalently be expressed as Un =

2n - 1. The theorem holds for this definition of the upper bound Un.

Theorem 2: Beginning with any solution x* ∈ X, the CTS-Simple method will visit every

solution in X in at most Un steps.

Proof: The theorem evidently holds for n = 1 and 2 (and 3). By induction, assume the

theorem is true for |X| ≤ n, and consider |X| = n + 1. After Un steps, starting from some

solution x* ∈ X, a set X* containing x* has been visited. Define N*(x) = N(x) ∩ X*. During

the Un steps executed to generate X*, each solution x' that is visited yields min{Time(x): x ∈

 6

X*} = min{Time(x): x ∈ X}. (Otherwise, since X contains X*, a smaller min value would

occur in X - X*, and the method would visit a solution not in X*, contrary to assumption.)

If |X*| < n, then the inductive hypothesis says all of X* was visited in at most Un-1 steps.

Clearly, once X* is visited,

Min{Time(x): x ∈ X*} > Max{Time(x): x ∈ X - X*}.

Continuing for another Un-1 steps, we already know the solutions visited remain entirely in X*

and that the choices are exactly as if restricting the neighborhood to N*. Hence the inductive

hypothesis says we will revisit all of X* again. By NA, at least one of these visited solutions

has a solution x" ∈ X - X* as a neighbor. Since Time(x") < Time(x) for all x ∈ X*, the

solution x" will be visited at least by 2Un-1 + 1 = Un steps, contrary to assumption. Thus we

conclude |X*| ≥ n. If |X*| = n + 1, we are done, so suppose otherwise. Then X - X* contains

exactly one element, which again we denote by x". We continue the process for another Un

steps, and if x" is not visited, by the same arguments as above we are assured to have visited

all of X* again. Likewise, as before, x" must be a neighbor of some x ∈ X*, and Time(x") <

Time(x) for all x ∈ X*. This insures that x, and hence all of X, will be visited by 2Un + 1 =

Un+1 steps, thereby completing the proof.

To provide intuitive insight into the nature of “worst case” solution sequences that can

be generated by CTS-Simple and to see how close the method can come to reaching the

bound of Theorem 2, a class of examples with symmetric and asymmetric neighborhood

structures is given in Appendix 1.

2.2. CTS Algorithm Based on Frequency-Memory
Since frequency-based memory is also useful in TS, it is natural to speculate that a

"frequency version" of Theorem 2 is valid. In fact, the preceding proof serves to establish the

result. We apply the natural definition, Frequency(x) = the number of times x bas been

visited, and replace the method assumption MA by MA' and the initialization assumption IA

by IA', which are defined as follows.

Initialization Assumption (IA') : Given the starting solution x* for the search, the values

Frequency(x), x ∈ X, begin with Frequency(x) = 0 for all x ∈ X except x*, and

Frequency(x*) = l.

 7

Method Assumption (MA’) : From any current solution x', the search will visit a previously

unvisited solution, x" ∈ N(x') if one exists, and otherwise will visit a solution

x" = argmin{Frequency(x): x ∈ N(x’)}.

As before, the bound is loose (though tighter than the previous one) and applies by

replacing Time(x) or Frequency(x) by Time(x', x) or Frequency(x', x).

Corollary to Theorem 2. The conclusion of Theorem 2 holds when CTS-Simple is

based on frequency memory and the assumptions IS and MA are replaced by IA’ and MA’ as

indicated.

The proof of the Corollary is omitted. However, the following remark may be useful.

Remark 3 : In the frequency based version of CTS-Simple, if the solution x has been visited

α|N(x)| + β times, with 0 ≤ β < |N(x)| then all neighboring solutions of x have been visited at

least α times and there exist β elements in N(x) which have been visited at least α + 1 times.

Illustrative examples of the frequency based version of CTS-Simple also appear in

Appendix 1.

3. Acceleration of the Aspiration by Default Rule
In this section, we propose an approach for accelerating the Aspiration by Default rule,

which may transform an exponential search into a much faster search that is polynomial (or

perhaps even linear) in |X|. The modified version incorporates additional information to gain

its benefits.

3.1. Generalized Assumptions

Since the Method Assumption (MA) uses only “local” information, it is natural to

generalize MA as follows. Define the distance d(x, y) (or more precisely dN(x, y)) associated

with the neighborhood structure N, as the length of a shortest path connecting x and y, where

length is measured as the number of arcs or edges in the path, according to whether the

neighborhood is asymmetric or symmetric. Thus, the neighborhood N(x) is extended by the

disk Nk(x) centered at node x with radius k which is the set of all nodes having distance at

most k to node x, i.e.

 8

Nk(x) = {y ∈ X : d(x, y) ≤ k}

A simple way to generalize the original version of MA using the Aspiration by Default

rule is to consider all solutions in Nk(x). This version is noted MA-k (where MA-1 is

equivalent to the original version of MA).

Method Assumption (MA-k): From any current solution x', the search will visit a

neighboring solution, x" ∈ N(x'), lying on a shortest path of length less than k that leads to an

unvisited solution, if one exists. Otherwise, if all solutions in Nk(x) are visited, the search will

visit a neighboring solution, x" ∈ N(x'), lying on a shortest path of length less than k that leads

to a solution y’ such that y’ = argmin{Time(y): y ∈ Nk(x)}.

A specification of the procedure for the case k = 2 is described below.

Method Assumption (MA-2): from any current solution x', the search will visit a solution,

x" ∈ N(x'), by using the following rule :

1. Let x1 = argmin{Time(x) : x ∈ N(x’)}. Move to x1 if it is an unvisited solution (x”

= x1). Otherwise,

2. Let x2 = argmin{Time(x) : x ∈ (N2(x’)-N(x’))} and let x be a neighbor solution of

both x’ and x2, (i.e. x is one solution on the path between x’ and x2). If x2 is an

unvisited solution, move to the solution x (x” = x). Otherwise,

3. If (Time(x1) < Time(x2)) then set x” = x1, else x” = x.

In MA-2 the instruction x2 = argmin{Time(x) : x ∈ (N2(x’)-N(x’))} can be replaced by

x2 = argmin{ min{Time(y) : y ∈ N(x)-{x’}} : x ∈ N(x’)}. An application of MA-2 is

illustrated in Appendix 2. The significant reduction in duplicate labeling is conspicuous, and

becomes increasingly evident as the size of the problem grows.

3.2. A Streamlined Acceleration Procedure
A potential limitation of the preceding acceleration approach is the amount of effort

required to scan the set of alternatives available at various distances from the current solution.

Enumeration of the possibilities even for solutions that lie only two moves away can be

taxing, by approximately squaring the number of possibilities that lie in the immediate

neighborhood (one move away).

 9

This limitation is partially offset by the fact that the Aspiration by Default rule tends to

require multiple visits to solutions, and hence larger numbers of steps, only in situations

where the graph is relatively sparse and has special structure. (The examples given in

Appendix 1 are clearly of this nature.) Denser graphs, with many connections between

solutions, afford many options for entering and leaving any given solution, and thus pose a

reduced likelihood that any particular node of the graph will be visited multiple times. As a

result, the recourse to the neighborhood Nk(x), at least for k = 2, is relevant primarily in

application to sparse graphs, and is not as time consuming as would otherwise be the case.

Even so, the effort can be greater than might be preferred.

We identify an alternative that approximates the options available for k = 2 with the

same order of effort required to operate simply with the original neighborhood N(x), thereby

eliminating the "squared effort" effect. This alternative is based on the assumption that the

degree of each node, i.e., the number of elements in N(x), is known in advance or is easily

determined at the point when x is visited. For example, in the case of binary solution vectors,

where N(x) consists of all binary solutions that can be reached by changing a single

component of x, the value degree(x) of each node x is just the dimension of x itself. We also

assume we are able to record an “updated” (modified) value for degree(x), as the search

progresses. We do not concern ourselves with auxiliary data structures or dynamic list

management strategies, such as those provided by the Reverse Elimination Method (REM) of

tabu search (Glover (1990), Dammeyer and Voss (1993), Hanafi and Fréville, (1999)) in order

to implement the following rules in neighborhood spaces, but continue to describe the

operations directly in terms of the graph structure.

Accelerated Procedure Based on Knowledge of degree(x).

1. The first time any given node x is reached during the search, set degree(x') :=

degree(x') - 1 for each node x’ such that x ∈ N(x’).

2. If the choice of an unvisited neighbor is not possible (i.e., all neighbors of x have

been visited), choose a neighbor x' with degree(x') > 0. If degree(x') = 0 for all

neighbors, then choose x' by the usual Aspiration by Default rule.

When the foregoing procedure is applied to symmetric graphs, the update of the

recorded node degrees can be modified by setting degree(x') := degree(x') - 1 for each

neighbor x’ ∈ N(x).

 10

This procedure achieves the same reduction in numbers of solutions visited as the

method based on MA-2 in section 3.1, while requiring substantially less effort. Since such an

accelerated approach is primarily useful in connection with sparse graphs, the scan of all

immediate neighbors in step 1 above can be performed without excessive work. An

illustrative comparison of alternative strategies using the preceding ideas is given in

Appendix 3.

