OPTIMIZING A RING-BASED PRIVATE
LINE TELECOMMUNICATION NETWORK
USING TABU SEARCH

Jiefeng Xu®¢, Steve Y. Chiu’, and Fred Glover®
¢ Delta Technology, Inc., 1001 International Boulevard, Atlanta, GA 30354-1801.
b GTE Laboratories, Inc., 40 Sylvan Road, Waltham, MA 02254.
¢ Graduate School of Business, University of Colorado at Boulder, CO 80309-0419.

Abstract. One of the private line network design problems in the
telecommunications industry is to interconnect a set of customer loca-
tions through a ring of end offices so as to minimize the total tariff cost
and provide reliability. We develop a Tabu Search method for the prob-
lem that incorporates long term memory, probabilistic move selections,
hierarchical move evaluation, candidate list strategies and an elite solu-
tion recovery strategy. Computational results for test data show that
the tabu search heuristic finds optimal solutions for all test problems
that can be solved exactly by a branch-and-cut algorithm, while run-
ning about three orders of magnitude faster than the exact algorithm.
In addition, for larger size problems that cannot be solved exactly , the
tabu search algorithm outperforms the best local search heuristic cur-
rently available. The performance gap favoring tabu search increases
significantly for more difficult problem instances.

Key words. Digital Data Service, Telecommunications Network De-
sign, Traveling Salesman Problem, Tabu Search, Heuristic.

Published in Management Science, Vol. 45, No. 3 (1998), pp. 330-345.

TS for Optimizing a Ring-Based Telecomm. Network 1

1. Introduction

Digital Data Service (DDS) is a high-quality digital transport service in the
telecommunications industry using permanent network connections and ded-
icated transmission facilities. In this paper, we address a particular DDS
network design problem that is encountered by a major telecommunications
company in the United States. The input elements of the problem include a
set of end offices, a set of digital hubs and a set of customer locations that
are geographically distributed on a plane. Each customer location is connected
directly to its own designated end office which in turn needs to be connected
to exactly one selected hub. Then the selected hubs must be connected by a
ring (the ring topology is widely used in communications network designs to
provide reliability). Each hub has a fixed cost for being chosen and each link
has a connection cost for being included in the solution. The objective is to

design such a network at minimum cost.

D Digital Hub O End Office A Customer Location

Figure 1: A Ring-Based DDS Network

Figure 1 shows a real scenario of a small ring-based DDS network. The

number of dedicated lines required for the link between an end office and its

2 Jiefeng Xu, Steve Y. Chiu and Fred Glover

assigned hub is equal to the number of customer locations connected to the

end office. The links between customer locations and end offices are not really

part of the network design problem because they are uniquely determined by

the (non-overlapping) serving areas of the end offices. Each customer location

is always connected to its designated end office serving the area.

In practice, the link cost is sensitive to distance and is calculated according

to the current tariff charges. These charges include a fixed cost and a variable

cost per mile that both vary with the distance. For each active (selected) hub,

the bridging cost is proportional to the number of lines connected to the hub.

To illustrate how these costs are calculated, suppose the monthly cost data are

given as follows:

Fixed bridging cost: $82.00
Bridging cost per line: $41.00

Link cost:

Mileage Fixed Cost Variable Cost
< 1 mile $30.00 $0.00
1 —15 miles $125.00 $1.20
> 16 miles $130.00 $1.50

Then the monthly costs for the network in Figure 1 are

Bridging Cost
fixed cost:
variable cost:

Link Cost
fixed cost:
variable cost:

Total monthly cost:

$82.00 x 3 = $246.00
$41.00 x 14 = $574.00

$30.00 x 1 + $125.00 x 9 + $130.00 x 1 = $1285.00
$1.20 x (3 x 8 +10 + 2 x 6 + 12 +9 +5) + $1.50 x 16
= $106.40

$2211.40.

