
New Tabu Search Results for the Job Shop Scheduling Problem

John B. Chambers1 and J. Wesley Barnes2

1Current address: Department of Computer Sciences, TAY 2.124, The University of Texas at Austin, Austin, Texas
78712. Email: jbc@cs.utexas.edu

2Cullen Trust for Higher Education Endowed Professor in Engineering, Graduate Program in Operations Research
and Industrial Engineering, Department of Mechanical Engineering, ETC 5.128D, The University of Texas at
Austin, Austin, Texas 78712. Email: wbarnes@mail.utexas.edu

Abstract

In the classical job shop scheduling problem (JSSP), n jobs are processed to
completion on m unrelated machines. Each job requires processing on each machine
exactly once. For each job, technology constraints specify a complete, distinct routing
which is fixed and known in advance. Processing times are sequence-independent, fixed,
and known in advance. Each machine is continuously available from time zero, and
operations are processed without preemption. The objective is to minimize the
maximum completion time (makespan).

This report describes a dynamic, adaptive tabu search (TS) strategy for JSSP
incorporating elements of an earlier investigation by the authors. Improved
computational results for a set of reference problems are presented.

MS prepared April, 1994
Revised June, 1996

- 2 -

New Tabu Search Results for the Job Shop Scheduling Problem

1. Introduction

In the classical job shop scheduling problem (JSSP), n jobs are processed to
completion on m unrelated machines. Each job requires processing on each machine
exactly once. For each job, technology constraints specify a complete, distinct routing
which is fixed and known in advance. Processing times are sequence-independent, fixed,
and known in advance. Each machine is continuously available from time zero, and
operations are processed without preemption. The objective is to minimize the
maximum completion time (makespan).

The general JSSP is strongly NP-hard [Garey, Johnson, and Sethi 1976; Garey and
Johnson 1979], and has been the subject of numerous heuristic techniques (see, e.g.,
French [1982]). Methods based on local search have shown special promise [Vaessens,
Aarts, and Lenstra 1994].

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local minima and achieve an effective balance
of intensification and diversification. TS has proved remarkably powerful in finding
high-quality solutions to computationally difficult combinatorial optimization problems
drawn from a wide variety of applications [Glover and Laguna 1993]. We assume that
the reader is familiar with the basic principles of TS [Glover 1989, 1990, 1994; Glover and
Laguna 1993; Glover, Taillard, and deWerra 1993].

TS results in the area of production scheduling have been especially successful
[Barnes and Laguna 1991]. In particular, we have previously reported experience with a
simple but highly effective TS approach to JSSP [Barnes and Chambers 1991a, 1991b,
1992a, 1992b, 1995]. In this paper, we describe a dynamic, adaptive TS strategy yielding
results significantly superior to those of our earlier investigations, and competitive with
or superior to a well-known randomized dynamic TS implementation [Dell’Amico and
Trubian 1993].

2. Selected Literature

Barnes and Chambers [1991a, 1991b] describe a prototype TS implementation for
JSSP. An initial solution is obtained by selecting the best solution (i.e., the one with
minimum makespan) from among fourteen priority dispatching schedules. The
disjunctive graph representation [Roy and Sussman 1964] of the scheduling problem gives
rise to two important observations [Balas 1969; van Laarhoven, Aarts, and Lenstra 1992],
namely, that: 1) given a feasible solution, the exchange of two adjacent critical operations
(on the same machine) cannot yield an infeasible solution; and 2) the makespan can be
improved only by performing such exchanges. These insights are used to define a search
neighborhood. (This neighborhood was also explored in an earlier study by Taillard
[1989, 1992, 1994].) At each move, the effect of each possible exchange is estimated using
Balas’ ∆ [Balas 1969]. The reversal of an operation pair exchanged during the extent of
short term memory is forbidden unless the resulting makespan would be better than any

- 3 -

seen to date (a simple aspiration criterion). In the event that no admissible moves are
available, all tabu restrictions are released and the search continues from the current
solution.