4. Tabu Tree Search
The "recency-based" memory commonly employed in tabu search, which is the basis

for the Aspiration by Default rule, can also be applied with a slight change to provide a

form of tree search. As observed in Glover (1990), the use of staged decision rules in tabu

search generates a standard form of tree search as a special case. However, in the present

instance, the tree search that results is substantially different. By the variation

subsequently described, for example, we obtain a tabu tree search that departs significantly

from the customary branch and bound tree searches such as those used in popular methods

for integer programming.

We continue to focus on the symmetric case unless otherwise specified, and label

each solution x with a value Time(x) which indicates the "time" (iteration) at which it was

visited. In contrast to our previous use of this label, however, we add the stipulation that as

soon as Time(x) is assigned a value (i.e., as soon as x is visited), we do not permit its value

to be further changed. (For simplicity, we do not increase the "time counter" except as

each node is visited for the first time, so that the number of labels generated is at most |X|.)

Accompanying this, we now reverse the Aspiration by Default rule, to require that,

whenever all elements of N(x) have previously been visited, the method moves from x to

the node x' ∈ N(x) that has the largest (rather than smallest) value of Time(x'), subject to

the limitation that this value must be smaller than that of Time(x) itself.

The resulting method is as follows.

Tabu Tree Search (TTS)

1. From a given solution x, move to an unvisited neighbor x' ∈ N(x) whenever possible

(i.e., a neighbor for which Time(x') is not yet determined), and stop if the label thus

assigned to x' is Time(x') = |X|. Otherwise,

 11

2. Move to the visited neighbor x' with the largest value of Time(x') that is less than

Time(x).

We establish the relevant properties of the method as follows, under the assumption

that the graph of the neighborhood space is connected.

Theorem 3: The TTS method generates a tree, rooted at the initial solution, that spans the

nodes of the neighborhood graph. Each edge of the tree is crossed exactly once in the

direction away from the root, and at most once in the direction toward the root. (No edges

outside of the tree are crossed.) In addition:

(a) the unique path from any solution to the root is generated by repeatedly executing

the rule of Step 2 of the TTS method.

(b) each time any solution x is visited, each labeled neighbor x' of x is either an ancestor

or descendant of x in the tree currently constructed (i.e., either x' lies on the path

from the root to x, or else x lies on the path from the root to x').

(c) each time step 2 is executed to reach a visited node x', all nodes of the graph that are

neighbors of visited nodes x", where Time(x") > Time(x'), are also visited nodes.

(d) each time step 1 successfully identifies an unvisited neighbor of x, then node x

satisfies the condition x = Argmax{Time(y): y is a node of the current tree and y

has an unvisited neighbor}.

Proof: We establish the theorem inductively. Except for the claim that the tree spans the

graph, each of the assertions of the theorem is clearly true on all steps until and including the

first time that Step 2 is executed. At this point the subgraph generated is a simply path from

the root, and Step 2 is executed because the node x at the end of this path has no unvisited

neighbors. (We suppose not all nodes are yet reached, or else the proof is complete.)

Furthermore, these assertions remain true if Step 2 is immediately executed again, and

remains true throughout all subsequent executions of Step 2 until Step 1 is finally executed.

By connectivity, if any unvisited node of the graph exists, it must be a neighbor of at least one

node previously visited, and the assertion (c) implies we will identify a node of the present

tree with access to an unvisited node. Let x* denote the node x' reached on this execution of

Step 2, where x* also becomes the node x at the following execution of Step 1. Then it is

clear that x* qualifies as the particular node x of the current tree that satisfies assertion (d).

Given these relationships established to this point, the argument now follows inductively,

since we may repeat the same observations relative to the path now generated from the root

 12

through x*, until finally reaching a stage where Step 2 must again be executed, proceeding

through the identification of a new x*. The fact that the assertions are maintained at each

earlier step of the construction, and are augmented repetitively for the path through each new

x*, assures the assertions will continue to hold, and ultimately that the tree must become a

spanning tree.

The theorem immediately permits the following observation.

Remark 4. The values assigned to the labels Time(x) can alternately be changed so that,

instead of increasing each time a new solution x' is visited in step 1, Time(x') := Time(x) + 1.

Then the rule for step 2 identifies x' to be the solution that yields Time(x') = Time(x) - 1. The

stopping criterion is changed to stop the process as soon as all solutions in X are visited.

Note that in the previous TTS procedure the labels Time(x) can be interpreted as the

order of visiting the solution x. With the alternative change proposed in Remark 4, the label

Time(x) is equal to the length of the path from the root (initial solution) to the solution x plus

one.

By the labeling of Remark 4, multiple solutions can receive the same label Time(x).

Theorem 3 implies, however, that the solution identified by Time(x') = Time(x) - 1 in step 2 is

nevertheless uniquely determined. It also implies that no neighbors of a given solution can

have the same label.

An obvious extension of the approach, which adds at most one solution to the neighbors

of any given solution, occurs as follows.

Remark 5. The TTS method can be applied to asymmetric graphs if Step 1 is modified so

that N(x'), for the solution x' selected to be reached by a move from x, is allowed to be

augmented to include the solution x, if x is not already in N(x').

4.1 TTS and Flexibility of Choice
In common with the Aspiration by Default rule, the TTS approach in some cases may

visit all solutions by only visiting each solution a single time, hence effectively generating a

Hamiltonian path through the neighborhood space, in contrast to the type of trajectory created

by usual forms of tree search. However, more importantly, the TTS approach allows

substantially greater flexibility of choice than customary types of tree search, as embodied in

branch and bound approaches. We illustrate this as follows.

 13

Example : n-dimensional binary vectors
Consider the set X of 4-dimensional binary vectors. A standard backtracking (depth first)

branch and bound approach, where the symbol "*" denotes an unassigned value, generates a

sequence such as the following.

11000000 10010011 11110101 0110 101010000001 0010 0100 11100111 1011 1101

��
��000* ��001*

��
��010* ��011* ��100* ��101* ��110* 111*

��
��

00**
��
��

01**
��
��

10** 11**

��
��0*** 1***

��
��

x

x

Frequency(x) = 3

Frequency(x) = 1

x Frequency(x) = 2 Forward
Backtrack

Figure A : A standard "backtracking" (depth first) branch and bound approach.
By contrast, the TTS approach can create a very different set of solutions. A set of

choices for this example (purposely designed to backtrack as early and as often as possible)

yields the following sequence:

1100

0000

1001 0011

1111

010101101010

1000 000100100100

1110 011110111101

x Frequency(x) = 1

x Frequency(x) = 2

Forward

Backtrack

 14

Figure B : TTS approach

It is also appropriate to keep in mind that the TTS approach can produce different

outcomes depending on the neighborhood structure selected. The preceding illustration relies

on a neighborhood that changes the value of a single variable at a time. Different forms of

search, and different types of "tree structures", are created for different neighborhoods, such

as those that allow the value of 2 or more variables to be changed simultaneously.

4.2 Contrasts Between TTS and Branch and Bound
The foregoing example shows not only that the TTS approach generates different

solutions, but that the number of backtracking steps is much smaller than in the branch and

bound procedure. In essence, the method runs considerably "deeper" than branch and bound

search before encountering a situation where it is necessary to reverse its trajectory. On the

other hand, customary branch and bound never repeats a solution, as a result of structuring the

tree according to the use of unassigned values.

Every depth first branch and bound search always follows exactly the pattern illustrated

in Figure A, except that a variable may first branch to 1 rather than to 0, and the choice of the

variable to branch on (i.e., implicitly, the indexing of the variables) may be changed on

forward steps. Variants that generate the branch and bound tree by a different sequence than

the depth first rule (such as a best bound rule), can change the order of steps in which

branches are created, but still produce the same tree (disregarding fathoming possibilities that

may exclude certain branches).

On the other hand, the TTS structure differs according to the choices made -- that is,

different choices may produce different numbers of revisited solutions (and, as previously

remarked, some may produce no revisited solutions), thus producing trees of different

topologies.

4.3 Enhanced TTS Procedures for Graph Search
An enhancement of TTS is possible for graph search by maintaining and updating a

record of degree(x), under the same assumptions previously described for maintaining such a

record in applying the Aspiration by Default rule. However, the manner in which degree(x) is

 15

used differs from the earlier proposal. As an enhancement of TTS, the reliance on degree(x)

does not have the purpose of reducing the number of times that particular solutions are

visited, but rather of reducing the number of operations that are devoted to scanning neighbors

of solutions visited. This second type of reduction can produce a significant savings in

computational effort, particularly in graphs of moderately high density. The ability to

enhance the TTS approach in this way results from the fact that the tree predecessor of a given

solution remains invariant throughout the search, and thus the identity of this predecessor can

be saved by recording a single additional item of information for each solution visited. (The

complete solution need not be recorded, as long as sufficient information is retained to

recover the solution directly from its neighbor.) The process is as follows.

