
OPTIMIZING A RING-BASED PRIVATE

LINE TELECOMMUNICATION NETWORK

USING TABU SEARCH

Jiefeng Xua;c, Steve Y. Chiub, and Fred Gloverc

a Delta Technology, Inc., 1001 International Boulevard, Atlanta, GA 30354-1801.

b GTE Laboratories, Inc., 40 Sylvan Road, Waltham, MA 02254.

c Graduate School of Business, University of Colorado at Boulder, CO 80309-0419.

Abstract. One of the private line network design problems in the

telecommunications industry is to interconnect a set of customer loca-

tions through a ring of end o�ces so as to minimize the total tari� cost

and provide reliability. We develop a Tabu Search method for the prob-

lem that incorporates long term memory, probabilistic move selections,

hierarchical move evaluation, candidate list strategies and an elite solu-

tion recovery strategy. Computational results for test data show that

the tabu search heuristic �nds optimal solutions for all test problems

that can be solved exactly by a branch-and-cut algorithm, while run-

ning about three orders of magnitude faster than the exact algorithm.

In addition, for larger size problems that cannot be solved exactly , the

tabu search algorithm outperforms the best local search heuristic cur-

rently available. The performance gap favoring tabu search increases

signi�cantly for more di�cult problem instances.

Key words. Digital Data Service, Telecommunications Network De-

sign, Traveling Salesman Problem, Tabu Search, Heuristic.

Published in Management Science, Vol. 45, No. 3 (1998), pp. 330-345.

TS for Optimizing a Ring-Based Telecomm. Network 1

1. Introduction

Digital Data Service (DDS) is a high-quality digital transport service in the

telecommunications industry using permanent network connections and ded-

icated transmission facilities. In this paper, we address a particular DDS

network design problem that is encountered by a major telecommunications

company in the United States. The input elements of the problem include a

set of end o�ces, a set of digital hubs and a set of customer locations that

are geographically distributed on a plane. Each customer location is connected

directly to its own designated end o�ce which in turn needs to be connected

to exactly one selected hub. Then the selected hubs must be connected by a

ring (the ring topology is widely used in communications network designs to

provide reliability). Each hub has a �xed cost for being chosen and each link

has a connection cost for being included in the solution. The objective is to

design such a network at minimum cost.

Digital Hub End Office Customer Location

8 m
10 m

16 m

12 m

0 m

6 m

5 m

9 m

Figure 1: A Ring-Based DDS Network

Figure 1 shows a real scenario of a small ring-based DDS network. The

number of dedicated lines required for the link between an end o�ce and its

2 Jiefeng Xu, Steve Y. Chiu and Fred Glover

assigned hub is equal to the number of customer locations connected to the

end o�ce. The links between customer locations and end o�ces are not really

part of the network design problem because they are uniquely determined by

the (non-overlapping) serving areas of the end o�ces. Each customer location

is always connected to its designated end o�ce serving the area.

In practice, the link cost is sensitive to distance and is calculated according

to the current tari� charges. These charges include a �xed cost and a variable

cost per mile that both vary with the distance. For each active (selected) hub,

the bridging cost is proportional to the number of lines connected to the hub.

To illustrate how these costs are calculated, suppose the monthly cost data are

given as follows:

Fixed bridging cost: $82.00

Bridging cost per line: $41.00

Link cost: Mileage Fixed Cost Variable Cost

< 1 mile $30.00 $0.00

1 { 15 miles $125.00 $1.20

� 16 miles $130.00 $1.50

Then the monthly costs for the network in Figure 1 are

Bridging Cost

�xed cost: $82.00 � 3 = $246.00

variable cost: $41.00 � 14 = $574.00

Link Cost

�xed cost: $30.00 � 1 + $125.00 � 9 + $130.00 � 1 = $1285.00

variable cost: $1.20 � (3 � 8 +10 + 2 � 6 + 12 +9 +5) + $1.50 � 16

= $106.40

Total monthly cost: $2211.40.

Note that a line connecting two active hubs has two bridging facilities at

its ends, so it should be counted as twice in calculating the variable bridging

cost. Consequently the decisions faced by the network designers are

TS for Optimizing a Ring-Based Telecomm. Network 3

� Select a subset of hubs among all potential hubs and connect them via a

ring (a travelling salesman tour over the selected hubs).

� Connect each end o�ce to a selected hub (so that the original customer

locations can communicate to each other).

The objective of the design is to minimize the total monthly cost as calcu-

lated in the above example.

In practice, the Federal Communications Commission (FCC) demands that

telecommunication companies provide the best DDS design to customers. For

real world instances, the number of customer locations (or end o�ces) can

vary from 2 to over 100, and the number of potential hubs can be as large

as 300. The algorithm reported in this paper is used in an automatic quoting

system that requires the response time (solution time) to be within one minute,

so that the sales representative can give the customer a quote over the phone.

The challenge is to develop an algorithm that not only achieves such a response

time, but that also provides optimal or near-optimal solutions for DDS design.

Throughout the paper, the hubs are referred to as steiner nodes, and the end

o�ces are referred to as target nodes. Also notice that the cost for connecting

a target node to a steiner node and the cost for connecting two steiner nodes

can both be precalculated.

In this paper, we explore an implementation of Tabu Search (TS) for solving

this ring-based DDS network design problem. TS is a metaheuristic that proves

e�ective for many combinatorial optimization problems. For a comprehensive

overview of TS, see Glover and Laguna (1997). In recent years, a growing

number of TS applications have appeared in the area of telecommunications.

Such applications include bandwidth packing (Laguna and Glover, 1993), path

assignment for dynamic routing (Anderson, Jones and Ryan, 1993), SONET

ring design (Laguna, 1994), hub facility location (Skorin-Kapov and Skorin-

Kapov, 1994), digital line network design (Xu, Chiu and Glover, 1996a, 1996b)

and dynamic routing communication network design (Xu, Chiu and Glover,

4 Jiefeng Xu, Steve Y. Chiu and Fred Glover

1997). The highly successful outcomes of these applications motivate us to

develop and test a TS method designed speci�cally for the ring-based DDS

network design problem.

This paper is organized as follows. We present the mathematical formu-

lation in the next section. In section 3 we describe a TS based heuristic for

the problem and examine several relevant issues such as long term memory,

probabilistic move selection, neighborhood structure, hierarchical move eval-

uation and candidate list strategies. Section 4 reports computational results

with two sets of carefully designed test problems, including comparisons with

other exact and heuristic approaches. In the concluding section, we summarize

our methodology and �ndings.

2. Mathematical Formulation

The problem addressed in this paper can be formulated as a 0-1 integer pro-

gramming problem as follows. First the input data are:

M : set of target nodes;

N : set of steiner nodes;

cij : cost of connecting target node i to steiner node j;

djk : cost of connecting two steiner nodes j and k;

bj : cost of using steiner node j.

The decision variables are:

xij : a binary variable equal to 1 if and only if target node i is linked to

steiner node j;

yjk : a binary variable equal to 1 if and only if steiner node j is linked to

steiner node k (j < k));

zj : a binary variable equal to 1 if and only if steiner node j is selected to

be active.