The authors extend this strategy [Barnes and Chambers 1992a, 1992b, 1995] by
using a solution stack (LIFO list) to diversify the search; this stack is a simple form of
historical generator [Glover 1991]. (A variation of this list approach has been described
more recently by Nowicki and Smutnicki [1993].) Each new best-to-date solution is
“pushed” onto the stack when it is discovered. Subsequently, such solutions may be
“popped” from the stack in turn as new incumbent solutions, from which an intensified
search is performed in a semidynamic fashion over a prespecified range of short term
memory values, within limits set on CPU time and on the maximum number of
consecutive moves allowed with no improvement in makespan. Computational results
for a set of standard test problems are reported, and compared with the “shifting
bottleneck” heuristic of Adams, Balas, and Zawack [1988] and with a computational
study by Applegate and Cook [1991].

A growing body of TS research suggests that superior results may be achieved by
allowing the length of short term memory to vary dynamically in response to changing
conditions of the search. Dell’Amico and Trubian [1993] describe their experience with a
randomized, dynamic, adaptive TS implementation for JSSP. Short term memory is
allowed to vary, within lower and upper limits, decreasing in response to improving
moves and increasing in response to nonimproving moves. Every Λ iterations (where Λ
is a prespecified constant), these lower and upper limits are randomly adjusted within
prespecified ranges. A move is randomly selected if no admissible move is available.
Repeated makespan values, coupled with so-called witness moves, help identify
potential cycling behavior. Dell’Amico and Trubian report results consistently superior
to the method of Adams, Balas, and Zawack [1988].

In the next section, we discuss a deterministic, dynamic, adaptive TS strategy for
JSSP which exhibits significantly improved performance over our earlier method.
Computational results are reviewed for a well-known set of test problems.

3. An Improved Tabu Search Procedure

Initial solution
A feasible initial solution is obtained by selecting from among twelve priority

dispatching solutions. Six active and six nondelay schedules are computed using the
priority rules SPT, LPT, LWKR, MWKR, MOPNR, and RATIO. The schedule with the
smallest makespan is installed as the starting solution (cf. Barnes and Chambers [1995]).

To help identify “easy” problems for which the dispatching solution is optimal or
nearly so, a trivial a priori lower bound is also computed. This bound is taken as the
maximum over the total processing time required by each job and each machine. This
bounding strategy is likely to be poor in many cases. In the modular spirit of tabu search,
it is self-contained to facilitate easy replacement in experiments requiring a strong
optimality test.

Move evaluation
The computation of makespan and the determination of critical operations is

- 4 -

performed using a straightforward CPM labeling procedure [see, e.g., Baker 1974]. The
special structure of the job shop scheduling problem makes such a computation
especially efficient [Adams, Balas, and Zawack 1988].

However, to enhance the performance of our previous implementation, the
forward/backward labeling technique is reimplemented as a three-step procedure, using
the disjunctive graph representation. The first step performs a topological sort of the
graph, with no additional computation. The sorted graph is used in the second and third
steps for the evaluation of early and late start and finish times. It is well known, given a
directed acyclic graph G with valid topological sort T, that the reversal of T is a valid
topological sort of the graph G′ resulting from the reversal of each edge in G [see, e.g.,
Sedgewick 1983]. Thus, the CPM computations needed in step two (three) can be
performed by a simple forward (backward) additive scan of the sort vector obtained at
the end of step one. The forward scan computes makespan, and the backward scan
computes the quantities needed for the determination of Balas’ ∆ [Balas 1969]. A
save/restore buffer is included to retain the previous set of operation times (CPM
values) during the incremental evaluation of moves in a given iteration. Finally, our
earlier experience confirms that it is important to allow zero-valued moves which
traverse “flat” regions of the solution space.

The move evaluation procedure, as a component of the overall move selection
process, is sketched in Figure 1.

Neighborhood
A sequencing move is defined by the exchange of certain adjacent critical

operation pairs. In our earlier investigation, we considered the exchange of every
adjacent critical operation pair on every machine. However, if (cs′,i,j,cs″) is a critical
sequence on a given machine, then the interchange (i,j) → (j,i) cannot improve the
makespan [Suh 1988; Matsuo, Suh, and Sullivan 1988]. We therefore adopt a reduced
neighborhood which considers the exchange of a pair of adjacent critical operations only
if they occur in isolation, or at the head or tail of a critical sequence. As before, each
machine is scanned successively for candidate exchange pairs.