Enhanced TTS Method

1. The first time node x is reached by applying the TTS method, set degree(x') :=

degree(x') - 1 for each neighbor x' ∈ N(x). In addition, record predecessor(x) := x',

for the particular neighbor x' such that x has been reached (first) by the move from x'

to x.

2. Whenever a node x is visited after the first time (i.e., x already has been assigned a

predecessor), check whether degree(x) = 0. If so, immediately execute Step 2 of the

TTS method, identifying the solution x' selected at this step to be x' :=

predecessor(x).

Remark 6. Instruction 2 of the Enhanced TTS method always occurs upon executing Step 2

of the original TTS Method, since this step is the one that leads to a previously visited node.

Hence, the condition degree(x) = 0 causes Step 2 to be executed again (and setting x' :=

predecessor(x) avoids examining the neighbors of x).

The search process is accelerated by avoiding the examination neighbors of x, as

indicated in Remark 6. Clearly, the larger the number of solutions that are visited before

backtracking, the greater the opportunity to save effort by this approach. If the search traces a

Hamiltonian path, for example, then the approach would eliminate the examination of

neighbors for every node, for a saving of effort roughly equal to twice the total number of

edges in the graph. In general, although it may be rare for the search to follow a Hamiltonian

path, the fact that a TTS approach typically goes very deep relative to the starting (root) node,

implies that the method is likely to yield degree(x) = 0 for a considerable number of nodes

encountered at earlier depths of the tree, as a result of visiting their neighbors as descendants

 16

later in the search. Graphs with hub-and-spoke structures, where collections of nodes can

reach each other only by paths that cross one or a small number of edges contained in a "hub"

about the root, will tend to result in setting degree(x) = 0 for a substantial number of nodes in

each collection.

A further enhancement is possible by the device of recording the predecessor as a

complete solution, which is then "passed along" to provide a new neighbor for other solutions.

(In the graph setting, a particular node thus becomes accessed as a neighbor of other nodes by

such a passing operation.) This gives rise to an opportunity to create a reverse jump, which

bypasses a number of backtracking steps, in cases where the search generates degree(x) = 1

for a string of solutions successively encountered.

Reverse Jump TTS

1. Whenever a node x is visited by the Enhanced TTS approach, and degree(x) = 1,

identify the unique unvisited neighbor x' of x, and pass forward the node

predecessor(x) by assigning predecessor(x') := predecessor(x) (instead of

predecessor(x') = x) when x' is visited.

2. At each execution of Step 2 of the Enhanced TTS approach, if degree(x) = 0, then

the assignment x' := predecessor(x) creates a "reverse jump" to the earliest

predecessor in a string generated by Step 1.

By the preceding Reverse Jump procedure, the backtracking process can avoid

intermediate steps that otherwise would require lengthy calculation. Such a variation of the

Enhanced TTS approach is likely to be useful for graphs that have "long and skinny"

appendages. It can also be useful in situations where the search progresses from a set of

nodes N' to a set N", where for each x ∈ N", all but one (or a small number) of neighbors of x

lie in N'.

Remark 7. The Reverse Jump Tabu Tree Search can be deduced from the Enhanced Tabu

Tree Search method by only changing the Step 2 as follows : while degree(x) = 0 do x =

predecessor(x).

Appendix 3 gives an illustrative comparison of alternative enhanced strategies for TTS.

 17

4.4 Novelty of the TTS Method
In spite of the illustrated differences between branch and bound and TTS for moving

through the search space, the TTS approach involves no fundamentally new ideas for

achieving a finite search -- in contrast to a TS approach based on using the Aspiration by

Default rule. In terms of a graph search, the TTS approach is an entirely straightforward form

of tree search, which follows a depth first design.

There is a misconception in portions of the search literature (often fostered by textbooks

in artificial intelligence), that all depth first methods are essentially the same. We have

already noted the marked contrast between TTS and customary branch and bound procedures

(both depth first and otherwise), and the implications of this contrast for the mechanisms that

are available for generating an effective search. One of the most important differences, is the

freedom of choice offered by the TTS approach. The greater flexibility to choose values

assigned to variables, without having to interrupt the search by backtracking to earlier

(incomplete) solutions, supports the goal of exploiting tailored heuristics to guide the search.

The relevance of this design difference can be illustrated by comparing TTS to another

type of depth first tree search, called reverse search (Avis and Fukada, 1991a, 1991b, 1996).

Reverse search is a significant form of depth first search in applications such as enumerating

vertices of polyhedra. Nevertheless, it restricts the available decisions even more rigidly than

branch and bound, and shares with branch and bound the characteristic of penetrating only to

very limited depths before encountering the necessity of backtracking. The enhancements we

have identified for applying TTS to graph searches in Section 4.4 have no counterparts (and in

fact no meaningful interpretation) in the contexts of both reverse search and branch and

bound.

Apart from such distinctions among different forms of tree search, a primary novelty of

the TTS approach stems from its ability to be coupled with the REM memory procedure

developed for tabu search. The illustration of enumerating 0-1 vectors in Section 4.1, which

compares TTS with branch and bound, makes the importance of this connection clear.

Evidently, whenever flexible choice rules are used (as implicitly occurs for TTS in this

illustration), it is not a trivial matter to identify which binary solutions are currently available

to be visited at each step, nor to identify when backtracking becomes necessary. The REM

procedure handles these challenges automatically, thus making it possible to apply the TTS

 18

method in the context of neighborhood search without ambiguity. An analysis of relevant

considerations, based on a special channeling concept, is given in Appendix 4.

5. Comparisons with Other Approaches
As a basis of comparison, it is interesting to briefly consider other proposals for graph

searches. One of the earliest, which has an elegant statement and justification, is the Tarry

Traverse (Tarry, 1895). (An illuminating exposition of this method can be found in

Thompson, 1998.) In contrast to the approaches described here, the Tarry Traverse utilizes a

memory structure that attaches labels to edges rather than nodes, and crosses each edge twice,

once in each direction. Since the total number of edges in the graph can be significantly

larger than the number of edges in a tree, the amount of effort (and memory) in such a

traverse is evidently somewhat greater than in the TTS approach. Charnes and Cooper (1961)

have remarked that the Tarry Traverse may be used as a basis for enumerating the extreme

points of a linear program. Clearly, as our discussions show, it is possible to do better.

Another approach worth noting is the reverse search method, briefly alluded to earlier,

which can be applied to exhaustively visit the nodes of a graph. Reverse search may be

viewed as a class of methods, whose members vary by relying upon different evaluation

functions that satisfy particular properties. Going beyond these methods, there exists a broad

class of procedures that combine various characteristics of reverse search with complementary

characteristics of branch and bound, to produce searches with useful properties of memory

economy and flexibility (Glover and Hanafi, 1998). However, the degree of flexibility

represented by these approaches is still markedly less than that afforded by the TTS design.

In this connection, we conjecture that forms of TS based on the Aspiration by Default rule

allow access to a greater variety of search paths than TTS, with the potential disadvantage that

they also admit a larger number of solutions to be revisited. An analysis of relevant

considerations, based on a special channeling concept, is given in Appendix 4.

6. Practical Considerations
From a theoretical point of view, a finite convergence result is "infinitely better" than an

infinite convergence result. For example, the popular convergence in probability result of

simulated annealing does not assure that an optimal solution will be found the first time in any

 19

finite number of steps: for the purpose of finding such a solution the first time, the method

offers no advantages over relying on blind randomization. On the other hand, the magnitude

of "finite" in a finite method can still be large, and the primary relevance of a finiteness result

depends on providing a structure that can embrace useful heuristic features. We emphasize

the ability to apply the finiteness results for tabu search processes in a way that allows

significant latitude for implementing associated strategic processes.

By contrast, most of the search literature places great significance on theoretical

foundations involving forms of convergence that are conspicuously not finite. Reversion to

an infinite guarantee -- i.e., one that provides no assurances about convergence in finitely

bounded time -- would be justified if it allowed a wider range of strategic considerations to be

embraced. Yet, ironically, the rationale for these alternative theoretical developments has

nothing to do with enlarging the range of strategic choice. Rather, by basing the control

mechanisms on randomization, the rationale for the search becomes farther removed from

considerations of strategy. There may be fascination in the pin of a roulette wheel, but

resorting to such a mechanism in combinatorial search carries the price of abandoning a quest

for finiteness.

In summary, the key observations of this paper are: (1) strategic flexibility is

compatible with assured finite convergence, by special forms of memory introduced in certain

forms of tabu search; (2) the resulting search traverses the nodes of a graph in a significantly

different way than provided by tree search; (3) a simple tree search variant of the approach

produces a type of tree search that offers novel contrasts with branch and bound, and also

differs notably from other tree searches such as reverse search and the Tarry Traverse.

 20

References:
- M. Andramonov (1999). “Some Conditions of Convergence of Tabu Search,” Research

Report, Institute of Mathematics and Mechanics, Russia.

- D. Avis and K. Fukuda (1991a). "A Pivoting Algorithm for Convex Hulls and Vertex

Enumeration of Arrangements and Polyhedra," Proceedings of the 7th ACM Symposium

on Computational Geometry, North Conway, New Hampshire, pp. 98-104.