TS for Optimizing a Ring-Based Telecomm. Network 5

Then the formulation is

minimize
X

i2M

X

j2N

cijxij +
X

j2N

X

k > j

k 2 N

djkyjk +
X

j2N

bjzj (1)

subject to:

X

j2N

xij = 1; i 2M; (2)

xij � zj; i 2M; j 2 N; (3)

yjk � (zj + zk)=2; j < k; j; k 2 N; (4)

X

k2N

yjk +
X

k2N

ykj = 2zj; j 2 N; (5)

X

j 2 H

X

k 2 H

yjk �
X

j2fH�lg

zj + 1� zt; l 2 H; H � N; (6)
jHj � 3; t 2 N �H;

xij 2 f0; 1g; i 2M; j 2 N; (7)

yjk 2 f0; 1g; k > j; j; k 2 N; (8)

zj 2 f0; 1g j 2 N: (9)

In this formulation, the objective function (1) seeks to minimize the sum

of the connection cost between target nodes and steiner nodes, the connection

cost between steiner nodes, and the setup cost for the steiner nodes. Constraint

(2) speci�es that each target node must be connected to exactly one steiner

node. Constraint (3) indicates that the target nodes can only be connected

to the active steiner nodes. Constraint (4) stipulates that two steiner nodes

can be connected if and only if both nodes are active. Constraints (5) and (6)

express the ring (or tour) structure over the active steiner nodes. In particular,

(5) speci�es the condition that each active steiner node must have a degree

of two, while (6) is an subtour-eliminating constraint that compels all active

steiner nodes to form a single tour. Finally, all decision variables are de�ned

as binary.

6 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Clearly, the ring-based DDS problem is NP-hard since the well-known Trav-

eling Salesman Problem (TSP) can be easily reduced to it. (For a complete

review of the TSP, we refer readers to the two books (Lawler et. al. 1985 and

Reinelt, 1994) and the two algorithm surveys by Laporte (1992) and Johnson

and McGeoch (1996).) Only small size ring-based DDS problems (e.g., with

10 target nodes and 30 steiner nodes) can be solved exactly within a reason-

able time period for the requirements of this application (i.e., one minute) by

state-of-the-art integer programming techniques such as branch-and-cut.In fact,

this holds true for a specialized branch-and-cut method based on the foregoing

mathematical formulation which is tailored to generate constraints (or cuts) of

type (6) on a needed basis. (See Lee, Chiu and Ryan, 1996a and 1996b.)

3. The Tabu Search Heuristic

Tabu Search is an aggressive search procedure that proceeds iteratively from

one solution to another by moves in a neighborhood space with the assistance

of adaptive memory. To exploit this memory e�ectively, the method makes use

of several key strategic principles and associated algorithm designs. In this

section, we �rst introduce an elementary TS heuristic, then describe each of

the customary and more advanced components developed for the ring-based

DDS problem.

3.1. Elementary Tabu Search Procedure. Tabu search is an iterative

method which can be used to guide traditional local search methods to es-

cape the trap of local optimality. TS operates through neighborhood moves,

that proceed from one solution to another at each iteration. Some moves are

marked tabu and are forbidden unless they lead to highly desirable outcomes.

Let x now be the solution at the current iteration, and x best the best solution

TS for Optimizing a Ring-Based Telecomm. Network 7

found so far, iter the current iteration counter, and Tabu(iter) the set of tabu

moves at iteration iter. We de�ne a move to be admissible by aspiration if it

belongs to Tabu(iter), but if the solution produced by the move has a su�-

ciently high quality to allow its tabu status to be disregarded. A simpli�ed

(short-term memory) version of TS may be expressed as follows.

Step 0. iter = 0; Initialize x now; x best = x now; Tabu(iter) = ;.

Step 1. Construct a list of candidate moves from the neighborhood of x now.

Evaluate each candidate move.

Step 2. Select the highest evaluation move that does not belong to Tabu(iter),

or which quali�es to be selected as a result of being admissible by aspi-

ration. Perform the move, and update x now.

Step 3. If x now is better than x best, update x best.

Step 4. If stopping criteria are satis�ed, terminate with x best. Otherwise,

iter = iter + 1; update Tabu(iter); go to Step 1.

Numerous advanced strategies exist that can e�ectively enhance this rudi-

mentary short-termmemory form of tabu search (see Glover and Laguna, 1997).

To illustrate our TS approach for this network design problem, the following

subsections describe the issues of neighborhood structure and moves, mem-

ory structures, hierarchical move evaluations and candidate lists, probabilistic

move selection and advanced intensi�cation strategies.

3.2. Neighborhood Structure and Moves. We partition the steiner nodes

into the disjoint subsets of active nodes (A) and inactive nodes (�A). The moves

that de�ne the neighborhood structure for our procedure consist of transferring

a chosen node from one of these two subsets to another, and of exchanging two

nodes between these subsets. Speci�cally, we divide the transfer moves into the

following two elementary types:

8 Jiefeng Xu, Steve Y. Chiu and Fred Glover

(1) constructive move: transfer a selected steiner node from �A to A. This move

inserts a node into the current TSP tour, and therefore increases the cardinality

of the set A by one. This move is disallowed if the set �A is empty;

(2) destructive move: transfer a steiner node from A to �A. This move deletes

the active steiner node from the current TSP tour, and therefore decreases the

cardinality of the set A by one. This move is disallowed if the set A is empty.

Any set A can be reached via a sequence of constructive and/or destruc-

tive moves starting from any solution con�guration. Thus, constructive and

destructive moves are considered to be elementary moves in the search process.

Pairwise exchange (swap) moves, which exchange one active steiner node with

one inactive steiner node, can be viewed as a combination of a constructive and

a destructive move. Such a move leaves the cardinalities of both set A and �A

unchanged, but introduces a more signi�cant change to the current TSP tour.

The swap move is disallowed if either the set A or �A is empty.

We observe that our simple set of fundamental moves is somewhat di�erent

from those customarily used in TSP applications. That is, while standard TSP

heuristics may incorporate constructive steps (and tabu search variants also

incorporate destructive steps), the exchanges used in such TSP heuristics are

not the same as the exchanges we describe here. Our divergence from the

classical choice of neighborhoods is motivated by the �ndings of Xu, Chiu and

Glover (1996a, 1996b), which identi�ed the current neighborhood structure to

be highly e�ective when properly exploited, in a tabu search approach for a

related class of telecommunication problems. In addition, we also make use of

classical TSP neighborhoods, as noted later.

For a swap move evaluation, e�ort must be taken to reduce the computa-

tional expense when the number of steiner nodes is moderately large. For that

purpose, a natural candidate list is constructed to isolate a promising subset

of the swap moves. This candidate list restricts attention to pairs (x; y) whose

TS for Optimizing a Ring-Based Telecomm. Network 9

elements are drawn from the K best destructive and constructive moves where

K is an integer in the range of 5 to 15. This candidate list strategy is motivated

in part by the idea of the Proximate Optimality Principle (POP) that says

good solutions at one level are likely to be found close to good solutions at

an adjacent level. (For example, we may conceive constructive and destructive

moves as mechanisms for moving between levels, and swap moves as mecha-

nisms for searching within a given level.) As a consequence, this candidate

list is used to screen for the good partial moves whose composition may give a

good candidate to evaluate. Such a candidate list strategy proves to be much

faster than evaluating the whole swap neighborhood, yet can be implemented

without sacri�cing overall solution quality (see Xu, Chiu and Glover, 1996a,

1996b).