Tabu attribute
During the extent of short term memory, we forbid the reversal of the exchange of

a critical operation pair by recording the iteration number on which the exchange was
performed and requiring that this number plus the current length of short term memory
be strictly less than the current iteration number. A record is also made, each time this
tabu attribute is tested, as to whether a particular tabu move is the oldest tabu move; this
information is used during the move selection procedure (see below).

A simple aspiration criterion, viz., that the contemplated move would yield a
makespan better than the best seen to date, can override a move’s tabu status.

Memory structures
In our earlier approach, we used a semidynamic short term memory strategy. For a

given problem, the length of short term memory was iterated over a range of values;
however, only one value at a time was used during each search phase.

As noted in Section 2, it may be possible to obtain superior results when short

- 5 -

term memory length is allowed to vary dynamically during the course of the search. For
example, Taillard [1989, 1994] precomputes a range for short term memory length, based
on problem size, and then periodically selects a new length randomly from this range.
Another example is the somewhat more sophisticated approach of Dell’Amico and
Trubian [1993], described previously.

In our current investigation, we allow the length of short term memory to adapt
dynamically and deterministically in response to changing search conditions. A
prespecified minimum, stm_lo, and maximum, stm_hi, bound the allowable range of
short term memory. A strictly improving move, relative to the current search, causes the
working short term memory length (if greater than stm_lo) to be reduced by 1, in an
attempt to focus the search in a region of potential improvement. However, a
nonimproving move causes the working short term memory length (if less than stm_hi)
to be increased by 1, in an attempt to drive the search away from an apparently
nonimproving region (see Figure 2).

Drawing on our earlier study, we utilize a solution stack (LIFO solution list) as a
simple form of historical generator. As an implementation note, the “stack” is now
maintained as a circular linked list which is “pushed” (“popped”) by allowing a list
pointer to advance (retreat); the advancing list pointer overwrites old entries after
STK_N entries have been stored. For the test problems, a STK_N of 30 was found to offer
an appropriate balance between memory use and diversification while avoiding early
search termination.

When an improving move is performed, the short term memory is adjusted as
described above. If the makespan is better than the best seen to date, the solution is
pushed onto the solution stack (see Figure 3). However, if a nonimproving move has
been executed, and if a prespecified limit on the number of consecutive nonimproving
moves has been exceeded, the solution on top of the solution stack is popped and
installed as the new solution. Short term memory bounds are reset to their original
values, tabu information and the solution history list (see below) are cleared, and the
search is then resumed using the largest value of short term memory (see Figure 4).

Cycling strategy
A structure similar to that used for the solution stack is defined to address

regionalized cycling behavior. In practice, a simple test for repeated makespans tends to
report false cycles, especially in problems characterized by many “flat” regions. Thus, it
may be important to compare actual schedules if a sequence of repeated makespans has
been detected. However, storage of a large number of explicit solutions may be
impractical, depending on memory requirements, and is not necessarily desirable, since
historical information about cycling in a localized region may be of limited interest after
diversification strategies have forced the search to depart that region. Consequently, we
implement a second circular linked list large enough to remember the last HST_N
solutions; it is sufficient to store the makespan and sequencing list pointers to
characterize a solution. HST_N should be small with respect to memory requirements
and time required to check for cycling, but sufficiently large to avoid missing cycles
having a moderately long period. For the test problems, a HST_N of 50 was found to be a
reasonable value on average.

Each iteration, after a best move has been identified and performed, the resulting

- 6 -

solution is added to the history list. A simple heuristic test is then performed to detect
possible cycling behavior. A sliding window of prespecified width w scans the history list
for a pattern of makespans matching the most recent w solutions. A match triggers an
explicit comparison of the recent and older solutions; a positive comparison is taken as
indicative of probable cycling. The window width must be large enough to provide a
reasonably accurate test, but small enough that comparison times are modest. A window
width of w=3 was found to be effective.

If this test detects a repeated solution pattern, a cycling strategy is invoked. In
experiments in which cycling simply triggered diversification using the solution stack,
the stack was exhausted too quickly to allow adequate exploration of neighboring
solutions. We make the assumption that the search is most probably cycling because the
short term memory has been allowed to take on values which are too small for the
current region of exploration. We combat this by incrementing the lower limit on short
term memory, stm_lo, for the duration of the current search. All tabu information is left
intact, and the working value of short term memory is set to stm_hi in order to encourage
a rapid departure from the area of cycling. Obviously, the history list must be cleared to
prevent spurious re-detection of the remembered solution pattern. If cycling in the
current search has been so pronounced as to have already driven stm_lo up to stm_hi, we
abandon the region by invoking the diversification strategy (see Figure 5).