Note that a line connecting two active hubs has two bridging facilities at

its ends, so it should be counted as twice in calculating the variable bridging

cost. Consequently the decisions faced by the network designers are

TS for Optimizing a Ring-Based Telecomm. Network 3

e Select a subset of hubs among all potential hubs and connect them via a
ring (a travelling salesman tour over the selected hubs).
e Connect each end office to a selected hub (so that the original customer

locations can communicate to each other).

The objective of the design is to minimize the total monthly cost as calcu-
lated in the above example.

In practice, the Federal Communications Commission (FCC) demands that
telecommunication companies provide the best DDS design to customers. For
real world instances, the number of customer locations (or end offices) can
vary from 2 to over 100, and the number of potential hubs can be as large
as 300. The algorithm reported in this paper is used in an automatic quoting
system that requires the response time (solution time) to be within one minute,
so that the sales representative can give the customer a quote over the phone.
The challenge is to develop an algorithm that not only achieves such a response
time, but that also provides optimal or near-optimal solutions for DDS design.

Throughout the paper, the hubs are referred to as steiner nodes, and the end
offices are referred to as target nodes. Also notice that the cost for connecting
a target node to a steiner node and the cost for connecting two steiner nodes
can both be precalculated.

In this paper, we explore an implementation of Tabu Search (TS) for solving
this ring-based DDS network design problem. TS is a metaheuristic that proves
effective for many combinatorial optimization problems. For a comprehensive
overview of TS, see Glover and Laguna (1997). In recent years, a growing
number of TS applications have appeared in the area of telecommunications.
Such applications include bandwidth packing (Laguna and Glover, 1993), path
assignment for dynamic routing (Anderson, Jones and Ryan, 1993), SONET
ring design (Laguna, 1994), hub facility location (Skorin-Kapov and Skorin-
Kapov, 1994), digital line network design (Xu, Chiu and Glover, 1996a, 1996b)

and dynamic routing communication network design (Xu, Chiu and Glover,

4 Jiefeng Xu, Steve Y. Chiu and Fred Glover

1997). The highly successful outcomes of these applications motivate us to
develop and test a TS method designed specifically for the ring-based DDS
network design problem.

This paper is organized as follows. We present the mathematical formu-
lation in the next section. In section 3 we describe a TS based heuristic for
the problem and examine several relevant issues such as long term memory,
probabilistic move selection, neighborhood structure, hierarchical move eval-
uation and candidate list strategies. Section 4 reports computational results
with two sets of carefully designed test problems, including comparisons with
other exact and heuristic approaches. In the concluding section, we summarize

our methodology and findings.

2. Mathematical Formulation

The problem addressed in this paper can be formulated as a 0-1 integer pro-

gramming problem as follows. First the input data are:

M : set of target nodes;

N : set of steiner nodes;

cij © cost of connecting target node 7 to steiner node j;
djr : cost of connecting two steiner nodes j and £;

bj : cost of using steiner node j.

The decision variables are:

x;; © a binary variable equal to 1 if and only if target node ¢ is linked to
steiner node j;

Yjr : a binary variable equal to 1 if and only if steiner node j is linked to
steiner node k (j < k));

zj : a binary variable equal to 1 if and only if steiner node j is selected to
be active.

TS for Optimizing a Ring-Based Telecomm. Network)

Then the formulation is

minimize Z Zcz-ja:ij + Z Z djkyjk + ijzj (1)

i€M jEN JEN k> jEN
ke N
subject to:
vaij = 1, i€ M, (2)
jEN
Ty <z, ie M, jeEN, (3)
yjk S (Zj + Zk)/Qa] < ka ja ke Na (4)
Sy + Yoy = 2z, Jj €N, (5)
kEN kEN
yir < Zi+1—2z, [€H, HCN, (6)
j;l Ic;I ’ je{%{:—l} ! f§| >3, t E%V — H,
Tij € {07 1}7 i € M7] € N7 (7)
vie € {0,1}, k>j, jkeN, (8)
5 € {0,1} jEN. 9)

In this formulation, the objective function (1) seeks to minimize the sum
of the connection cost between target nodes and steiner nodes, the connection
cost between steiner nodes, and the setup cost for the steiner nodes. Constraint
(2) specifies that each target node must be connected to exactly one steiner
node. Constraint (3) indicates that the target nodes can only be connected
to the active steiner nodes. Constraint (4) stipulates that two steiner nodes
can be connected if and only if both nodes are active. Constraints (5) and (6)
express the ring (or tour) structure over the active steiner nodes. In particular,
(5) specifies the condition that each active steiner node must have a degree
of two, while (6) is an subtour-eliminating constraint that compels all active
steiner nodes to form a single tour. Finally, all decision variables are defined

as binary.