We blend the elementary moves with the swap moves to produce the com-

plete neighborhood search. Because a swap move involves a more signi�cant

change in the TSP tour (and hence requires a more complex evaluation of its

consequences), we perform it more sparingly in the search process. In partic-

ular, we apply it chie
y in the roles of periodic perturbation and conditional

oscillation. A perturbation step is guided by elementary moves and executed

once for every certain number of iterations. The conditional oscillation step is

designed to achieve a greater intensi�cation of the search, by executing swap

moves for some number of iterations when the search cannot improve the so-

lution for a pre-de�ned duration. This mixed mechanism proves e�ective and

e�cient in our applications, since we �nd that a dominant reliance on the el-

ementary moves, when handled intelligently, yields good decisions with only

occasional reliance on more complex moves.

3.3. Tabu Search Memory. TS memory structures play a fundamental role

in our algorithm to guide the search process. We use the short term memory

to prevent the search from being trapped in a local optimum and use the long

term memory to provide the diversi�cation strategy.

10 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Short Term Tabu Search Memory. The short term memory operates by im-

posing restrictions on the composition of new solutions generated (typically

expressed as a restriction on attributes of these solutions). For elementary

moves, we impose restrictions that assure a move cannot be \reversed". In

particular, if the node x is currently dropped from the active steiner node set

A, we forbid this node to move back to A for several iterations. For swap moves,

we impose the restrictions on moves in both direction. If an active node x is

swapped with an inactive node y in the current move, the restriction inhibits

both moving node x back to A and moving node y back to �A. Such a restrictive

mechanism prevents the search from revisiting a local optimum in the short

term and greatly diminishes the chance of cycling in the long term.

How long a given restriction is in e�ect depends on a parameter called

the tabu tenure, which identi�es the number of iterations a particular tabu

restriction remains in force. The tabu tenure can be either �xed or variable,

but a tenure that varies within a small range about a central value often proves

more robust. Moreover, in our application, we allow the central value to di�er

according to the move type. Since adding a node introduces a �xed cost, and

thus makes the move appear less attractive than a destructive one, we assign a

longer tabu tenure to avoid destructive moves than to avoid constructive moves.

A TS restriction may be overridden by means of aspiration criteria if the

outcome of the move under consideration is su�ciently desirable. We use the

simple criterion of overriding the restriction if the current candidate move would

lead to a new best solution.

We implement the short term memory using a recency based memory struc-

ture as follows. Let iter denote the current iteration number and let tabu add(x)

and tabu drop(y) denote the future iteration values governing the duration that

will forbid a reversal of the moves of adding node x and dropping node y, (i.e.

by preventing node x from being dropped and node y from being added). Simi-

larly, let tabu add tenure and tabu drop tenure be the values of tabu tenures for

these two moves. Initially, tabu add(x) and tabu drop(x) are set to zero for all

nodes x, and iter starts at one. When the TS restriction is imposed, we update

the recency memory as:

TS for Optimizing a Ring-Based Telecomm. Network 11

tabu add(x) = iter + tabu add tenure (for the constructive move of adding

node x),

tabu drop(y) = iter + tabu drop tenure (for the destructive move of dropping

node y).

Thus the restriction to prevent x from being dropped is enforced when

tabu add(x) > iter, and the restriction to prevent y from being added is enforced

when tabu drop(y) > iter. As previously noted, we select the central value for

tabu add tenure to be smaller than that of tabu drop tenure. Let best sol cost

be the cost of the best solution found so far, and best move cost be the eval-

uation (estimated cost) of the move we select. Also de�ne cost(:) as the move

evaluation value. Then the move selection procedure incorporating the TS

restrictions and aspiration criteria proceeds as follows:

Assign a large value to best move cost:

For each inactive steiner node x;do

if cost(x) < best move cost do

if cost(x) < best sol cost or tabu add(x) � iter do

best move cost = cost(x).

For each active steiner node y;do

if cost(y) < best move cost do

if cost(y) < best sol cost or tabu drop(y) � iter do

best move = cost(y).

For the exchange move, we have

Assign a large value to best move cost:

For each candidate node pair composed of inactive steiner node x and

active steiner node y, do

if cost(x; y) < best move cost do

if cost(x; y) < best sol cost or

(tabu add(x) � iter and tabu drop(y) � iter) do

best move cost = cost(x; y).

Long Term Tabu Search Memory. The long term TS memory we employ makes

use of a frequency based memory structure to achieve a diversi�cation e�ect,

encouraging the search to explore regions less frequently visited.

12 Jiefeng Xu, Steve Y. Chiu and Fred Glover

More speci�cally, we use this memory to discourage moves that occurred

frequently during the search (and consequently to encourage moves that oc-

curred less frequently). A transition measure is used to record the number of

times each steiner node changes from an active status to an inactive status or

vice versa. Let frequency0(x) be the number of times that steiner node x is

changed from active to inactive, frequency1(x) be the number of times that

steiner node x is changed from inactive to active. These frequencies can easily

be updated as follows:

frequency0(x) = frequency0(x) + 1 if the move is destructive;

frequency1(x) = frequency1(x) + 1 if the move is constructive.

This transition measure is then normalized to lie in the interval [0,1] by di-

viding by the maximum of frequency0(:) or frequency1(:) as appropriate. This

normalized value is then linearly scaled by a selected constant to create a

penalty term. The penalty term is added to the corresponding move evalua-

tion so that the frequency factor is taken into account in the move selection

procedure. It should be noted that this long term memory is designed strictly

for diversi�cation, without any counterbalancing consideration of intensi�ca-

tion e�ects. A more advanced strategy would seek to integrate diversi�cation

and intensi�cation issues, and we will examine such an integration in future

research work.

3.4. Hierarchical Move Evaluation. Once the subset A is determined, the

cost of the current solution can be calculated by: (1) constructing a minimum

cost TSP tour over A and identifying the resulting cost, (2) linking every target

node to its cheapest (i.e. cheapest-link) active steiner node and �nding the sum

of the resulting connection costs, and (3) summing all node costs (set-up costs)

for A. The second part can be easily implemented by maintaining a presorted

list for every target node, which records the connection costs from this target

node to every steiner node. Thus, (2) can be found in linear time for each

TS for Optimizing a Ring-Based Telecomm. Network 13

target node. The calculation of (3) is trivial. Therefore the key issue in the

move evaluation becomes the TSP tour construction.

Since �nding the optimal TSP tour is a NP-hard problem, it is not practi-

cal to use exact methods to evaluate the tour even when the number of nodes

in the tour is moderate. Among the heuristics, some local search approaches

such as 2-opt, 3-opt, or-opt, etc., work fast, but unless they are embedded

in a design for going beyond local optimality, the solutions they obtain are of-

ten myopic. Metaheuristic approaches, which may incorporate simple heuristics

within them, can overcome the limitation of the local search and can yield much

better solutions, though typically at the expense of considerably more computa-

tion time. In our TS algorithm, we devise a hierarchical evaluation mechanism

with the goal of achieving an e�ective trade-o� between the solution quality

and the speed. This hierarchical evaluation employs the evaluators at three

di�erent levels (basic, intermediate, advanced), each associated with di�erent

types of neighborhood moves and appropriate candidate lists. The evaluators

are based on identi�ng the cost of the corresponding TSP tour. (Note that

this is not the full cost to be considered, since the costs of (2) and (3) must

also be included in the complete evaluation of each move.) The higher level

evaluator is more powerful and time-consuming than the lower level evaluator,

and hence is applied more restrictively. We describe these evaluators as follows.