Move selection
Machines are scanned successively for critical operation pairs meeting the criteria

described above. The effect of exchanging each such pair is evaluated using Balas’ ∆.
Move comparison is “strictly-less-than”: the first move yielding a specific improvement
(i.e., move value) is chosen.

However, the move evaluation procedure may also report a “no-moves” situation,
that is, that there is no move available which is either nontabu or which satisfies the
aspiration criterion. Several strategies for dealing with this situation were investigated.

We have previously combatted a no-moves condition by simply clearing the tabu
information and continuing from the current solution. Unfortunately, tracing studies
suggest that this approach may unnecessarily discard potentially useful information
about the region, leading in some cases to cycling and an eventual departure via the
diversification strategy, with no additional exploration having been performed.

Another approach, constructed by symmetry with the cycling strategy, is to
assume that potential candidate moves are all tabu because the length of short term
memory is too large. Therefore, the upper limit on short term memory is decreased for
the duration of the current search, and the working value of short term memory is set to
the new upper limit, in order to encourage departure from the current region. If the tabu
information is not cleared, the upper limit on short term memory (and the working short
term memory length set from it) must be reduced sufficiently to allow at least one move
to become nontabu. This implicit use of the oldest tabu move, in conjunction with short
term memory adjustment, was not competitive with a more straightforward use of the
oldest tabu move discussed below. On the other hand, if the tabu information is cleared,
a situation may quickly develop in which the cycling and no-moves strategies alternate
as the upper and lower limits on short term memory length converge, until the cycling
strategy triggers the diversification strategy.

- 7 -

Finally, one may simply abandon the no-moves concept entirely. In such a case,
one might (a) use the tabu move most improving relative to the current search (a
localized or pseudo-aspiration criterion); (b) randomly select a tabu move; or (c) use the
oldest tabu move, making no other changes. Empirically, this last strategy proved best
and is implemented in the current study.

Search control
Initial values of stm_lo and stm_hi are prespecified. The search commences from

the best dispatching solution, using a working short term memory length of stm_hi. At
each iteration, a best move is determined and executed, and the resulting solution is
added to the solution history. If a cycle is detected, the cycling strategy is performed, else
the improving or nonimproving move strategy is performed, depending on the value of
the executed move. The search is terminated when the allotted CPU time is exceeded, the
a priori lower bound is achieved, or the solution stack is exhausted. The high level search
strategy is sketched in Figure 6.

4. Computational Experience

In order to measure the performance of the adaptive, dynamic tabu search
strategy described above, a set of test runs was performed using a selection of the
classical job shop problems we considered previously (see, e.g., Barnes and Chambers
[1995]), specifically, MT10 [Fisher and Thompson 1963], LA1-40 [Lawrence 1984], and
ABZ5-9 [Adams, Balas, and Zawack 1988]. The method was implemented in C, and run
in single user mode on a DEC 3000 Model 600 AXP.

The initial values of stm_lo and stm_hi were successively selected in the interval
from 3 to 20 inclusive, with exploration of each short term memory range being limited
to 120 seconds. Ranges for which stm_lo and stm_hi were either both relatively small or
both relatively large led to search termination far earlier than this. Tracing studies
indicate that small values allow cycling behavior to develop, exhausting the solution
stack quickly. Conversely, larger values tend to discourage adequate localized
exploration; the limit on nonimproving moves is soon exceeded, again leading to
exhaustion of the solution stack and termination of the search. Except where noted, a
nonimproving moves limit of 2000 moves was used.

As in our earlier investigations, we have avoided attempts to construct artificial
scaling factors to compare results reported by other authors using different computer
platforms. However, for purposes of reference, the test run of MT10 was performed on
several different machines. Table 1 summarizes these results.