- D. Avis and K. Fukuda (1991b). "A Basis Enumeration Algorithm for Linear Systems

with Geometric Applications," Applied Mathematics Letters 5, pp. 39-42.

- D. Avis and K. Fukuda (1996). “Reverse search for enumeration,” Discrete Applied

Mathematics, 6, pp. 21-46.

- A. Charnes and W.W. Cooper (1961). “Mathematical Models and Industrial

Applications of Linear Programming,” Wiley, New York and London, Vol. I, pp. 438-

444.

- Dammeyer F., S. Voss, (1993), "Dynamic Tabu List Management using the Reverse

Elimination Method", Annals of Operations Research, 41, 31-46.

- C.D. Diderich and M. Gengler (1995). “A Survey on Minimax Trees and Associated

Algorithms,” In "Minimax and Applications" (Du & Pardalos, Editors), Kluwer Academic

Publishers, pp. 25-54.

- H. Farreny (1998). “Completeness and Admissibility for General Heuristic Search

Algorithms – A Theoretical Study : Basic Concepts and Proofs –“, to appear in Journal of

Heuristics.

- A. Ferreira and P.M. Pardalos (ed.) (1996). “Solving Combinatorial Optimization

Problems in Parallel: Methods and Techniques,” Springer-Verlag, Lecture Notes in

Computer Science, Vol. 1054.

- F. Glover and S. Hanafi (1998). "Composite Tree Searches for Global Optimization,"

Research Report, Graduate School of Business and Administration, University of

Colorado, Boulder.

- F. Glover (1990). "Tabu Search, Part 2”, ORSA Journal on Computing 2, pp. 4-32.

- F. Glover and M. Laguna (1997). "Tabu Search," Kluwer Academic Publishers.

 21

- S. Hanafi (1998). "On the Convergence of Tabu Search,” Working paper, University of

Valenciennes, France, to appear in Journal of Heuristics.

- Hanafi S., A. Fréville, (1999). "Extension of Reverse Elimination Method Through a

Dynamic Management of the Tabu List", to appear in R.A.I.R.O.

- R.E. Korf (1988). "Search: A survey of recent results," In "Exploring Artificial

Intelligence," (Ed. H. Shrobe) Morgan Kaufmann, pp. 197-237.

- A. Migdalas, P.M. Pardalos and S. Storoy (eds) (1997). “Parallel Computing in

Optimization,” Kluwer Academic Publishers.

- G. Tarry (1895). "Le problème des labyrinthes," Nouvelles Annales de Mathématiques

(3), 14, pp. 187-190.

- G.L. Thompson (1998). "The Tarry Traverse," Class notes, Carnegie-Mellon University,

Graduate School of Industrial Administration.

 22

Appendix 1 : Exponential and Quadratic paths

In this appendix, we illustrate the behavior of the two versions of CTS-Simple (recency-

based and frequency, respectively) on three classes of examples with symmetric and

asymmetric neighborhood structures. The two versions of CTS-Simple applied to the first

asymmetric example generate an exponential path, which shows the tightness of the bound

provided in Theorem 2.

For each example in the following, we start at node 1, and use the least node index rule

for breaking ties when Time(x) = 0 or Frequency (x) = 0, finally stopping when reaching node

n. The sequence of labels for each node and the path generated are given.

Example 1: Exponential path in an asymmetric graph
We construct a digraph Gn = <X, A>, where n is an even number (n = 2p), as follows

- X = {1, 2, …, n}

- A = {(1, 2), (n, 1)} ∪ {(2k, 2(k+1)), (2k, 2k+1), (2k+1, 1) : for k = 1, 2,, (n-2)/2}

Thus the graph Gn has n nodes and (3n - 1)/2 arcs. For example, the graph G10 (n = 10)

is shown in Figure 1. Node 1 forms the base of the graph. Beside node 1 appear two parallel

lines of nodes. The nodes in the line directly beside node 1 are numbered 2, 4, 6, 8, 10 and

the nodes in the adjacent line, just above the first line, are numbered 3, 5, 7, 9.

Path Generating Rule: Start at node 1, using the Aspiration by Default rule (min{Time}).

Whenever there is a tied choice (because the path is presented with two choices that both have

not yet been visited (Time(x) = 0), choose the node with the smaller index. Assume that the

vector Time has been initialized as follows :

Time(k)= - n + k - 1; for k = 1,...,n.

Table 1 shows nodes and their associated Labels which are generated by using an

instance of the graph Gn with n = 10. Thus the path first goes from 1 to 2, and upon reaching

2 (where both 3 and 4 are not yet visited), next visits 3. Thereafter, the path follows the

smallest of the previous Time(x) labels, until again reaching a point where a choice must be

 23

made. By the path trace, the method finally reaches node 10 (i.e., node n) at step 62

(= 2(n+2)/2 – 2, with n = 10).

1 / 6

3 / 6

10 / 18 / 24 / 42 / 6

9 / 17 / 2

6 / 4

5 / 4

Starting node

x / Frequency(x)

Figure 1

Node Labels (visiting time of the node)

1 1 4 8 11 16 19 23 26 32 35 39 42 47 50 54 57

2 2 5 9 12 17 20 24 27 33 36 40 43 48 51 55 58

3 3 10 18 25 34 41 49 56

4 6 13 21 28 37 44 52 59

5 7 22 38 53

6 14 29 45 60

7 15 46

8 30 61

9 31

10 62

Table 1

In the general case, when n is an even number (n = 2p), it is easy to observe that the

frequency of the even nodes and odd nodes is the same. Precisely, we have :

Frequency(2k-1) = Frequency(2k) = 2(n-2k)/2, for k = 1, …, n/2.

Hence, by summing all the frequencies, the value of Vn is equal to 2(n+2)/2 – 2.

 24

Example 2: Quadratic path in a symmetric graph
Consider a graph of undirected edges, whose structure is similar to that of example 1,

except that the arcs (2k + 1, 1) that connect back to node 1 are replaced by edges

(2k + 1, 2(k - 1)). The "right column" turns into a "ladder" (or a "saw tooth" structure).

Specifically, the graph Gn = <X, A>, has the following form:

- X = {1, 2, …, n}

- A = {(1,2); (1, 3)} ∪ {(2k, 2k+1); (2k, 2k+2); (2k, 2k+3) : for k = 1, 2,, (n - 2)/2}

For example, the graph G10 is shown in Figure 2.

Path Generation Rule: Exactly the same as in example 1.

Hence the sequence for n = 10 is :

1, 2, 3, 1, 2, 4, 5, 2, 3, 1, 2, 4, 6, 7, 4, 5, 2, 3, 1, 2, 4, 6, 8, 9, 6, 7, 4, 5, 2, 3, 1, 2, 4, 6, 8, 10.

1/5

3/4

10/18/24/62/8

9/17/2

6/4

5/3
x/Frequency(x)

Starting node

Figure 2

Node Labels (visiting time of the node)

1 1 4 10 19 31

2 2 5 8 11 17 20 29 32

3 3 9 18 30

4 6 12 15 21 27 33

5 7 16 28

6 13 22 25 34

7 14 26

8 23 35

9 24

10 36

Table 2

 25

In the general case, when n is an even number (n = 2p), the frequency of even nodes is :

Frequency(2k) = n – 2k, for k = 1, …, (n – 2)/2; and the frequency of odd nodes is :

Frequency(2k+1) = (n – 2k + 2)/2, for k = 1 ,…, (n – 2)/2, and the frequency of the end node

is equal to 1 (Frequency(n) = 1). Thus by summing all frequencies, the number of steps as a

function of n is Vn = (3n2 – 2n + 8)/2.

Example 3: Quadratic path in a symmetric graph
Construct a digraph Gn = (X, A), where n = 5p + 3, as follows

- X = {1, 2, …, n}

- A = {(k, k + 1) : for k = 1, ..., n - 2} ∪ {(5k+1, 5k+4); (5k+2, 5k+7) : for k = 0,1,..., p-1}

∪ {(n - 2, n)}

For example, the graph G13 (p = 2) is shown in Figure 3.

1/3 2/4 3/3 4/4 5/3 6/3 7/4 8/2 9/2 10/1 11/2 12/2 13/1

Starting node
x/Frequency(x)

Figure 3

Path Generation Rule: Start with node 1, and visit the unvisited nodes in the sequence 1 to n.

Then apply the Aspiration by Default (min(Time(x)) rule. (No tie breaking rule is needed,

except as implicit in the beginning sequence from 1 to N.) We assume that the vector Time

has been initialized as follows :

Time(k) = - n + k - 1; for k = 1, ..., n.

The following results (nodes and their associated Labels) are generated by using an

instance of the graph G with n = 13. The first column in Table 3 indicates the node number.

The second column shows, for each node, the Time(x) values that the node receives each time

it is visited. The third column indicates the number of times (frequency) each node has been

visited at the end of the process. Hence the sequence for n = 13 is :

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 7, 2, 1, 4, 3, 2, 7, 6, 5, 4, 1, 2, 3, 4, 5, 6, 9, 8, 7, 12, 11, 13.