6 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Clearly, the ring-based DDS problem is NP-hard since the well-known Trav-
eling Salesman Problem (TSP) can be easily reduced to it. (For a complete
review of the TSP, we refer readers to the two books (Lawler et. al. 1985 and
Reinelt, 1994) and the two algorithm surveys by Laporte (1992) and Johnson
and McGeoch (1996).) Only small size ring-based DDS problems (e.g., with
10 target nodes and 30 steiner nodes) can be solved exactly within a reason-
able time period for the requirements of this application (i.e., one minute) by
state-of-the-art integer programming techniques such as branch-and-cut.In fact,
this holds true for a specialized branch-and-cut method based on the foregoing
mathematical formulation which is tailored to generate constraints (or cuts) of

type (6) on a needed basis. (See Lee, Chiu and Ryan, 1996a and 1996b.)

3. The Tabu Search Heuristic

Tabu Search is an aggressive search procedure that proceeds iteratively from
one solution to another by moves in a neighborhood space with the assistance
of adaptive memory. To exploit this memory effectively, the method makes use
of several key strategic principles and associated algorithm designs. In this
section, we first introduce an elementary TS heuristic, then describe each of
the customary and more advanced components developed for the ring-based
DDS problem.

3.1. Elementary Tabu Search Procedure. Tabu search is an iterative
method which can be used to guide traditional local search methods to es-
cape the trap of local optimality. TS operates through neighborhood moves,
that proceed from one solution to another at each iteration. Some moves are
marked tabu and are forbidden unless they lead to highly desirable outcomes.

Let z_now be the solution at the current iteration, and x_best the best solution

TS for Optimizing a Ring-Based Telecomm. Network 7

found so far, iter the current iteration counter, and T'abu(iter) the set of tabu
moves at iteration iter. We define a move to be admissible by aspiration if it
belongs to Tabu(iter), but if the solution produced by the move has a suffi-
ciently high quality to allow its tabu status to be disregarded. A simplified

(short-term memory) version of TS may be expressed as follows.

Step 0. iter = 0; Initialize x_now; z_best = x_now; Tabu(iter) = ().

Step 1. Construct a list of candidate moves from the neighborhood of z_now.
Evaluate each candidate move.

Step 2. Select the highest evaluation move that does not belong to T'abu(iter),
or which qualifies to be selected as a result of being admissible by aspi-
ration. Perform the move, and update x_now.

Step 3. If z_now is better than x_best, update x_best.

Step 4. If stopping criteria are satisfied, terminate with z_best. Otherwise,
iter = iter + 1; update Tabu(iter); go to Step 1.

Numerous advanced strategies exist that can effectively enhance this rudi-
mentary short-term memory form of tabu search (see Glover and Laguna, 1997).
To illustrate our TS approach for this network design problem, the following
subsections describe the issues of neighborhood structure and moves, mem-
ory structures, hierarchical move evaluations and candidate lists, probabilistic

move selection and advanced intensification strategies.

3.2. Neighborhood Structure and Moves. We partition the steiner nodes
into the disjoint subsets of active nodes (A) and inactive nodes (A). The moves
that define the neighborhood structure for our procedure consist of transferring
a chosen node from one of these two subsets to another, and of exchanging two
nodes between these subsets. Specifically, we divide the transfer moves into the

following two elementary types:

8 Jiefeng Xu, Steve Y. Chiu and Fred Glover

(1) constructive move: transfer a selected steiner node from A to A. This move
inserts a node into the current TSP tour, and therefore increases the cardinality

of the set A by one. This move is disallowed if the set A is empty;

(2) destructive move: transfer a steiner node from A to A. This move deletes
the active steiner node from the current TSP tour, and therefore decreases the

cardinality of the set A by one. This move is disallowed if the set A is empty.