The first column of Table 1 indicates a selected short term memory range, i.e.,
values of stm_lo and stm_hi. The second column indicates the time required to first
achieve the known optimum of 930 using the short term memory range in the first
column. Finally, the third column indicates the corresponding computer platform (as
listed in the footnote). A short term memory range of (8,9) performed well for this
problem; however, several other ranges found a solution of 930, given sufficient time,
and are noted in the table also. Further, it was observed that the nonimproving moves
limit of 2000 was much larger than necessary for this problem, wasting a significant
amount of search time. Adjustment of this limit to 700 for the short term memory range

- 8 -

(8,9) reduced the time to best by more than 30%, to a value of 3.52 seconds on the DEC
3000 platform.

Tables 2 - 4 summarize computational results for the remainder of the problems.
The second column lists two numbers, the trivial a priori lower bound described in
Section 3, and the makespan of the best dispatching solution used as the initial solution.
The third column is the best result for our earlier tabu search strategy. The upper number
is makespan (optimal solutions are shown in boldface), and the lower number (in italics)
is the “time to best”.

The next column gives the results reported by Dell'Amico and Trubian [1993] for
their adaptive, dynamic tabu search. (Unfortunately, Taillard [1989, 1994] does not report
sufficient information for these test problems to warrant comparison.) Due to the
randomized nature of their method, the authors performed five runs from different
starting solutions for each problem. They report average and best makespan, and
average and maximum time, but not time to best. In our tables, the figures in the fourth
column are Dell'Amico and Trubian's best makespan and average time.

The fifth column gives the best makespan and time to best achieved by the tabu
search method described in Section 3 for any short term memory range investigated,
using a limit of 120 seconds per range and a nonimproving moves limit of 2000. Finally,
the sixth column gives the optimum, or best bounds, as furnished by Applegate and
Cook.

Table 2 presents the results for the 10-machine 10-job problems. For LA16-20 and
ABZ6, our dynamic tabu search is competitive with both our previous semidynamic
method and with Dell’Amico and Trubian. Dynamic tabu search achieved the optimum
for ABZ5, and also did so more efficiently for MT10 than did our earlier technique.

Table 3 presents the results for the rectangular 10-machine problems. In every
instance, dynamic tabu search was equal or superior to our previous method (except for
a special run of LA21). It was competitive on six problems with Dell’Amico and Trubian,
and was superior on four, achieving the optimum in two cases (LA22 and LA25), and
significantly improving the best upper bound in one (LA29).

Finally, Table 4 presents the results for the 15-machine, 15- and 20-job problems. In
all but ABZ9 (and one special run of ABZ7), dynamic tabu search was again superior to
our semidynamic method. It was also superior in six out of eight cases to Dell’Amico
and Trubian, achieving the optimum in two of these (LA36 and LA39). We expect that
improved performance would be realized in ABZ7 and ABZ9 by carefully tuning the
limit on nonimproving moves.

5. Directions for Future Research

Recent investigations [Battiti and Tecchiolli 1994; Battiti 1995; Barnes and Carlton
1995; Carlton 1995] suggest that it may be possible to construct a dynamic TS approach
which is fully adaptive to changing search conditions without the need for extensive
parameterization or tuning. Such an implementation for JSSP would be of interest.

Additionally, significant attention has been focused on flexible manufacturing
systems (or on flexible job shops as an approximation), in which more than one machine
may be available to process a particular type of operation. We are investigating
concurrent multi-neighborhood TS strategies for such problems.

- 9 -

Bibliography

ADAMS, J., E. BALAS, AND D. ZAWACK. 1988. The shifting bottleneck procedure for job shop scheduling.
Management Science, 34:3, 391-401.

APPLEGATE, D. AND W. COOK. 1991. A computational study of the job-shop scheduling problem. ORSA
Journal on Computing, 3:2, 149-156.

BAKER, K.R. 1974. Introduction to Sequencing and Scheduling. John Wiley & Sons, New York.
BALAS, E. 1969. Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Operations

Research, 17, 941-957.
BARNES, J.W. AND W.B. CARLTON. 1995. Solving the vehicle routing problem with time windows using reactive

tabu search. INFORMS conference, New Orleans LA, Oct 1995.
BARNES, J.W. AND J.B. CHAMBERS. 1991a. Solving the job shop scheduling problem using tabu search.

Technical Report Series ORP 91-06, Graduate Program in Operations Research and Industrial
Engineering, Department of Mechanical Engineering, The University of Texas at Austin.