By the path trace, the method finally reaches node 11 (i.e., node n - 2) a second time at step

 26

33. Since we suppose this node connects to the final unvisited node n = 13, the process ends

at step 34. Thus, the method visits all nodes after 34 steps (V13 = 34).

In the general case, when n = 5p + 3, the frequency of nodes is :

Frequency(1) = p + 1; Frequency(5k+1) = 2(p–k+1)-1 for k = 1,...,p-1; Frequency(5p + 1) = 2;

Frequency(2) = p + 2; Frequency(5k+2) = p-k+3 for k = 1, ..., p-1; Frequency(5p + 2) = 2;

Frequency(5k + 3) = p – k + 1 for k = 0, ..., p;

Frequency(5k + 4) = 2(p - k) and Frequency(5k + 5) = 2(p - k) - 1 for k = 0, ..., p-1;

Hence, the number of steps as function of the parameter p is given by Vn = 4p2 + 7p + 4,

where n = 5p + 3. In terms of the number of nodes n, this translates into

Vn = (4n2 + 11n + 31) / 25.

Below we give the results obtained by applying the CTS-Simple algorithm based on

frequency-memory to the three preceding examples. For example 1, this algorithm generates

the same sequence described in Table 1, as the one based on recency-memory. The results

obtained for examples 2 and 3 are described in the following tables.

Example 2 Example 3

Node(x) Time(x) Frequency(x) Node(x) Time(x) Frequency(x)

1 1 4 2 1 1 15 19 3

2 2 5 2 2 2 14 18 3

3 3 1 3 3 17 2

4 6 8 2 4 4 16 20 3

5 7 1 5 5 21 2

6 9 11 2 6 6 22 2

7 10 1 7 7 13 25 3

8 12 14 2 8 8 24 2

9 13 1 9 9 23 2

10 15 1 10 10 1

 11 11 27 2

 12 12 26 2

 13 28 1

Table 3

 27

As shown numerically in those examples, the number of visited solutions with CTS

based on frequency-memory is smaller than the one obtained by CTS-Simple based on

recency-memory, specially for symmetric graphs (example 2 and 3).

We give below another example for the asymmetric case, where the bound is

polynomial. In this case, the neighborhood graph G = <X, A> is defined by X = {1, 2, …, n}

and A = { (1, k); (k, k-1) : for k = 2, …, n}. The initialization step : Let Time(x) = -x, for

x ∈ X and start the search with the initial solution x* = 1. It is easy to see that

Vn = n(n – 1) / 2 + 1, for n ≥ 2.

 28

Appendix 2 : Illustration of Improvement Using the

Accelerated Aspiration by Default Rule.

The effect of applying the accelerated aspiration by default rule is demonstrated by

the following tables, which show the label values for the nodes in the three examples of

Appendix 1, that result by using MA-2.

 Example 1 Example 2 Example 3

x Labels (visiting time of the node) Freq Labels Freq Labels Freq

1 1 4 8 13 16 22 26 29 8 1 1 1 1

2 2 5 9 14 17 23 27 30 8 2 4 2 2 1

3 3 15 28 3 3 1 3 1

4 6 10 18 24 31 5 5 7 2 4 1

5 7 25 2 6 1 5 1

6 11 19 32 3 8 10 2 6 1

7 12 1 9 1 7 1

8 20 33 2 11 13 2 8 1

9 21 1 12 1 9 1

10 34 1 14 1 10 1

11 11 13 2

12 12 1

13 14 1

Table 4

Note that the gain is appreciable, especially for large problems. In example 3 with

n = 53, the bound obtained by using MA-1 is equal to 474 using MA-2 it is equal to 54. A

suitable value of a parameter k depends on the neighborhood structure N and the size of the

problem. (For example, the value max{|N(x)| : x ∈ X} is a parameter that may be used to

control k.)

 29

Evidently, the number of steps needed to explore all the solutions by using MA-k,

depends on the initial solution chosen. The following table shows an instance of example 3

with n = 53. The initial solution x0 has been varied from 1 to n, and we have compared the

bounds generated by the two methods MA-1 and MA-2.

��
��������
��������

�������
��������������������������

�����
�����
�����

����
����
��������������������������

������
������
������
������

������
������
������
���������������������������

�������
�������
�������
�������

�������
�������
�������
������������������������

����
����
����
����
����

��������
��������
��������
��������
����������������������������

������
������
������
������

�����
�����
�����
����������������������������

�������
�������
�������

������
������
��

�����
�����
�����

MA-1

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

x

V
(x

)

������
������

������
������

�����
�����
���������������������������������������

������
������

������
������

�����
�����

�����
�����
��������
��������

����������������������������������
�����
�����

�����
�����
��������
��������

��������
��������

�������
�������

�����������������������������
��������
��������

��������
��������

�������
�������

�������
�������

������
������

��������������������������������
�������
�������

�������
�������

������
������

������
������

�����
�����

���

MA-2

48
50
52
54
56
58
60
62
64
66

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

x

V
(x

)

Figure 4 : Influence of Initial Solution (example 3 with n = 53)

 30

Appendix 3 : Numerical Experiments Comparing Alternative

Strategies

We have implemented the different strategies for exploring all nodes of a given

connected graph discussed in sections 3 and 4, using the C programming language, and with

testing performed on a PC Pentium 300. The following table gives the names of the codes

compared in our experiments.

Code name Algorithm

CTS-R Convergent Tabu Search algorithm based on Recency-Memory

CTS-F Convergent Tabu Search algorithm based on Frequency-Memory

CTS-R-2 Acceleration of the Convergent Tabu Search algorithm based on Recency-

Memory

CTS-F-2 Acceleration of the Convergent Tabu Search algorithm based on Recency-

Memory

ACTS-R-2 Approximate CTS-2 Procedure Based on Knowledge of degree and Frequency-

Memory

ACTS-F-2 Approximate CTS-2 Procedure Based on Knowledge of degree and Frequency-

Memory

TTS Tabu Tree Search

E-TTS Enhanced Tabu Tree Search Method

RJ-TTS Reverse Jump Tabu Tree Search Method

We represent the input graph used in our implementation as an adjacency list. A

symmetric graph of n nodes is represented by n adjacency lists, one for each node. The

adjacency list for a node x is a list of all nodes y successors of x. For some algorithms

(particularly these described in section 3), an asymmetric graph is represented by the set of its

 31

nodes and two lists are associated with each node x, one containing the predecessors, the other

the successors of x.

To study the performance and analyze the algorithms, six families of graphs have been

chosen. Table 2 summarizes these families of graphs whose size depends on a parameter we

have denoted by p.

Class name Brief description Size n =

G1 Exponential path in an asymmetric graph 2p

G2 Exponential path in an asymmetric graph 3p-1

G3 Quadratic path in a symmetric graph 2p

G4 Quadratic path in a symmetric graph 5p+3

G5 n-dimensional binary vectors 2p

G6 Tree binary graph 2p-1

In our implementation, for each graph we start at node 1, and use the "least node index"

rule for breaking ties. We stop when all nodes are visited.

In order to compare the results obtained by the Accelerated Procedure Based on

Knowledge of degree(x) (ACTS-R-2 and ACTS-F-2), the strategy in the process of selecting

the next solution has been tested as follows. Step 1 chooses the first unvisited solution

encountered, and Step 2 chooses the first neighbor solution x’ with degree(x') > 0.

For each run of a given code, noted M, two measures are reported :

- V(M) : the number of steps needed for visiting all nodes of a given graph; and

- CPU(M) : the running time measured in CPU seconds required for visiting all

nodes of the graph, excluding the input times (CPU time for generating the graph)

and output times (the output of the results).

Under the platform configuration used, a size n ≥ 200000 of the input graph creates

problems of memory allocation or out-of-range floating-point values.

The following table gives the number of steps required for visiting all solutions in the

different graphs.

 32

 n CTS-R CTS-R-2 ACTS-R-2

G1 2p 2(n+2)/2 – 2 (n3 + 6n2 - 16n + 192)/48 2n/2 + n/2

G2 3p-1 5(2(n-2)/3) – 3 (n3 + 21n2 - 78n - 62) / 162 5(2(n-5)/3) + (n+1)/3

G3 2p (3n2 – 2n + 8)/2 (3n – 2)/2 (3n – 2)/2

G4 5p+3 (4n2 + 11n + 31)/25 n + 1 n + 1

G5 2p n

G6 2p+1-1 2n - log2(n+1) 2n - log2(n+1) 2n - log2(n+1)

 n CTS-F CTS-F-2 ACTS-F-2

G1 2p 2(n+2)/2 – 2 3(2(n-2)/2) - 1 3(2(n-2)/2) - 1

G2 3p-1 5(2(n-2)/3) – 3 15(2(n-8)/3) - 2 15(2(n-8)/3) - 2

G3 2p 3n/2 (3n – 2)/2 (3n – 2)/2

G4 5p+3 n + 1 n + 1

G5 2p n n n

G6 2p+1-1 (5n - 2log2(n+1) – 7) / 2 (9n - 4log2(n+1) – 15) / 4 (5n - 2log2(n+1) – 7) / 2

 n TTS E-TTS RJ-TTS

G3 2p (3n – 2)/2 (3n – 2)/2 (3n – 2)/2

G4 5p+3 n + 1 n + 1 n + 1

G5 2p n n n

G6 2p+1-1 2n - log2(n+1) [(10n - 3log2(n+1) + 1) / 6] (3n – 1) / 2

Comparison of different Strategies.