Basic Evaluator. The basic evaluator is used to evaluate every constructive,

destructive and swap move in the candidate list. For constructive moves, the

evaluator identi�es the minimum insertion cost by inserting the new node into

its cheapest insertion position. For destructive moves, the evaluator identi�es

the cost of removing the given node and simply connecting its two adjacent

nodes in the current tour. For swap moves, the evaluator identi�es the cost

of �rst removing the given node and then inserting the new node as described

above.

14 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Intermediate Evaluator. The intermediate evaluator employs the 2-opt heuristic

to improve the current tour. The 2-opt proceeds by considering all possible

ways of removing two arcs from the cuurent tour and then reconnecting the

two resulting chains to form a new complete TSP tour. If the a new tour is

found to be shorter than the current tour, then accept this tour and continue

to proceed from this tour. The 2-opt terminates when no improvement can

be obtained. The theorectical complexity of the 2-opt for �nding the �rst

improving move is O(jAj2), though in practice many implementation tricks can

reduce this complexity signi�cantly (see Johnson and McGeoch, 1996).

The 2-opt procedure can be signi�cantly simpli�ed with our destructive and

constructive moves. Suppose that the current tour is already a local optimum

(e.g., improved by 2-opt), then the destructive move and the constructive move

only introduce one and two new edges in the tour respectively. Therefore, the

2-opt needs to evaluate only the options that remove at least one of these new

edges. The complexity of this simpli�ed 2-opt for �nding the �rst improving

move is thereby reduced toO(jAj). The changes brought by the swap moves can

be exploited in a more complicated, but for simplicity we apply the standard

2-opt procedure for those tours since we do not execute the swap moves as

frequently.

The intermediate evaluator is applied to a subset of selected neighborhood

moves, that is, the candidate list maintained for the probabilistic move seletion

(as described in the next subsection), which consists of the non-tabu neighbor-

hood moves at the current iteration that have the K highest evaluations, based

on the complete evaluation using the basic evaluator.

Advanced Evaluator The advanced evaluator uses more complicated search

teniques for improvement. First, it applies 3-opt local search to the current

tour. The 3-opt application improves the tour by evaluting all possible ways of

removing 3 arcs and reconnecting them to produce a new tour.

After the tour is improved by 3-opt, we employ a stand alone simple TS

algorithm for the TSP (TS-TSP). The TS-TSP uses simple ejection and swap

TS for Optimizing a Ring-Based Telecomm. Network 15

moves applied to the nodes in the tour. A rudimentary short term memory

structure is used to discourage the search from revisiting previous solutions.

At each iteration, the admissable move with the highest evaluation is selected

and performed. The search terminates at a pre-determined maximum number

of iterations while the best solution over the entire search is recorded. The

TS-TSP was �rst successfully used as a tour-improvement tool in the Vehicle

Routing Problem (VRP) by Xu and Kelly (1996). Computational experience

disclosed that the TS-TSP provides a simple approach to yield shorter TSP

tours than 3-opt and signi�cantly improves the search quality for the VRP.

Since the advanced evaluator is more complicated and time-consuming, we

execute this evaluator on a more restrictive basis. The scenarioes where we

run the advanced evalautor are: (1) when a \new best" solution is found; (2)

when a current solution accumulates a certain degree of estimation error from

the use of the intermediate evaluator; (3) when the estimation errors of a set

of \elite solutions" need to be corrected periodically.

The periodic correction in (3) seeks to balance the tradeo� between expected

accuracy and speed of executing the algorithm. To achieve this, we manipulate

a priority queue that includes a selected number of elite solutions encountered

so far during the search, where these solutions consist of those actually visited

and also of those that may potentially be visited by means of currently available

candidate moves.

Before applying the error correction operation, the priority queue is ordered

by the estimated costs (produced by intermediate evaluator) of its component

solutions. Error correction using the advanced evaluator is then periodically

performed on each element in this queue. Once an element's corrected cost is

thus identi�ed, this element is marked so that no error correction is executed on

this element in the future. At the same time, the element is repositioned in the

queue according to its new cost. Thus, when a new elite element is encountered

whose estimated cost is better (smaller) than the cost of current worst element

of the queue, the new element is added and marked for error correction while

16 Jiefeng Xu, Steve Y. Chiu and Fred Glover

the worst element is dropped from the queue. Because of periodic updating, the

costs associated with queue elements can be a mix of estimated and corrected

costs. The updating of the priority queue is further enhanced by applying a

sorted pointer list to facilitate the add and drop operations.

Based on our empirical experience, the 2-opt based intermediate evaluator

works quite well for tours containing 10 or fewer nodes. Thus, we do not bother

performing the time-consuming advanced evaluator on those tours. Further-

more, since our TS algorithm generally starts from a poor solution (e.g., many

solutions contain unnecessarily large number of active nodes), and this solu-

tion can be rapidly improved by our TS algorithm, there is no need to �nd the

more accurate costs for these inferior solutions using the advanced evaluator.

Consequently, we disable the advanced evaluator in the very early stage of the

search.

Estimation errors can have a signi�cant in
uence on move selection, espe-

cially for the large problem instances. To further compensate for the e�ects of

approximation, we also use a move selection rule based on probabilistic tabu

search, as described in the next subsection.

3.5. Probabilistic Move Selection. The fundamental idea of the move se-

lection approach of probabilistic tabu search (Glover 1989) is simply to translate

tabu restrictions and aspirations into penalties and inducements that modify

the standard evaluations, and then to map these modi�ed evaluations into

probabilities that are strongly biased to favor the highest evaluations. We are

particularly motivated to apply this approach in the present setting as a result

of observations of Glover and L�kketangen [1994] concerning the uses of prob-

abilities to combat \noise". Since we re�ne the candidate list and create the

move evaluation based on a cost approximation, the move evaluation is con-

taminated by a form of noise, so that a \best evaluation" does not necessarily

correspond to a \best move". Therefore we seek a way to assign probabilities

that somehow compensates for the noise level.

TS for Optimizing a Ring-Based Telecomm. Network 17

We apply probabilistic tabu search in the following simple form.

Step 1 Generate the candidate list and evaluate the moves of this list,

asssigning penalties to moves that are tabu.

Step 2 Take the move from the candidate list with the highest evalua-

tion value.

If the move satis�es the aspiration criterion, accept it and exit;

Otherwise, continue to Step 3.

Step 3 Accept the move with probability p and exit;

Or reject the move with probability 1� p, go to Step 4.

Step 4 Remove the move from the candidate list.

If the list is now empty, accept the �rst move of the original

candidate list and exit. Otherwise, go to Step 2.

In practice, if the candidate list is moderately large, the above procedure

can be simpli�ed by considering a reduced number of moves for probabilistic

selection. For that, a pool is created to store a certain number of best moves

from the candidate list (penalizing tabu moves as before), thus e�ectively cre-

ating a new and smaller candidate list. This simpli�cation is based on the high

probability of choosing one of the �rst d moves, for modest values of p, even

if d is relatively small. Note that the probability of choosing one of the d best

moves in the candidate list is 1� (1� p)d.

