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Abstract

In the classical job shop scheduling problem (JSSP), n jobs are processed to
completion on m unrelated machines. Each job requires processing on each machine
exactly once. For each job, technology constraints specify a complete, distinct routing
which is fixed and known in advance. Processing times are sequence-independent, fixed,
and known in advance. Each machine is continuously available from time zero, and
operations are processed without preemption. The objective is to minimize the
maximum completion time (makespan).

The flexible-routing job shop (FRJS) scheduling problem, or job shop with multi-
purpose machines, extends JSSP by assuming that a machine may be capable of
performing more than one type of operation. (For a given operation, there must exist at
least one machine capable of performing it.) FRJS approximates a flexible manufacturing
environment with numerically controlled work centers equipped with interchangeable
tool magazines.

This report extends a dynamic, adaptive tabu search (TS) strategy previously
described for job shops with single and multiple instances of single-purpose machines,
and applies it to FRJS. We present “proof-of-concept” results for three problems
constructed from difficult JSSP instances.
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Tabu Search for the Flexible-Routing Job Shop Problem

1. Introduction

Tabu search (TS) is a local search metaheuristic which relies on specialized
memory structures to avoid entrapment in local minima and achieve an effective balance
of intensification and diversification. TS has proved remarkably powerful in finding
high-quality solutions to computationally difficult combinatorial optimization problems
drawn from a wide variety of applications [Glover and Laguna 1993]. We assume that
the reader is familiar with the basic principles of TS [Glover 1989,1990,1994; Glover and
Laguna 1993; Glover, Taillard, and deWerra 1993].

TS results in the area of production scheduling have been especially successful
[Barnes and Laguna 1991]. In particular, we have previously reported experience with a
simple but highly effective TS approach to the classical (JSSP) and flexible (FJS) job shop
scheduling problems [Barnes and Chambers 1991a, 1991b, 1992a, 1992b, 1995; Chambers
and Barnes 1996a, 1996b].

JSSP approximates a traditional manufacturing process with a permanent,
dedicated facility turning out the same product repeatedly and in large volume over an
extended period of time. FJS extends the JSSP model to accommodate multiple instances
of single-purpose machines. However, much attention has been focused in recent years
on flexible manufacturing systems incorporating numerically controlled multi-purpose
work centers. Such systems can be easily reconfigured to produce a variety of different
items during short, low volume runs.

Clearly, the introduction of flexibility considerations complicates the already
difficult classical job shop problem. FMS problems are characteristically NP-hard
[Blazewicz et al. 1988], and MacCarthy and Liu [1993] have observed that, “Heuristics or
AI techniques seem to be unavoidable for FMS scheduling problems.” As with JSSP, only
the most trivial cases of flexible scheduling seem amenable to straightforward solution
[Brucker and Schlie 1990].

In this report, we extend our successful TS strategy for JSSP/FJS to a flexible
scheduling model incorporating multi-purpose machines, that is, machines capable of
performing more than one type of operation. We present “proof-of-concept” results for
three problems constructed from difficult JSSP instances. 

2. Literature

Balas [1970] formulates a framework for consideration of a job shop with identical
machine sets similar to an earlier model [Balas 1969] for the classical job shop problem,
but reports no computational experience. Brucker and Schlie [1990] consider job shop
scheduling with multi-purpose machines, and develop a polynomial graphical
algorithm for a 2-job problem after the manner of Akers [1956]. More realistic studies
have investigated heuristic procedures, including dispatching [Iwata, Murotsu, and Oba
1980], beam search [Chang, Matsuo, and Sullivan 1989], and a decomposed mixed IP
formulation [Nasr and Elsayed 1990].
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TS approaches have been described for a job shop with tooling changes, such as
might occur in an FMS using finite capacity tool magazines [Widmer 1991], and for a
flexible resource flow shop problem [Daniels and Mazzola 1993]. Brandimarte [1993], in
particular, studies the feasibility of implementing a TS strategy for the minimum
makespan and minimum weighted tardiness flexible problems. A layered memory
approach underlies a hierarchical technique which considers sequencing and routing
changes in an iterative fashion, and trials of several neighborhood structures using
randomly generated problems are discussed. 

3. Tabu Search Procedure

Recently [Chambers and Barnes 1996a], we described our experience with an
adaptive, dynamic tabu search strategy which demonstrated significantly improved
performance for the classical job shop over an earlier study [Barnes and Chambers 1995].
We then extended that strategy to the flexible job shop, and reviewed computational
results for sample problems generated from several difficult classical job shop instances
[Chambers and Barnes 1996b].