 33

Example 1: Exponential path in an asymmetric graph (G1)

We construct a digraph Gn = <X, A>, where n = |X| = 2p, as follows

- X = {1, 2, …, n}

- A = {(1, 2), (2p, 1)} ∪ {(2k, 2(k+1)), (2k, 2k+1), (2k+1, 1) : for k=1, 2,, (n-2)/2}

1

3

10842

97

6

5

Figure 1: Asymmetric Graph G1 with n = 10.

Thus the graph Gn has n nodes and (3n – 4)/2 arcs. For example, the graph G10 (p = 5) is

shown in Figure 1.

Tables 1 present results of experiments on this family of graphs G1. These results show

that CTS-R-2 outperforms all other algorithms. The number of steps done by CTS-R and

CTS-F are exactly the same. This is also the case for the CTS-F-2 and ACTS-F-2 methods.

However, the CPU time of CTS-F is slightly greater than the one with the CTS-R algorithm,

but the running times of the ACTS-F-2 method decrease by roughly a factor of two compared

with those of CTS-F-2. Although the performance of ACTS-R-2 is not good compared with

that of CTS-R-2, this method remains interesting because the number of steps required to visit

all solutions and the CPU time is less than with CTS-R. Comparing CTS-F and CTS-F-2, we

observe that the number of steps required for CTS-F-2 is divided by a factor of two. The

disadvantage is that the CPU times are multiplied by more than two.

The fastest code for this problem family is CTS-R-2. Indeed, for the family of graphs

G1, all algorithms required an exponential number of steps for visiting all nodes except CTS-

R-2 which has required a polynomial number of steps. These experiments confirm the

accuracy of our estimates for the number of steps needed to scan all nodes of a graph of type

G1 (n = 2p) for CTS-R and CTS-R-2 (2(n+2)/2 – 2 and (n3 + 6n2 - 16n + 192) / 48 respectively).

 34

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

10 62 62 34 47 37 47

20 2,046 2,046 214 1,535 1,034 1,535

30 65,534 65,534 669 49,151 32,783 49,151

40 2,097,150 2,097,150 1,524 1,572,863 1,048,596 1,572,863

50 67,108,862 67,108,862 2,904 50,331,647 33,554,457 50,331,647

60 2,147,483,646 2,147,483,646 4,934 1,610,612,735 1,073,741,854 1,610,612,735

Table 1.1: Number of Steps with Asymmetric Graph G1.

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

10 5 0.00 0.00 0.00 0.00 0.00 0.00

20 10 0.00 0.00 0.00 0.00 0.00 0.00

30 15 0.02 0.01 0.00 0.03 0.01 0.02

32 16 0.03 0.04 0.00 0.08 0.02 0.04

34 17 0.06 0.06 0.00 0.14 0.05 0.06

36 18 0.12 0.13 0.00 0.30 0.09 0.14

38 19 0.24 0.25 0.00 0.58 0.17 0.28

40 20 0.51 0.51 0.00 1.15 0.36 0.55

42 21 1.02 1.02 0.00 2.30 0.71 1.09

44 22 2.05 2.08 0.00 4.72 1.48 2.21

46 23 4.07 4.10 0.00 9.20 2.92 4.40

48 24 8.18 8.17 0.00 18.39 5.84 8.76

50 25 16.23 16.33 0.00 36.85 11.63 17.48

52 26 32.63 32.76 0.00 73.64 23.31 34.97

54 27 65.28 65.45 0.00 147.36 46.68 69.95

56 28 130.29 131.30 0.01 294.48 93.11 140.01

58 29 259.96 261.51 0.01 588.60 186.31 279.53

60 30 521.40 523.44 0.00 1,187.04 376.08 560.69

Table 1.2: Computing Time with Asymmetric Graph G1.

 35

Example 2: Exponential path in an asymmetric graph (G2)

We construct a digraph G3p-1 = <X, A>, where n = 3p - 1, as follows:

- X = {1, 2, …, n}

- A = {(1, 2); (n, 1)} ∪ {(3k-1, 3k+2); (3k-1, 3k); (3k, 3k+1); (3k+1, 1): for k = 1, 2, ..., (n+4)/3}

An instance of this digraph G14 (p = 5) is given in Figure 2.

1

3

141152

129

13104

8

7

6

Figure 2: Asymmetric Graph G2 with n = 14 (p = 5)

The outcomes are almost the same as for example 1. The small difference is that the

CPU time of CTS-F is slightly smaller than that of the CTS-R algorithm.

For this family of graphs, the number of steps required for visiting all nodes, with the

CTS-R algorithm is exponential. More precisely, for a given graph with size n = 3p – 1, the

number of steps required by CTS-R is equal to 5(2(n-2)/3) – 3. However, the CTS-R-2

algorithm requires a polynomial number of steps, which is equal to (n3 + 21n2 - 78n - 62)/162.

The numerical experiments shown in Tables 2.1 and 2.2 confirm the accuracy of the bounds

given.

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

14 5 77 77 41 58 45 58

29 10 2,557 2,557 251 1,918 1,290 1,918

44 15 81,917 81,917 761 61,438 40,975 61,438

59 20 2,621,437 2,621,437 1,696 1,966,078 1,310,740 1,966,078

74 25 83,886,077 83,886,077 3,181 62,914,558 41,943,065 62,914,558

Table 2.1: Number of Steps Vn with Asymmetric Graph G2.

 36

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2

14 5 0.00 0.00 0.00 0.00 0.00 0.00

29 10 0.00 0.00 0.00 0.00 0.01 0.00

44 15 0.02 0.02 0.00 0.04 0.01 0.02

47 16 0.04 0.03 0.00 0.08 0.02 0.04

50 17 0.07 0.07 0.00 0.19 0.06 0.08

53 18 0.16 0.15 0.00 0.36 0.11 0.18

56 19 0.31 0.30 0.01 0.71 0.23 0.35

59 20 0.60 0.62 0.00 1.44 0.46 0.67

62 21 1.24 1.21 0.00 2.85 0.92 1.35

65 22 2.46 2.44 0.00 5.69 1.83 2.71

68 23 4.96 4.91 0.00 11.38 3.68 5.41

71 24 9.90 9.84 0.01 23.30 7.38 10.86

74 25 19.76 19.75 0.00 45.50 14.83 22.23

77 26 38.99 39.06 0.00 85.84 26.87 40.31

80 27 78.00 78.18 0.01 171.69 53.73 80.67

83 28 155.98 157.37 0.00 343.25 107.42 161.15

86 29 311.79 312.53 0.00 685.80 214.54 323.00

89 30 499.43 499.87 0.00 1,382.78 435.83 653.13

Table 2.2: Computing Times with Asymmetric Graph G2.

Example 3: Quadratic path in a symmetric graph (G3)

In this example, we consider a graph of undirected edges, whose structure is similar to

that of example 1, except that the arcs (2k+1, 1) that connect back to node 1 are replaced by

edges (2k + 1, 2(k - 1)). The "right column" turns into a "ladder" (or a "saw tooth" structure).

Specifically, the graph Gn = <X, A>, where n = 2p, has the following form:

- X = {1, 2, …, n}

- A = {(1,2); (1, 3)} ∪ {(2k, 2k+1); (2k, 2k+2); (2k, 2k+3) : for k = 1, 2,, (n-2)/2}

For example, the graph G10 (p=5) is shown in Figure 2.

 37

1

3

10842

97

6

5

Figure 3: Symmetric Graph G3 with n = 10 (p = 5).

The number of steps required for visiting all n nodes of the symmetric graph G3 is

quadratic and equal to (3n2 – 2n + 8)/2 using CTS-R algorithm. This number of steps is linear

for the other algorithms, that is, it is equal to 3n/2 using the CTS-F algorithm and equal to

(3n – 2)/2 for the rest of the algorithms presented (CTS-R-2, CTS-F-2, ACTS-R-2,

ACTS-F-2, TTS, E-TTS and RJ-TTS). Our numerical experiments in Table 3 confirm this

fact.

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

20,000 52.71 0.01 0.03 0.03 0.02 0.02 0.02 0.02 0.02

40,000 264.79 0.03 0.05 0.06 0.05 0.04 0.04 0.04 0.05

60,000 668.37 0.05 0.08 0.09 0.06 0.06 0.05 0.06 0.07

80,000 1,130.51 0.07 0.11 0.12 0.09 0.09 0.06 0.09 0.09

100,000 1,086.86 0.08 0.13 0.13 0.11 0.10 0.09 0.12 0.10

120,000 1,090.22 0.11 0.15 0.16 0.12 0.13 0.10 0.12 0.12

140,000 1,120.31 0.12 0.19 0.19 0.14 0.15 0.12 0.15 0.16

160,000 1,112.22 0.14 0.21 0.22 0.18 0.17 0.13 0.17 0.17

180,000 1,089.16 0.16 0.23 0.24 0.23 0.19 0.16 0.19 0.18

200,000 1,098.09 0.17 0.25 0.27 0.23 0.22 0.16 0.21 0.21

Average 871.32 0.09 0.14 0.15 0.12 0.12 0.09 0.12 0.12

Table 3: Computing Times with Symmetric Graph G3.