Thus if p = 0:3, the probability is about 0.832 for picking one of the top

�ve moves, and about 0.972 for picking one of the top ten moves. We selected

p = 0:3 as a basis for our subsequent experiments.

Instead of using the static value of selection probability p in Step 3, we in-

troduce a modi�cation to take fuller account of the relative move evaluations.

Speci�cally, we �ne-tune the probability of selection based on the ratio of the

move evaluation currently examined to the value of the best solution found so

far. This selection probability is calculated by p�r�� where r represents the in-

dicated ratio and � and � are positive parameters. With the values of � and �

18 Jiefeng Xu, Steve Y. Chiu and Fred Glover

set appropriately, the new probability function provides a �ne-tuned probabil-

ity to discriminate among di�erent evaluations, and favor those proportionately

closer to the best solution value. This increases the chance of selecting \good"

moves. For example, if � is set to 1.0 and � is set to 0.15, then a move with

an evaluation 1.01 times the best solution cost (r = 1:01) has a selection prob-

ability of 0.355, which is higher than the base probability 0.3; for a move with

r = 1:2, the selection probability is 0.282, which is lower than the base probabil-

ity 0.3. In particular, the additional �ne-tuned mechanism yields probabilities

greater than p for r � (1+ �)=�, and probabilities less than p for r > (1+ �)=�.

3.6. Advanced Recovery. The use of advanced recovery strategies as an

intensi�cation component in Tabu Search has proved e�ective in a number of

applications (see Glover 1995). In this application, we employ a variant pro-

posed in Xu, Chiu and Glover (1996a, 1996b) and Xu and Kelly (1996) that

postpones the recovery of elite solutions until the last stage of the search. Each

recovered solution launchs a search that constitutes a �xed number of itera-

tions before selecting the next solution to recover. The same elite solution list

maintained for error correcting by the advanced evaluator, described in section

3.3, serves naturally as a pool of solution for this �nal stage. Solutions are

recovered from this pool in reverse order, that is, by starting from the solu-

tion with the worst evaluation and working toward the solution with the best

evaluation. The list is updated each time a solution is found better than the

current worst solution in this elite pool. We merely insert the new solution in

its proper location, dropping the worst solution. To enable more elite solutions

to be recovered, we thus allow the number of solutions recovered to be larger

than the size of the original size of the elite pool. We implement the elite pool

for advanced recovery as a circular list, that is, when the best solution (last

element) in this pool is recovered, we move back around to the current worst

solution (�rst element) and work toward the best solution again. For each

solution recovered, all tabu restrictions are overridden and reinitialized.

TS for Optimizing a Ring-Based Telecomm. Network 19

4. Computational Results

In this section, we �rst report our computational outcomes for two sets of

test problems. The problems are generated randomly from distributions whose

parameters are selected to create the most di�cult problem instances for ran-

domly generated problems from a computational standpoint. The locations of

target nodes and steiner nodes are randomly generated in Euclidean space with

coordinates from the interval [0, 1000]. Euclidean distances are used for cal-

culating the link costs. The �xed cost of selecting a steiner node is generated

randomly from the interval [10, 1000]. We observed that a small �xed cost

in this case tends to produce di�cult instances because of the "steiner" na-

ture of the problem. The �rst set of test problems is taken from Lee, Chiu and

Ryan (1996a) , and is restricted to problems of relatively small dimensions that

were capable of being solved by the branch and cut approach of their study.

Problems from the second test set have larger dimensions, and are beyond the

ability of current exact methods to solve. The tables that report our results

represent the problem dimensions by m and n, which identify the number of

target and steiner nodes respectively.

We conducted all our tests on a Sun Sparc workstation 20 , Model 512 and

report CPU time in seconds.

4.1. Parameter Description. An initial solution for our TS approach is

produced by linking every target node to its closest steiner node, and then

constructing a TSP tour using 2-opt on the set of selected steiner nodes. Since

this initial solution does not address the tradeo� between steiner node costs

and link costs, it is usually a very poor quality solution. Our TS approach

starts from this solution to search for progressively better solutions.

Tabu tenures for the three types of moves in the TS procedure are randomly

generated from an associated (relatively small) interval each time a move is

executed. The interval [1,3] is used for constructive moves and the interval

[2,5] is used for destructive moves. In the case of swap moves, an interval of

20 Jiefeng Xu, Steve Y. Chiu and Fred Glover

[1,3] is used for each of the two elementary moves composing the swap. Most

TS applications use intervals that are centered around somewhat larger values.

Apparently, the ability to use these small intervals successfully, without cycling,

is aided by the oscillation strategy whereby the search alternates between the

di�erent types of moves. The smaller tabu tenures conceivably help the search

explore promising regions more thoroughly under these conditions.

Swap moves are executed either once every seven iterations or in a block of

�ve consecutive iterations when no \new best" solution is found during the most

recent 100 iterations. The candidate list for swap moves consists of the top (up

to) ten best destructive moves and top (up to) ten constructive moves from the

last iteration. At each iteration, the intermediate evaluator is always applied

to the top ten best candidate moves estimated by the basic evaluator. The

error correction procedure (by the advanced evaluator) is executed each time a

\new best" solution is found, and is applied to the current solution after every

three accumulated moves, not counting destructive moves that drop nodes of

degree one. Error correction is also applied every 100 iterations to the priority

queue that stores the thirty best solutions. Also, as mentioned in section 3.3,

the error correction is not executed before iteration 200 and is omitted when

the current TSP tour contains less than ten nodes. The embedded TS-TSP

procedure is terminated at 200 iterations. The maximum allowable number of

iterations for our complete method is set to 150 for the �rst test set (which we

found to be trivially easy for our method) and 5000 for the second set.

Long term memory is activated after 500 iterations, so that it can be based

on relatively reliable frequency information. The penalty term based on long

term memory is calculated by multiplying 320 by the normalized frequency for

elementary moves, and multiplying 135 by the sum of the two respective nor-

malized frequencies for swap moves. In probabilistic move selection, we choose

the probability of acceptance p = 0:3, as previously noted. The parameters for

�ne-tuned probability described in section 3.4 are set as : � = 1:0 and � = 0:15.

We additionally use the simpli�cation of shrinking the candidate list for the

TS for Optimizing a Ring-Based Telecomm. Network 21

probabilistic rule to contain the ten best moves (d = 10), since the probability

of selecting a move outside the reduced list would be less than 0.03.

Note that all the above parameters are selected intuitively or based on

several preliminary experiments, without any attempt at �ne tuning. An e�ort

to �ne-tune these parameters, for example, using a systematic procedure based

on statistical tests (see Xu, Chiu and Glover, 1996c), may signi�cantly improve

the performance of our algorithm.

4.2. Test Results. The �rst set consists of 175 test problems where m ranges

from 10 to 90, n ranges from 10 to 50, and m + n does not exceed 100. For

each problem size, we generate �ve instances using di�erent seeds for random

number generator. We report average results for these �ve instances.

For comparison, we also list the average results for the branch and cut al-

gorithm described in Lee, Chiu and Ryan (1996a). We also include solution

information for a special heuristic (denoted LS) that is described in Lee, Chiu

and Ryan (1996a) and provides the upper bound for their exact algorithm.