In this report, we extend the classical job shop problem to allow for the possibility
that a machine may be capable of performing more than one type of operation. (For a
given operation, there must exist at least one machine capable of performing it.) Our
approach, employing a concurrent move selection strategy coupled with a dynamic,
adaptive tabu search implementation, is identical to that described in [Chambers and
Barnes 1996a, 1996b].

4. Computational Experience

Construction of test problems
Previously [Chambers and Barnes 1996b], we constructed “proof-of-concept”

flexible job shop problems from three of the more challenging classical job shop
problems by replicating machines selected according to two simple criteria. The first
criterion we used was the cumulative processing time (CPT) required by a machine. The
second criterion was the cardinality of critical operations on a machine, based on our
best solution obtained to the classical problem [Chambers and Barnes 1996a].

We follow a similar pattern in this study, constructing FRJS problems from the
same classical problems by allowing selected machines to perform more than one type of
operation. In the tables which follow, the alternate machine policies are captioned as
shown in the chart below. Processing times for operations on alternate machines are
assumed to be identical to the original.

p1 operations requiring the machine with the greatest CPT
may also be performed on the machine with the smallest
CPT

p1,p2 operations requiring the machines with the greatest and
second-greatest CPTs may also be performed on the
machines with the smallest and second-smallest CPTs,
respectively



- 4 -

Tabu search results
The method was implemented in C, and run in single user mode on an IBM

RS6000 (PowerPC-43) workstation, with a CPU time limit of 1200 seconds and a
nonimproving moves limit of 2000 moves (except where noted). For each problem, the
short term memory range was taken from the best classical run [Chambers and Barnes
1996a].

 Tables 1 - 3 present results for the constructed flexible problems. The first column
indicates the alternate machine policy, as described above. The second column gives the
best flexible dispatching solution. The third column shows the makespan and time to
best achieved by the tabu search. The fourth column gives the frequency with which a
move type was selected as best at each iteration.

Table 1 presents results for flexible-routing variations of MT10 [Fisher and
Thompson 1963], a 10-job 10-machine problem for which we obtained a classical
makespan of 930 (optimal). MT10 has a lower bound dominated by the total processing
time required for one job; our best classical solution to MT10 had one critical path, with
two machines tied for the maximum number of critical operations. Policies involving
one or two alternate machines appear to be dominated by the bounding job and offer
only modest improvement. However, tabu search for the variation with three alternate
machines succeeds in locating a noticeably improved makespan (887 vs. 930). Some
improvement is noted in the p1p2p3 and c1 models by setting the limit on nonimproving
moves to 5000, although this is at the expense of additional search time. As was the case
in our previous FJS study [Chambers and Barnes 1996b], we observe an increasing
preference for routing moves associated with increasing flexibility, as expected.

Table 2 presents flexible-routing results for LA24 [Lawrence 1984], a 10-machine
15-job problem for which we obtained a classical makespan of 939. LA24 is machine-time
bounded; our best classical solution had one critical path and one machine with a
dominant number of critical operations. Tracing suggests that the inferior solutions
obtained for policies p1p2p3 and c1c2 may be attributable to inappropriate alternate
machine selection, leading to contention between operations rerouted to, and critical
operations already scheduled on, low-CPT machines. In such a case, tuning of the
nonimproving moves limit is of negligible value (model c1c2).

Table 3 presents flexible-routing results for LA40 [Lawrence 1984], a 15-machine
15-job problem for which we obtained a classical makespan of 1226. LA40 is machine-
time bounded; our best classical solution had one critical path which forks (and later

p1,p2,p3 operations requiring the machines with the greatest,
second-greatest, and third-greatest CPTs may also be
performed on the machines with the smallest, second-
smallest, and third-smallest CPTs, respectively

c1 operations requiring the machine with the greatest
number of critical operations may also be performed on
the smallest-CPT machine having no critical operations

c1,c2 operations requiring the machines with the greatest and
second-greatest number of critical operations may also be
performed on the smallest- and second-smallest-CPT
machines having no critical operations, respectively
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rejoins itself), and one machine clearly identifiable as having the largest number of
critical operations. The tabu search procedure readily takes advantage of increasing
flexibility to locate improved solutions. As was the case with MT10, two models, p1p2p3
and c1, realize additional improvement (with a longer time to best) if the limit on
nonimproving moves is set to 5000.

Table 4 summarizes the results for MT10, LA24, and LA40. The second column
lists the percent improvement over our best classical solution for each alternate machine
policy, with the average in italics. Column three gives the percent improvement
provided by the tabu search strategy over the initial flexible dispatching solution. This
improvement varies from 8.3% to 11.2%, at an overall average of 10.4%. Column four,
move type selection frequency, reprises our observation that increasing flexibility is
associated with a clear and consistent increase in the frequency with which routing
moves are selected by the concurrent neighborhood strategy.