Regarding the running time, we observe that for the family of graphs of type G3 the 4

algorithms ACTS-R-2, ACTS-F-2, E-TTS and RJ-TTS require almost the same CPU times.

 38

The CTS-R-2 and CTS-F-2 algorithms are equivalent but are worse than the four methods

cited previously. The CTS-R algorithm turns out to be the worst one for this type of graphs,

while CTS-F and TTS algorithms are the best ones.

Example 4: Quadratic path in a symmetric graph (G4)

We construct a graph Gn = (X, A), where n = 5p + 3, as follows

- X = {1, 2, …, n}

- A = {(k, k + 1) : for k = 1,, n-2} ∪ {(5k+1, 5k+4); (5k+2, 5k+7) : for k=0, 1,, p-1}

∪ {(n-2, n)}

For example, the graph G13 (p = 2) is shown in Figure 4.1.

1 1098765432 131211

Figure 4.1: Symmetric Graph G4 with n = 13 (p = 2).

For a given symmetric graph of type G4 having n = 5p + 3 nodes the 7 algorithms

(CTS-R-2, CTS-F-2, ACTS-R-2, ACTS-F-2, TTS, E-TTS and RJ-TTS) require the same

linear number of steps for visiting all nodes, which is equal to n + 1. The CTS-R algorithm

requires a quadratic number of steps equal to (4n2 + 11n + 31) / 25. Table 4 and Figure 4.2

show the comparison of CTS-R, CTS-F and CTS-R-2 algorithms.

Regarding the running times, we observe that for the family of graphs of type G4 the 6

algorithms CTS-R-2, CTS-F-2, ACTS-R-2, ACTS-F-2, E-TTS and RJ-TTS require almost the

same CPU times. The CTS-R and CTS-F algorithms turn out to be the worst ones for these

graphs, while the TTS algorithm is the best one. This is shown in Table 4.2 below.

 39

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

23 73 12
3

17
3

22
3

27
3

32
3

37
3

42
3

47
3

n

V
(n

) CTS-R
 CTS-F

Figure 4.2: Comparison Between CTS-R and CTS-F Algorithms with Graph G4.

n p CTS-R CTS-F CTS-R-2

5,003 1,000 4,007,004 2,505,698 5,004

10,003 2,000 16,014,004 10,010,816 10,004

15,003 3,000 36,021,004 22,517,042 15,004

20,003 4,000 64,028,004 40,021,986 20,004

25,003 5,000 100,035,004 62,526,658 25,004

30,003 6,000 144,042,004 90,031,974 30,004

35,003 7,000 196,049,004 122,539,310 35,004

40,003 8,000 256,056,004 160,044,108 40,004

45,003 9,000 324,063,004 202,549,054 45,004

50,003 10,000 400,070,004 250,055,332 50,004

100,003 20,000 1,600,140,004 1,000,111,262 100,004

Table 4.1: Number of Steps with Symmetric Graph G4.

 40

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

5,003 1.32 0.82 0.00 0.00 0.01 0.00 0.00 0.01 0.00

10,003 5.44 3.33 0.00 0.00 0.01 0.01 0.00 0.01 0.01

15,003 13.01 7.87 0.01 0.01 0.01 0.01 0.01 0.01 0.01

20,003 23.45 14.45 0.01 0.02 0.01 0.02 0.02 0.01 0.02

25,003 38.91 23.28 0.02 0.02 0.02 0.02 0.01 0.03 0.02

30,003 57.94 35.11 0.03 0.02 0.02 0.03 0.02 0.03 0.03

35,003 82.72 48.91 0.03 0.03 0.03 0.03 0.03 0.03 0.03

40,003 111.64 66.62 0.03 0.03 0.04 0.04 0.03 0.03 0.04

45,003 142.81 84.72 0.04 0.03 0.04 0.04 0.03 0.04 0.04

50,003 186.22 107.66 0.04 0.04 0.05 0.06 0.03 0.05 0.04

100,003 829.62 474.38 0.08 0.08 0.09 0.09 0.07 0.09 0.08

150,003 1,116.72 1,058.40 0.13 0.12 0.13 0.15 0.10 0.13 0.12

200,003 1,152.16 1,069.82 0.17 0.16 0.19 0.19 0.14 0.18 0.15

250,003 1,128.79 1,055.12 0.21 0.21 0.24 0.22 0.17 0.22 0.21

Average 349.34 289.32 0.06 0.06 0.06 0.07 0.05 0.06 0.06

Table 4.2: Computing Times with Symmetric Graph G4.

Example 5: n-dimensional binary vectors (G5)

The 5-th example is the one where the set of nodes X = p-dimensional binary vectors, so

n = |X| = 2p.

The number of steps required for visiting all n = 2p nodes of the symmetric graph G5 is

equal to n for the 7 algorithms CTS-F, CTS-F-2, ACTS-R-2, ACTS-F-2, TTS, E-TTS and

RJ-TTS. The 2 remaining algorithms CTS-R and CTS-R-2 require a greater number of steps.

The following Table 5.1 and Figure 5.2 compare these 2 algorithms with CTS-F algorithm.

 41

1100

0000

1001 0011

1111

010101101010

1000 000100100100

1110 011110111101

Figure 5.1: Symmetric Graph G5 with n = 16 (p = 4).

n p CTS-R CTS-R-2 CTS-F

16 4 16 16 16

32 5 32 32 32

64 6 95 65 64

128 7 128 128 128

256 8 374 259 256

512 9 853 518 512

1,024 10 1,727 1,031 1,024

2,048 11 3,711 2,469 2,048

4,096 12 8,213 4,948 4,096

8,192 13 15,729 8,209 8,192

16,384 14 33,539 23,027 16,384

32,768 15 73,454 45,756 32,768

65,536 16 156,696 93,150 65,536

131,072 17 303,645 159,170 131,072

262,144 18 662,755 383,121 262,144

524,288 19 1,286,126 908,743 524,288

Table 5.1: Number of Steps with Symmetric Graph G5.

 42

0
200000
400000
600000
800000

1000000
1200000
1400000

16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

n

V
(n

) CTS-R
CTS-F
CTS-R-2

Figure 5.2: Comparison of CTS-R, CTS-R-2 and CTS-F algorithms with Graph G5.

Concerning the CPU times, we observe that the E-TTS and RJ-TTS algorithms which

are enhancements of TTS give the expected results over this type of graphs, since they

enhance the performance of TTS. CTS-F and CTS-F-2 algorithms require almost the same

CPU times. Among the 9 algorithms tested ACTS-F-2 turns out to be the best one on this

type of graphs, while the worst is the CTS-R algorithm.

n p CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS

8,192 13 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01

16,384 14 0.06 0.02 0.14 0.02 0.03 0.03 0.01 0.03 0.04

32,768 15 0.11 0.06 0.30 0.06 0.06 0.06 0.03 0.07 0.08

65,536 16 0.30 0.11 0.78 0.13 0.16 0.16 0.07 0.20 0.18

131,072 17 0.65 0.25 1.10 0.27 0.38 0.35 0.12 0.35 0.34

262,144 18 16.67 0.60 4.64 0.60 0.77 0.74 4.21 1.55 3.31

524,288 19 185.32 36.70 170.12 36.70 31.54 29.57 84.56 59.18 42.66

Average 29.02 5.39 25.30 5.40 4.71 4.42 12.72 8.77 6.66

Table 5.2: Computing Times with Symmetric Graph G5.

 43

Example 6: Complete Binary Tree (G6)

We consider a complete binary tree of height p (n = 2p+1 - 1) represented as follows.

The root corresponds to the node 1, and the left son of node i is the node numbered with 2i

and the right son with 2i + 1. The father of a given node i > 1, is the node [i/2]. In other

terms, a complete binary tree of height p is represented by the graph Gn = <X, A>, where

- X = {1, 2, …, n}

- A ={(1, 2); (1, 3)} ∪ {(k, [k/2]); (k, 2k); (k, 2k+1): for k=2, …, 2p -1} ∪

{(k, [k/2]) : for k = 2p, …, n}

2816 2519 3121 22 262417 18 20 3023 27 29

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

Figure 6: Complete Binary Tree G6(2p+1 - 1) with p = 4

For the 4 algorithms CTS-R, CTS-R-2, ACTS-R-2 and TTS the number of steps

required for visiting all n (where n = 2p+1 – 1) nodes of the symmetric graph G6 is equal to

2n - log2(n+1). The number of steps of the two algorithms CTS-F and ACTS-F-2 as a

function of nodes n is given by (5n - 2log2(n+1) – 7) / 2. The number of steps of the

algorithms CTS-F-2 as a function of nodes n is given by (9n - 4log2(n+1) – 15) / 4. The

number of steps of the algorithm E-TTS as a function of the parameter p can be described

recursively by V4 = 49 and Vp+1 = 2(Vp + 1) + [p/2]. In terms of the number of nodes n, this

translates explicitly into [(10n - 3log2(n+1) + 1) / 6]. Among the 9 algorithms tested RJ-TTS

turns out to be the fastest one on this type of graph, which requires (3n – 1) / 2 number of

steps, while the worst ones are the CTS-F and ACTS-F-2 algorithms which require the same

number of steps. The following Table 6.1 compares these algorithms.