BARNES, J.W. AND J.B. CHAMBERS. 1991b. Solving the job shop scheduling problem using tabu search.
ORSA/TIMS joint meeting, Anaheim CA, Nov 1991.

BARNES, J.W. AND J.B. CHAMBERS. 1992a. Additional results on solving the job shop scheduling problem
using tabu search. ORSA/TIMS CS Technical Section meeting, Williamsburg VA, Jan 1992.

BARNES, J.W. AND J.B. CHAMBERS. 1992b. Historical generators and ejection chains in tabu search for the job
shop scheduling problem. ORSA/TIMS joint meeting, San Francisco CA, Nov 1992.

BARNES, J.W. AND J.B. CHAMBERS. 1995. Solving the job shop scheduling problem using tabu search. IIE
Transactions, 27, 257-263.

BARNES, J.W. AND M. LAGUNA. 1991. A review and synthesis of applications of tabu search to production
scheduling problems. Technical Report Series ORP 91-05, Graduate Program in Operations Research and
Industrial Engineering, Department of Mechanical Engineering, The University of Texas at Austin.

BATTITI, R. 1995. Reactive search: toward self-tuning heuristics. Keynote talk at Applied Decision
Technologies, Brunel UK, April 3-4, 1995.

BATTITI, R. AND G. TECCHIOLLI. 1994. The reactive tabu search. ORSA Journal on Computing, 6:2, 126-140.
CARLTON, W.B. 1995. A tabu search approach to the general vehicle routing problem. Ph.D. dissertation, The

University of Texas at Austin.
DELL’AMICO, M., AND M. TRUBIAN. 1993. Applying tabu search to the job-shop scheduling problem. Annals

of Operations Research, 41, 231-252.
FISHER, H., AND G.L. THOMPSON. 1963. Probabilistic learning combinations of local job-shop scheduling

rules. In Industrial Scheduling, J.F. Muth and G.L. Thompson (eds.), Prentice-Hall, Englewood Cliffs NJ.
225-251.

FRENCH, S. 1982. Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Halsted Press
(John Wiley & Sons), New York.

GAREY, M.R., AND D.S. JOHNSON. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, New York.

GAREY, M.R., D.S. JOHNSON, AND R. SETHI. 1976. The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1, 117-129.

GLOVER, F. 1989. Tabu search: Part I. ORSA Journal on Computing, 1:3, 190-206.
GLOVER, F. 1990. Tabu search: Part II. ORSA Journal on Computing, 2:1, 4-32.
GLOVER, F. 1991. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms).

Discrete Applied Mathematics (to appear).
GLOVER, F. 1994. Tabu search: New options for optimization. ORSA CSTS Newsletter, 15:2, 1 and 13-20.
GLOVER, F., AND M. LAGUNA. 1993. Tabu search. In Modern Heuristic Techniques for Combinatorial Problems,

C.R. Reeves (ed.), Blackwell, Oxford. 70-150.
GLOVER, F., E. TAILLARD, AND D. DEWERRA. 1993. A user ’s guide to tabu search. Annals of Operations

Research, 41, 3-28.

- 10 -

LAWRENCE, S. 1984. Resource constrained project scheduling: An experimental investigation of heuristic
scheduling techniques. Graduate School of Industrial Administration, Carnegie-Mellon University.

MATSUO, H., C.J. SUH, AND R.S. SULLIVAN. 1988. A controlled search simulated annealing method for the
general jobshop scheduling problem. Working paper 03-04-88, Department of Management, Graduate
School of Business, The University of Texas at Austin.

NOWICKI, E., AND C. SMUTNICKI. 1993. A fast taboo search algorithm for the job shop problem. Preprinty nr
8/93, Instytut Cybernetyki Technicznej, Politechniki Wroclawskiej, Wroclaw.

ROY, B., AND B. SUSSMAN. 1964. Les problèmes d’ordonnancement avec contraintes disjonctives. Note DS
No 9 bis, SEMA, Paris.

SEDGEWICK, R. 1983. Algorithms. Addison-Wesley, Reading MA.
SUH, C.J. 1988. Controlled Search Simulated Annealing for Job Scheduling. Ph.D. dissertation, The University of

Texas at Austin.
TAILLARD, E. 1989 (revised 1992). Parallel taboo search techniques for the job shop scheduling problem.