This heuristic strategically generates a set of initial solutions and then im-

proves them using local search. We enclose the description of this heuristic

in the appendix. In addition, the LS approach can be signi�cantly enhanced

by iteratively restarting the process. That is, at each iteration, we randomly

generate an initial solutions and then apply the LS to improve it. The best

solution found in all iterations is reported. Since in this restarting extension,

the move selections are probabilistically selected based solely on the LS choice

criteria, it can be classi�ed as a memoryless variant of probabilistic tabu search

(see Glover 1995). We denote this latter method by LS-PTS where the number

of iterations for restarting is set to 150. Since the exact method based on the

mathematical formulation in Section 2 requires at least three nodes for the TSP

tour, we disallow any heuristic solution with less than three active nodes for

an equitable comparison.

Since problems of the �rst test set are relatively small and easy for our

algorithm, we reduced the maximum number of iterations to 150. With this

22 Jiefeng Xu, Steve Y. Chiu and Fred Glover

stopping criterion, a few advanced features in our TS algorithm, such as the

long term memory strategy, and the elite solution error correction and recovery

strategies, are disabled. In Table 1, we report the percentage of the error

relative to the optimum objective values obtained by the exact method and

CPU times of our TS, LS and LS-PTS methods. In the last column, we list the

CPU time required by the branch and cut method on the same machine. Recall

that all results are the average values over 5 instances for the same problem

size, and all CPU times are measured in seconds.

*** Insert Table 1 here ***

From Table 1, we �nd that the computation times for the exact method

increase exponentially with n for each �xed m. Consequently, it is truly hard

to solve the larger instances of the ring-based DDS problem using the current

exact method. The LS is very fast and obtains good solutions, but it cannot �nd

the optimal solutions for all �ve problem instances for any problem size. LS-

PTS signi�cantly improves LS at very reasonable extra computational e�ort,

�nding optimal solutions for the �ve problem instances in 28 out of the 35

di�erent problem sizes tested (hence in 80% of these problem sizes). Our TS

performs extremely well by �nding optimal solutions for all problem instances

in all problem sizes (hence for all 175 test problems). We emphasize that the

TS procedure we are testing in these cases is a simple TS algorithm without

the assistance of advanced features.

We then extended our tests to larger problem instances. The dimensions

for the second set of test problems are as follows. The value of n for the

�rst �fteen problems ranges from 100 to 200 in increments of 25. For each

n, three problems are generated by setting m equal to n, n + 50 and n + 100

respectively. The last six problems in this set are designed to be particularly

large and have dimensions 250�250, 300�250, 350�250, 100�300, 200�300

and 300 � 300. Since exact methods are unable to handle problems of this

second set and it is also di�cult to �nd a reasonably good lower bound from

TS for Optimizing a Ring-Based Telecomm. Network 23

the mathematical formulation, we evaluate the TS heuristic by comparing its

performance to those of the LS and LS-PTS heuristics, which proved capable

of �nding optimal or near-optimal solutions for the �rst set of problems. Since

the problems are large, the search termination condition is extended to 5000

iterations, which enables the advanced features of our TS algorithm.

As for the �rst problem set, we generate �ve instances for each problem size

in the second problem set. Since our tabu search algorithm outperforms the

LS and LS-PTS, we report the outcomes in the form of error percentages of

the LS and LS-PTS over TS. We list the maximum (MAX), minimum (MIN)

and average (AVG) error percentages for each problem size in Table 2. In

addition, we also list the number (NUM) of problems where TS improves the

LS or LS-PTS among the �ve instances.

*** Insert Table 2 here ***

From Table 2, we observe that TS consistently outperforms LS and LS-PTS.

In particular, TS improves LS solutions in 104 instances out of 105 test prob-

lems with average cost savings of 3.64%. Compare with the solutions obtained

by LS-PTS, TS improves 79 LS-PTS solutions and the average improvement is

0.23%. The magnitude of improvement is more noticeable for larger problem

size. Given the relatively good performance of LS-PTS in the �rst problem

set (where 80% of the LS-PTS solutions are in fact optimal solutions), the im-

provement by our TS method on this larger test set is quite signi�cant. Such

an improvement provides a valuable competitive edge in attracting customers,

with the associated bene�t of increasing the company's market share and prof-

its.

We also compare the CPU time required by TS with those required by

LS and LS-PTS. We list the maximum (MAX), minimum (MIN) and average

(AVG) CPU time (in second) by each algorithm among the �ve instances for

each problem size in Table 3. The times reported herein are times required by

obtaining the best solutions for the corresponding heuristic.

24 Jiefeng Xu, Steve Y. Chiu and Fred Glover

*** Insert Table 3 here ***

Table 3 discloses that the TS uses very reasonable CPU times to obtain high

quality solutions and can meet the time requirement for real world applications.

LS uses much less CPU time, however, it can be easily improved by LS-PTS and

TS. The enhanced local search method, LS-PTS, though taking advantages of

using more CPU time and randomly escaping local optima, is still outperformed

by our TS heuristic. This con�rms the more \intelligent" nature of tabu search

over the local search techniques.

Finally we present an algorithmic analysis to investigate the relative contri-

butions made by the various components of our TS algorithm. We test a series

of variants which disable certain TS components on the second problem set.

The variants under investigation include the one without short-term memory

(STM), the one without long-term memory (LTM), the one without probabilis-

tic selection rule (PSR), the one without advanced recovery strategy (ARS),

the one without the use of advanced evaluator (AE), and the simple TS (STS)

which we tested in the �rst set of problem (which disables the LTM, ARS,AE,

and terminates at 150 iterations). For ease of exposition and to simplify the

comparisons, we only report the percentage of problems in which the variant

could not match the best TS solutions reported in Table 2. In other words,

this percentage indicates the degree of improvement that the corresponding

component can contribute. The comparisons are presented in Table 4.

Variant Contribution (%)

STM 12.4

LTM 32.4

PSR 14.3

ARS 32.4

AE 48.6

STS 68.9

Table 4: Tests on Various TS Components

TS for Optimizing a Ring-Based Telecomm. Network 25

The outcomes from Table 4 validate that all components can signi�cantly

enhance the basic tabu search algorithm. In particular, the long-term memory

and the probabilistic selection rule play important roles in diversi�cation and

therefore improve the overall search quality. The advanced recovery strategy

provides an e�ective intensi�cation role and helps locate better solutions in late

stages of the search. The short-term memory is primarily used to prevent the

search from revisiting local optima and to reduce the chance of cycling. Though

these functions are diminished by the introduction of the probabilistic move se-

lection strategy, the short-term memory still make a notable impact. The use

of probabilistic move selection additionally a�ords an e�ective means to com-

pensate for the noise caused by the approximate move evaluation. Incidentally,

we note that the advanced evaluator (incorporating TS-TSP) is impressive in

�nding better TSP tours than 2-opt, and it can be e�ciently executed within a

hierarchical framework. The impact of integrating the more advanced TS com-

ponents such as LTM, PSR, ARS and AE becomes even more evident since

they improve the solutions in nearly 70% of the problem instances, by com-

parison with the elementary TS heuristic (which in this application embraces

probabilistic move choice and short term memory).