It may be noted from Table 4 that, for each problem, a different alternate machine
policy yields a “best” percentage improvement over the classical solution. This is not
surprising, given the interaction between the unique constraint structure of each
problem and the resource contention created by forcing one or more machines to service
multiple operation types. The tests with LA24 using our “proof-of-concept” models
suggest that more sophisticated policies for the selection of alternate machines may lead
to superior results in realistic problems. In addition, the structure of the original JSSP
problem is sufficiently perturbed in FRJS (compared to FJS) that it may be more
appropriate to retune the short term memory and maximum nonimproving move count,
rather than to rely on the values used for the best classical runs.

Nonetheless, it is interesting to observe that the results for the machine policies
using one or two alternate machines (especially based on cumulative processing time)
are reasonably competitive with the results obtained for the corresponding replication
policies studied in [Chambers and Barnes 1996b]. In such cases, the tradeoff between
replication of a single purpose machine and the use of a multipurpose machine may be
of interest to the facility manager. The power of tabu search to rapidly evaluate a variety
of flexibility strategies is significant in this regard.

5. Future Directions

Recent investigations [Battiti and Tecchiolli 1994; Battiti 1995; Barnes and Carlton
1995; Carlton 1995] suggest that it may be possible to construct a dynamic TS approach
which is fully adaptive to changing search conditions without the need for extensive
parameterization or tuning. An implementation for generalized flexible scheduling
problems is under investigation.
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Table 1

Flexible tabu search results using MT10
(nonflexible makespan = 930)

Alternate 
machine policy

Dispatching
Tabu Search

(1200s)a

Move type %
routing/

sequencing

p1 1023
925

33.59
16.6 / 83.4

p1,p2 1000
912

121.78
36.1 / 63.9

p1,p2,p3 1008 887b

556.41
43.8 / 56.2

c1 1007 928c

0.27
20.5 / 79.5

c1,c2 980
926

117.19
34.4 / 65.6

a) nonimproving moves set to 2000
b) achieved 878 in 974.87s using max nonimproving moves of 5000
c) achieved 918 in 50.95s using max nonimproving moves of 5000
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Table 2

Flexible tabu search results using LA24
(nonflexible makespan = 939)

Alternate 
machine policy

Dispatching
Tabu Search

(1200s)a

Move type %
routing/

sequencing

p1 1055
929

107.04
13.2 / 86.8

p1,p2 1072
925

126.81
29.7 / 70.3

p1,p2,p3 1058
941

470.29
35.7 / 64.3

c1 1077
919

321.18
21.6 / 78.4

c1,c2 1077 943b

329.28
34.0 / 66.0

a) nonimproving moves set to 2000
b) 941 achieved in 93.74s using max nonimproving moves of 5000



- 10 -

Table 3

Flexible tabu search results using LA40
(nonflexible makespan = 1226)

Alternate 
machine policy

Dispatching
Tabu Search

(1200s)a

Move type %
routing/

sequencing

p1 1366
1219

828.05
17.6 / 82.4

p1,p2 1296
1156

714.81
28.3 / 71.7

p1,p2,p3 1303 1167b

408.64
35.1 / 64.9

c1 1332 1207c

99.19
13.2 / 86.8

c1,c2 1296
1206

165.34
23.6 / 76.4

a) nonimproving moves set to 2000
b) 1163 achieved in 944.04s using max nonimproving moves of 5000
c) 1203 achieved in 1107.6s using max nonimproving moves of 5000
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Table 4

Flexible tabu search summary results for Tables 1 - 3

Alternate 
machine 

policy
% Improvement

(flexibility)
% Improvement

(tabu search)a

Move type %
routing/

sequencing

p1
0.5
1.1
0.6

0.7
9.6
11.9
10.8

10.8
16.6 / 83.4
13.2 / 86.8
17.6 / 82.4

15.8 / 84.2

p1,p2
1.9
1.5
5.7

3.0
8.8
13.7
10.8

11.1
36.1 / 63.9
29.7 / 70.3
28.3 / 71.7

31.4 / 68.6

p1,p2,p3
4.6
-0.2
4.8

3.1
12.0
11.1
10.4

11.2
43.8 / 56.2
35.7 / 64.3
35.1 / 64.9

38.2 / 61.8

c1
0.2
2.1
1.5

1.3
7.8
14.7
9.4

10.6
20.5 / 79.5
21.6 / 78.4
13.2 / 86.8

18.4 / 81.6

c1,c2
0.4
-0.4
1.6

0.5
5.5
12.4
6.9

8.3
34.4 / 65.6
34.0 / 66.0
23.6 / 76.4

30.7 / 69.3

10.4

a) nonimproving moves set to 2000