 44

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS
31 57 69 57 61 57 69 57 49 46

63 120 148 120 132 120 148 120 102 94

127 247 307 247 275 247 307 247 208 190

255 502 626 502 562 502 626 502 421 382

511 1,013 1,265 1,013 1,137 1,013 1,265 1,013 847 766

1,023 2,036 2,544 2,036 2,288 2,036 2,544 2,036 1,700 1,534

2,047 4,083 5,103 4,083 4,591 4,083 5,103 4,083 3,406 3,070

4,095 8,178 10,222 8,178 9,198 8,178 10,222 8,178 6,819 6,142

8,191 16,369 20,461 16,369 18,413 16,369 20,461 16,369 13,645 12,286

16,383 32,752 40,940 32,752 36,844 32,752 40,940 32,752 27,298 24,574

32,767 65,519 81,899 65,519 73,707 65,519 81,899 65,519 54,604 49,150

65,535 131,054 163,818 131,054 147,434 131,054 163,818 131,054 109,217 98,302

131,071 262,125 327,657 262,125 294,889 262,125 327,657 262,125 218,443 196,606

262,143 524,268 655,336 524,268 589,800 524,268 655,336 524,268 436,896 393,214

524,287 1,048,555 1,310,695 1,048,555 1,179,623 1,048,555 1,310,695 1,048,555 873,802 786,430

1,048,575 2,097,130 2,621,414 2,097,130 2,359,270 2,097,130 2,621,414 2,097,130 1,747,615 1,572,862

Table 6.1: Number of Steps with Complete Binary Tree G6.

n CTS-R CTS-F CTS-R-2 CTS-F-2 ACTS-R-2 ACTS-F-2 TTS E-TTS RJ-TTS
2,047 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

4,095 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00

8,191 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.00

16,383 0.01 0.01 0.03 0.03 0.02 0.02 0.01 0.02 0.01

32,767 0.04 0.04 0.06 0.07 0.04 0.05 0.03 0.04 0.03

65,535 0.06 0.07 0.12 0.13 0.09 0.11 0.07 0.08 0.06

131,071 0.14 0.14 0.25 0.27 0.19 0.21 0.15 0.16 0.12

262,143 0.28 0.33 0.49 0.54 0.39 0.43 0.28 0.33 0.24

524,287 0.54 0.61 0.96 1.11 0.77 0.87 0.60 0.66 0.50

1,048,575 30.25 3.16 1.99 2.36 1.62 1.85 13.47 13.19 7.40

Average 3.13 0.44 0.39 0.45 0.31 0.36 1.46 1.45 0.84

Table 6.2: Computing Times with Complete Binary Tree G6.

 45

Appendix 4 : Fathoming versus Informed Choice and Channeling

One of the strongest advantages of branch and bound, not visible when simply itemizing

all possible solutions, is the ability to avoid examining segments of the tree by fathoming --

i.e., by determining that some branches offer no possibility of leading to an improved

solution. Usually this is done by solving relaxed problems, easier to solve than the original,

which give useful information about bounds or feasibility. In an integer programming

context, this ability derives from the fact that the decision about values to be assigned to

variables is deferred, and built up incrementally.

Yet this advantage comes with an associated disadvantage. The fewer the decisions that

have been made (i.e., the fewer the variables that have been assigned values), the less

complete is the information available about good values to assign to remaining variables.

Consequently, in some settings this lack of information can lead to poor choices at early

stages of the tree, and the inappropriateness of such choices can take a long time to discover.

(In such cases, the influence of the poor choices is not only inherited by a large set of

descendants, but the search may generate no information to suggest that the poor choices are

indeed inferior, and that the branching alternatives in their part of the tree should be visited

"out of sequence", as by a best bound rule.)

On the other hand, the type of approach that generates a full solution at each step, as

illustrated in the earlier example of the TTS approach, affords fuller information about the

contribution of each variable (given the values of the others). Thus, there is a certain

advantage of "informed choice" available, even if this information is highly local in nature.

There is also another feature of the type of neighborhood-based search structures

embodied in TTS and TS (with the Aspiration by Default rule), in contrast to the more usual

branch and bound approaches. This derives from a conjecture that neighborhood structures

often have a form that allows the search to be restricted to only a small part of the

neighborhood space by following certain channels through it, which are collectively

guaranteed to have access to optimal solutions. Under such circumstances, the finiteness

guarantee applicable to the full space is likewise applicable to the reduced (channeled) space.

The process of strategically selecting and following channels, which we call channeling, can

significantly diminish the combinatorial complexity of the search and still offer the benefit of

a finiteness guarantee.

 46

The concept of channeling can be understood by considering as an example the special

case of a 0-1 multidimensional knapsack problem (a maximization problem with less-than-or-

equal-to constraints and all problem coefficients nonnegative). In this instance, it is clear that

candidates for optimal solutions can be restricted to those that are as close as possible to the

feasibility boundary, in the sense that no variable currently 0 can be changed to 1 (in an effort

to move the solution closer to the boundary), except by violating feasibility. Thus a channel

of solutions that hugs the boundary, moving just far enough away to allow access to other

solutions that are appropriate candidates, is both strategically useful and offers a high

likelihood of leading to an optimal solution. Channels that are allowed to penetrate to

controlled depths on a given side of the feasibility boundary, or alternately on both sides, can

be made subject to the finiteness rules we have identified. (These variable depth excursions,

organized in relation to selected critical boundaries or regions, are the basis of the tabu search

approach called strategic oscillation.) The allowance for channels that include moves through

infeasible regions typically permits the channel width -- the degree of departure from the

feasibility boundary -- to be reduced. In contexts more general than multidimensional

knapsack problems, paths that traverse infeasible regions are often not merely useful but

essential.

It is important to note that the channel tracing process can not be done effectively by

ordinary branch and bound. The reason stems from the following phenomenon: the region

that demarcates a channel boundary characteristically is encountered by the "end branches" of

a branch and bound tree. Accordingly, if variables whose branches appear earlier in the tree

must change their values in order to progress along a promising channel, this can only be done

by eliminating all decisions that are descendants of such branches, and then building up again

a new set of decisions (by creating extensions of the alternatives to these branches). That is,

the branch and bound type of tree search can not stay within the channel region, because to

progress between points that are contiguous within this region requires reverting to earlier

parts of the tree (jumping out of the region). Modifying the values of earlier assigned

variables is the only way to re-construct the access to the desired part of the channel. (An

effort to shortcut the process either looses the tree structure or amounts to abandoning the

branch and bound staging for exactly the kind of procedure we identify as an alternative.)

Channeling operates in different ways for different kinds of problems. The unifying

feature of these applications is that channels leading to optimal solutions may be expected to

involve an exploration of a much smaller portion of the space than would be generated by a

 47

full enumeration. This theme is similar to the type of expectation that exists in applying

branch and bound, where the itemization of some limited number of alternatives is anticipated

to succeed in reaching an optimal solution (in this case via fathoming). However, the

mechanisms and the rationale leading to the expectation of a reduced search are entirely

different for channeling than they are for the fathoming process of branch and bound.

Whether one or the other of these expectations becomes more likely to be fulfilled will

unquestionably depend on the setting. The relevance of channeling, as a strategy that offers a

set of advantages contrasting with those of branch and bound fathoming, is worth heeding.

	1. Introduction
	2. A Convergent Tabu Search (CTS) Algorithm
	2.1. A Convergent Algorithm Based on Recency-Memory
	2.2. CTS Algorithm Based on Frequency-Memory
	3. Acceleration of the Aspiration by Default Rule
	3.1. Generalized Assumptions
	3.2. A Streamlined Acceleration Procedure
	4. Tabu Tree Search
	4.1 TTS and Flexibility of Choice
	Example : n-dimensional binary vectors
	4.2 Contrasts Between TTS and Branch and Bound
	4.3 Enhanced TTS Procedures for Graph Search
	4.4 Novelty of the TTS Method
	5. Comparisons with Other Approaches
	6. Practical Considerations
	References:
	Example 1: Exponential path in an asymmetric graph
	Example 2: Quadratic path in a symmetric graph
	Example 3: Quadratic path in a symmetric graph
	E-TTS
	
	
	
	ACTS-F-2

	TTS
	CTS-R-2
	
	
	
	
	CTS-R-2

	CTS-R
	
	
	
	CTS-R-2

	CTS-F-2

	Appendix 4 : Fathoming versus Informed Choice and Channeling