Report ORWP 89/11, Département de mathématiques, École Polytechnique Fédérale de Lausanne.
TAILLARD, E. 1994. Parallel taboo search techniques for the job shop scheduling problem. ORSA Journal on

Computing, 6:2, 108-117.
VAESSENS, R.J.M., E.H.L. AARTS, AND J.K. LENSTRA. 1994. Job shop scheduling by local search. Memorandum

COSOR 94-05, Department of Mathematics and Computing Science, Eindhoven University of
Technology.

VAN LAARHOVEN, P.J.M., E.H.L. AARTS, AND J.K. LENSTRA. 1992. Job shop scheduling by simulated
annealing. Operations Research, 40:1, 113-125.

- 11 -

move evaluation loop {
...
save operation times;
switch (move_type) {

...
case EXCHANGE:

if (Balas ∆ >= 0) use as move value;
else compute makespan in forward pass;
break ;

...
}
restore operation times;
...

}
...
select and perform best admissible move;
perform sort and forward pass yielding new makespan;
perform backward pass yielding values for new Balas ∆s;
...

Figure 1. Move evaluation

- 12 -

// stm working value of short term memory
// stm_lo current minimum short term memory
// stm_hi current maximum short term memory

adjust short term memory {
if (move value < 0) {

if (stm > stm_lo) stm –= 1;
}
else {

if (stm < stm_hi) stm += 1;
}

}

Figure 2. Short term memory adjustment

- 13 -

// Z_bst best makespan seen to date
// Z_cur makespan of current solution
// Z_ref reference makespan for current search phase
// Ni_n count of consecutive nonimproving moves,
// relative to current search

improving move strategy {
Z_ref = Z_cur;
Ni_n = 0;
adjust short term memory;
if (Z_cur < Z_bst) {

Z_bst = Z_cur;
push current solution on solution stack;

}
}

Figure 3. Improving move strategy

- 14 -

// stm working value of short term memory
// stm_lo current minimum short term memory,
// initially set to stm_lo_orig
// stm_hi current maximum short term memory,
// initially set to stm_hi_orig
// Ni_n count of consecutive nonimproving moves,
// relative to current search
// Ni_max prespecified limit on Ni_n

diversification strategy {
if (solution stack is empty) STOP;
pop solution stack and install as current solution;
stm_lo = stm_lo_orig;
stm_hi = stm_hi_orig;
stm = stm_hi;
Ni_n = 0;
clear tabu information;
clear history list;

}

nonimproving move strategy {
if (++Ni_n > Ni_max) perform diversification strategy;
else adjust short term memory;

}

Figure 4. Diversification and nonimproving move strategy

- 15 -

// stm working value of short term memory
// stm_lo current minimum short term memory
// stm_hi current maximum short term memory

cycling strategy {
if (stm_lo >= stm_hi) {

perform diversification strategy;
}
else {

stm_lo += 1;
stm = stm_hi;
clear history list;

}
}

Figure 5. Cycling strategy

- 16 -

// stm working value of short term memory
// stm_lo current minimum short term memory, initially stm_lo_orig
// stm_hi current maximum short term memory, initially stm_hi_orig
// Ni_n count of consecutive nonimproving moves in current search,
// limited to Ni_max

input problem model, max cpu time, Ni_max, stm_lo_orig, stm_hi_orig;

select best dispatching solution and install as starting solution;

search {
initialization:

stm_lo = stm_lo_orig; stm_hi = stm_hi_orig; stm = stm_hi;
initialize history list; initialize tabu information;
Ni_n = 0;

while (cpu time not exceeded) {
select best move;
perform best move {

execute move;
recompute cpm information;
if (lower bound achieved) {

stop with optimum;
}
add solution to history list;

}
perform cycle check;
if (cycle detected) {

perform cycling strategy;
}
else if (new makespan improves current search) {

perform improving move strategy;
}
else {

perform nonimproving move strategy;
}

}
}

Figure 6. Tabu search strategy

- 17 -

Table 1

Sample results for the Fisher-Thompson 10x10 problem [1963]

Short term
memory range

Time to best
(Z = 930)