5. Conclusion

We have developed and tested alternative tabu search implementations for

solving a ring-based DDS network design problem encountered in telecommu-

nications industry. In our approach, the search incorporates constructive and

destructive moves as well as exchange moves to explore di�erent neighborhood

structures. We introduce evaluation estimates to allow moves to be selected

more e�ciently, and accompany these estimates with an error correction pro-

cedure that employs hierarchical move evaluators in order to o�set the risk of

making improper choices. Long term memory and probabilistic move selec-

tion are also included for diversi�cation while the advanced recovery strategy

is implemented for intensi�cation.

26 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Numerical tests, for two sets of randomly generated test problems, show

that for the 175 smaller test problems (up to 100 nodes), a simple variant of

our TS algorithm yields optimal solutions in all cases while using only a very

small fraction of the CPU time required by the exact method (running about

three orders of magnitude faster). For the 105 larger problems, the tabu search

algorithm consistently outperforms the best local search heuristic previously

available, including a probabilistic enhancement of this heuristic designed in

this study. Our outcomes also demonstrate the relative contributions of short-

term memory, long-term memory, probabilistic move selection, advanced recov-

ery, and the advanced move evaluator, showing that the combination of these

components can obtain signi�cantly better results than the simple TS version.

The gains a�orded by the advanced components of tabu search become more

appreciable as the problems increase in complexity.

Future improvements of our TS approach are anticipated to result by includ-

ing additional long term memory functions and by using more re�ned candidate

list strategies. We observe that some of the steiner nodes always reside in the

active set for good solutions, while other are always inactive. An intensi�cation

strategy that takes advantage of this fact could yield additional useful infor-

mation for probabilistic TS designs. In addition, we anticipate that the use

of evolutionary strategies, such as scatter search and path relinking (Glover,

1977,1996), may provide an e�ective post-optimization approach for our TS

algorithm.

References

Anderson, A., K.F. Jones and J. Ryan (1993), Path Assignment for Call Rout-

ing: An Application of Tabu Search, Annals of Operations Research, 41, (J.C.

Baltzer).

Glover, F. (1977), Heuristics for Integer Programming Using Surrogate Constraints,

Decision Sciences, 8, 156-166.

Glover, F. (1989), Tabu Search - Part I, ORSA Journal of Computing, 3,190-206.

TS for Optimizing a Ring-Based Telecomm. Network 27

Glover, F. (1996), Tabu Search and Adaptive Memory Programming { Advances,

Applications and Challenges, in: Interfaces in Computer Science and Operations Re-

search, Barr, Helgason and Kennington, eds., Kluwer Academic Publishers, 1-75.

Glover, F. and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers.

Glover, F. and A. L�kketangen (1996), Probabilistic Move Selection in Tabu

Search for Zero-One Mixed Integer Programming Problems, in: Meta-Heuristics:

Theory and Applications, I.H. Osman and J.P. Kelly, eds., Kluwer Academic Pub-

lishers, 467-487.

Johnson, D.S. and L.A. McGeoch (1996), The Traveling Salesman Problem: A

Case Study in Local Optimization, in: Local Search in Combinatorial Optimization,

eds. E.H.L. Aarts and J.K. Lenstra (John Wiley and Sons, New York).

Laguna, M. (1994), Clustering for the Design of SONETRings in Intero�ce Telecom-

munications, Management Science, 40, 11, 1533-1544.

Laguna, M. and F. Glover (1993), Bandwidth Packing: A Tabu Search Ap-

proach, Management Science, 39, 4, 492-500.

Laporte, G. (1992), The traveling Salesman Problem: An overview of exact and

approximate algorithms, European Journal of Operational Research, 59, 231-247.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1985),

The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,

Wiley, Chichester.

Lee, Y., S.Y. Chiu and J. Ryan (1996a), A Branch and Cut Algorithm for a

steiner Ring-Star Problem, Working Paper, U S WEST Advanced Technologies Inc.,

Boulder, CO.

Lee,Y., S.Y. Chiu and J. Ryan (1996b), A Branch and Cut Algorithm for a steiner

Tree-Star Problem, INFORMS Journal on Computing, 8, 3, 194-201.

Reinelt, G. (1994), The Traveling Salesman: Computational Solutions for TSP

Applications, Springer-Verlag.

Skorin-Kapov, D. and J. Skorin-Kapov (1995), On tabu search for the location

of interacting hub facilities, EJOR, 73, 502-509.

Xu, J., S. Y. Chiu and F. Glover (1996a) Using Tabu Search to Solve the steiner

Tree-Star Problem in Telecommunications Network Design, Telecommunication Sys-

tems, 6, 117-125.

28 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Xu, J., S. Y. Chiu and F. Glover (1996b), Probabilistic Tabu Search for Telecom-

munications Network Design, Combinatorial Optimization: Theory and Practice,

Vol. 1, No. 1, 69-94.

Xu, J., S. Y. Chiu and F. Glover (1996c), Fine-Tuning a Tabu Search Algorithm

with Statistical Tests, International Transactions in Operational Research, Vol. 4,

forthcoming.

Xu, J. S. Y. Chiu and F. Glover (1997), Tabu Search for Dynamic Routing

Communications Network Design, Telecommunication Systems, 8, 55-77.

Xu, J. and J. P. Kelly (1996), A New Network Flow-Based Tabu Search Heuristic

for the Vehicle Routing Problem, Transportation Sciences, 30, 4, 379-393.

Appendix

In this appendix, we describe the LS heuristic procedure that has been used

to provide an initial upper bound on the optimal solution value in the branch-

and-cut algorithm in Lee, Chiu and Ryan (1996). The following notation and

de�nitions will be used for that purpose . First recall that m is the number of

target nodes and n is the number of steiner nodes. A star is a subgraph that

consists of a single steiner node (the center of the star) and a set of target nodes

with edges connecting them to the center. The weight of a star is equal to the

sum of its edge costs and its steiner node cost. The size of a star is equal to the

number of target nodes contained in that star. Finally, the steiner number and

TSP tour of a solution are de�ned respectively as the number of steiner nodes

being used and the TSP tour connecting these nodes in that particular solution.

Heuristic procedure for the ring-based DDS problems:

For star size k = 2; 3; :::; m, repeat the following steps:

Step 1. (Generating an initial current solution)

Step 1.1 Label all nodes in M [N \unselected" and set i = 1. While i

� min
nl

m

k

m
; n

o
; determine the minimum-weight star of size k that

contains only unselected nodes (the last iteration may �nd a smaller

star), and then label all the nodes in the star \selected"; set i = i+1.

Each selected target node has been currently assigned to the center

of its star.

TS for Optimizing a Ring-Based Telecomm. Network 29

Step 1.2 Reassign each selected target node in M to its closest selected

steiner node in N if necessary.

Step 1.3 If any, assign each unselected target node in M to its closest

steiner node in N and then label it \selected".

Step 1.4 Connect all selected steiner nodes in N with a TSP tour using

random insertion.

Step 2. If the steiner number of the current solution is greater than or equal

to 4, try to improve the solution as follows:

Step 2.1 Improve the TSP tour using 2-opt heuristic.

Step 2.2 Further improve the TSP tour using Or-opt heuristic.