Platform

Ni_max = 2000

8,9 23.60 A

8,9 5.12

B
3,20 6.97

4,14 29.88

4,12 58.21

Ni_max = 700

8,9

3.52 B

12.15 C

20.42 D

25.55 E

A) IBM RS 6000/350
B) DEC 3000/600 (AXP)
C) DEC 5000/200 (MIPS)
D) SUN 4/50 SPARCStation IPX

(SUN ANSI C 2.0.1)
E) i486 DX2 50 MHz

(WATCOM C/32 9.5(b))

- 18 -

Table 2

Results for 10-machine 10-job problems

Problem
(Bound,

Dispatch) B & Ca,b D & Tc
Dynamic d,e

Tabu Search
(120s)

A & C f

Value

LA16 (717,1054)
945

187.5
945
97.4

945
9.75

945

LA17 (683,846)
784
23.1

784
21.7

784
0.52

784

LA18 (663,907)
848
11.8

848
63.1

848
0.08

848

LA19 (685,940)
843

217.1
842

103.8
842
0.40

842
1462.3

LA20 (756,964)
902
30.7

902
71.7

902
0.67

902
1402.3

ABZ5 (868,1351)
1238
75.4

1236
139.5

1234
55.65

1234
951.5

ABZ6 (742,981)
943
62.5

943
86.8

943
5.17

943
90.9

MT10 (655,1007)
930

215.8
935

155.8
930
5.12

930
372.4

a) Max nonimproving moves set at 5000
b) IBM RS 6000
c) PC 386 33 MHz
d) Max nonimproving moves set at 2000
e) DEC 3000/600 (AXP)
f) SUN SPARC Station 1

- 19 -

Table 3

Results for rectangular 10-machine problems

Problem
(Bound,

Dispatch) B & Ca,b D & Tc
Dynamic d,e

Tabu Search
(120s)

A & C f

Value

15-job problems

LA21 (935,1253) 1050g

166.0
1048
198.8

1048
52.81

(1040,1053)

LA22 (830,1058)
932

220.5
933

191.4
927

40.65
927

LA23 (1032,1124)
1032
2.7

1032
1.8

1032
0.28

1032

LA24 (857,1041)
946
27.7

941
181.8

939
26.28

935

LA25 (864,1099)
988

176.1
979

191.7
977

12.85
977

20-job problems

LA26 (1218,1435)
1218
30.5

1218
22.1

1218
1.58

1218

LA27 (1188,1369)
1250
161.8

1242
254.2

1242
83.65

(1235,1269)

LA28 (1216,1391)
1225
165.9

1216
186.4

1216
17.37

1216

LA29 (1105,1337) 1194h

195.6
1182
281.3

1168
57.08

(1120,1195)

LA30 (1355,1427)
1355
2.2

1355
10.4

1355
0.30

1355

a) Max nonimproving moves set at 5000
b) IBM RS 6000
c) PC 386 33 MHz
d) Max nonimproving moves set at 2000
e) DEC 3000/600 (AXP)
f) SUN SPARC Station 1
g) la21 value of 1047 obtained by 11-13 short term memory range in 318.2s
h) la29 value of 1191 obtained with special short term memory range

- 20 -

Table 4

Results for 15-machine problems

Problem
(Bound,

Dispatch) B & Ca,b D & Tc
Dynamic d,e

Tabu Search
(120s)

A & C f

Value

15-job problems

LA36 (1028,1433)
1278
221.4

1278
238.4

1268
76.96

1268

LA37 (986,1588)
1418
232.0

1409
242.2

1407
6.47

1397

LA38 (943,1407)
1211
180.9

1203
256.6

1202
31.30

(1184,1217)

LA39 (1012,1381)
1237
258.7

1242
237.8

1233
20.92

1233

LA40 (1027,1424)
1228
93.9

1233
236.6

1226
119.41

1222

20-job problems

ABZ7 (556,745) 674g

339.0
667

320.1
668

45.50
(654,668)

ABZ8 (566,798)
682

296.3
678

336.1
676

49.58
(635,687)

ABZ9 (563,826)
693

393.0
692

320.8
694

43.46
(656,707)

a) Max nonimproving moves set at 6000
b) IBM RS 6000
c) PC 386 33 MHz
d) Max nonimproving moves set at 2000
e) DEC 3000/600 (AXP)
f) SUN SPARC Station 1
g) abz7 makespan of 668 obtained by 15-15 short term memory range in 374.7s