Step 3. If the steiner number of the current solution is greater than or equal

to 2, perform the following steps for each selected steiner node:

Step 3.1 Generate a new temporary solution by deleting the selected

steiner node from the current solution as follows: remove the selected

steiner node from the TSP tour; reassign its target nodes to the

closet remaining steiner nodes in the tour; connect the two neighbors

of the steiner node in the TSP tour.

Step 3.2 Replace the current solution with the temporary solution if the

latter is better.

Step 4. For each unselected steiner node, perform the following steps:

Step 4.1 Generate a new temporary solution by adding the unselected

steiner node to the current solution as follows: insert the new steiner

node into the TSP tour such that the increase of the tour length is

minimized; reassign target nodes to the newly-added steiner node if

it is closer.

Step 4.2 Replace the current solution with the temporary solution if the

latter is better.

Step 5. If any improvement is made to the current solution in Step 3, or 4,

go back to Step 2.

If the current solution is better than the best solution found, record the current

solution as the new best solution found.

30 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Problem TS LS LS-PTS Exact Method

(m� n) Error CPU Error CPU Error CPU CPU

(10� 10) 0 0 11.82 0 0.08 0 1.4

(10� 20) 0 0 8.72 0 0 0 12.0

(10� 30) 0 0 4.38 0 0.28 0 45.0

(10� 40) 0 0 3.09 0 0 0 164.2

(10� 50) 0 0 9.83 0 0 0 292.4

(20� 10) 0 0 4.20 0 0 0 2.2

(20� 20) 0 0 2.96 0 0 0 13.8

(20� 30) 0 0 1.01 0 0 0 57.4

(20� 40) 0 0 2.39 0 0 0 287.8

(20� 50) 0 0 0.82 0 0 0 854.8

(30� 10) 0 0 0.70 0 0 0 2.8

(30� 20) 0 0 2.60 0 0 0 21.6

(30� 30) 0 0 3.79 0 0 0 224.0

(30� 40) 0 0 2.91 0 0 0.6 351.8

(30� 50) 0 0 1.08 0 0 1 411.6

(40� 10) 0 0 0.66 0 0 0 2.6

(40� 20) 0 0 2.39 0 0 0 22.6

(40� 30) 0 0 2.80 0 0.06 0.8 80.2

(40� 40) 0 0 3.71 0 0 1.0 719.8

(40� 50) 0 0 1.79 0 0.03 1.0 1037.6

(50� 10) 0 0 0.43 0 0 0 3.6

(50� 20) 0 0 1.72 0 0 0.4 37.8

(50� 30) 0 0 2.48 0 0.05 1.0 139.6

(50� 40) 0 0 2.38 0 0 1.0 384.8

(50� 50) 0 1 1.20 0 0 2.4 1003.8

(60� 10) 0 0 1.15 0 0 0 4.6

(60� 20) 0 0 0.89 0 0 1 30.2

(60� 30) 0 0.2 0.01 0 0 1.2 108.6

(60� 40) 0 0.8 1.37 0 0.04 2.4 368.6

(70� 10) 0 0 0.80 0 0 0 5.0

(70� 20) 0 0 2.35 0 0 1.0 35.6

(70� 30) 0 0.2 1.23 0 0 2.0 175.0

(80� 10) 0 0 0.55 0 0 0 6.0

(80� 20) 0 0 1.60 0 0.20 1.4 34.4

(90� 10) 0 0 0.81 0 0 0.4 5.8

Table 1: Computational Results on Small Size Random Problems

TS for Optimizing a Ring-Based Telecomm. Network 31

Problem LS over TS LS-PTS over TS

(m � n) MAX MIN AVG NUM MAX MIN AVG NUM

(100 � 100) 4.77 1.89 2.93 5 0.33 0 0.07 1

(150 � 100) 3.42 0.8 1.94 5 0.5 0 0.2 3

(200 � 100) 3.32 0.78 2.06 5 0.48 0 0.17 4

(125 � 125) 3.93 1.15 2.28 5 0.39 0 0.2 4

(175 � 125) 3.03 0.36 1.17 5 0.3 0 0.1 3

(225 � 125) 3.94 0.08 2.35 5 0.6 0 0.2 4

(150 � 150) 7.02 1.5 4.58 5 0.36 0 0.13 2

(200 � 150) 2.94 0.26 1.49 5 0.38 0 0.11 3

(250 � 150) 4.01 1.31 2.96 5 0.58 0 0.24 3

(175 � 175) 2.37 0.83 1.46 5 0.38 0 0.21 4

(225 � 175) 4.31 0.98 2.54 5 0.25 0 0.12 4

(275 � 175) 2.99 1.16 2.02 5 0.22 0 0.06 3

(200 � 200) 2.31 0 1.04 4 0.56 0 0.27 3

(250 � 200) 3.25 0.51 1.71 5 0.2 0 0.12 4

(300 � 200) 2.73 1.91 2.2 5 0.44 0.03 0.29 5

(250 � 250) 3.47 2.07 2.69 5 0.59 0.13 0.32 5

(300 � 250) 3.15 2.04 2.56 5 0.7 0.39 0.57 5

(350 � 250) 2.37 0.75 1.48 5 0.5 0.05 0.29 5

(100 � 300) 4.53 0.61 2.88 5 0.83 0 0.28 4

(200 � 300) 3.64 2.15 2.73 5 0.98 0.12 0.39 5

(300 � 300) 4.94 2.27 3.41 5 0.7 0.11 0.39 5

Average 3.64 1.11 2.31 4.95 0.49 0.04 0.23 3.76

Table 2: Cost Comparisions on Larger Size Random Problems

Problem LS LS-PTS TS

(m � n) MAX MIN AVG MAX MIN AVG MAX MIN AVG

(100 � 100) 0 0 0 31 31 31 4 1 2.6

(150 � 100) 0 0 0 62 61 61.6 85 2 26.4

(200 � 100) 0 0 0 104 101 102.4 9 2 5

(125 � 125) 1 0 0.2 58 57 57.4 36 2 12.2

(175 � 125) 1 1 1 104 102 103 51 3 20.2

(225 � 125) 1 1 1 164 158 160.2 143 4 37.8

(150 � 150) 1 1 1 96 95 95.6 133 3 40

(200 � 150) 1 1 1 163 158 159.8 95 5 42

(250 � 150) 1 1 1 250 238 242 115 29 74.6

(175 � 175) 1 1 1 148 146 146.8 85 8 42.8

(225 � 175) 2 1 1.8 230 227 228.8 118 11 55.4

(275 � 175) 2 2 2 334 332 332.6 307 44 161.6

(200 � 200) 2 2 2 219 214 216.4 23 6 10.6

(250 � 200) 2 2 2 331 324 326.8 387 12 164.2

(300 � 200) 2 2 2 473 461 465.6 178 15 63.2

(250 � 250) 4 3 3.6 431 420 424.4 448 120 249.8

(300 � 250) 4 3 3.2 598 585 588.6 420 21 254.4

(350 � 250) 5 4 4.2 771 763 767.4 537 61 301

(100 � 300) 1 1 1 98 96 96.4 116 4 46

(200 � 300) 3 2 2.2 344 338 341 280 17 209

(300 � 300) 8 5 6.2 729 709 719 649 23 356

Table 3: CPU Time Comparisions on Larger Size Random Problems