Any set A can be reached via a sequence of constructive and/or destruc-
tive moves starting from any solution configuration. Thus, constructive and
destructive moves are considered to be elementary moves in the search process.
Pairwise exchange (swap) moves, which exchange one active steiner node with
one inactive steiner node, can be viewed as a combination of a constructive and
a destructive move. Such a move leaves the cardinalities of both set A and A
unchanged, but introduces a more significant change to the current TSP tour.
The swap move is disallowed if either the set A or A is empty.

We observe that our simple set of fundamental moves is somewhat different
from those customarily used in TSP applications. That is, while standard TSP
heuristics may incorporate constructive steps (and tabu search variants also
incorporate destructive steps), the exchanges used in such TSP heuristics are
not the same as the exchanges we describe here. Our divergence from the
classical choice of neighborhoods is motivated by the findings of Xu, Chiu and
Glover (1996a, 1996b), which identified the current neighborhood structure to
be highly effective when properly exploited, in a tabu search approach for a
related class of telecommunication problems. In addition, we also make use of
classical TSP neighborhoods, as noted later.

For a swap move evaluation, effort must be taken to reduce the computa-
tional expense when the number of steiner nodes is moderately large. For that
purpose, a natural candidate list is constructed to isolate a promising subset

of the swap moves. This candidate list restricts attention to pairs (x,y) whose

TS for Optimizing a Ring-Based Telecomm. Network 9

elements are drawn from the K best destructive and constructive moves where
K is an integer in the range of 5 to 15. This candidate list strategy is motivated
in part by the idea of the Proximate Optimality Principle (POP) that says
good solutions at one level are likely to be found close to good solutions at
an adjacent level. (For example, we may conceive constructive and destructive
moves as mechanisms for moving between levels, and swap moves as mecha-
nisms for searching within a given level.) As a consequence, this candidate
list is used to screen for the good partial moves whose composition may give a
good candidate to evaluate. Such a candidate list strategy proves to be much
faster than evaluating the whole swap neighborhood, yet can be implemented
without sacrificing overall solution quality (see Xu, Chiu and Glover, 1996a,
1996h).

We blend the elementary moves with the swap moves to produce the com-
plete neighborhood search. Because a swap move involves a more significant
change in the TSP tour (and hence requires a more complex evaluation of its
consequences), we perform it more sparingly in the search process. In partic-
ular, we apply it chiefly in the roles of periodic perturbation and conditional
oscillation. A perturbation step is guided by elementary moves and executed
once for every certain number of iterations. The conditional oscillation step is
designed to achieve a greater intensification of the search, by executing swap
moves for some number of iterations when the search cannot improve the so-
lution for a pre-defined duration. This mixed mechanism proves effective and
efficient in our applications, since we find that a dominant reliance on the el-
ementary moves, when handled intelligently, yields good decisions with only

occasional reliance on more complex moves.

3.3. Tabu Search Memory. TS memory structures play a fundamental role
in our algorithm to guide the search process. We use the short term memory
to prevent the search from being trapped in a local optimum and use the long

term memory to provide the diversification strategy.

10 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Short Term Tabu Search Memory. The short term memory operates by im-
posing restrictions on the composition of new solutions generated (typically
expressed as a restriction on attributes of these solutions). For elementary
moves, we impose restrictions that assure a move cannot be “reversed”. In
particular, if the node x is currently dropped from the active steiner node set
A, we forbid this node to move back to A for several iterations. For swap moves,
we impose the restrictions on moves in both direction. If an active node x is
swapped with an inactive node y in the current move, the restriction inhibits
both moving node x back to A and moving node y back to A. Such a restrictive
mechanism prevents the search from revisiting a local optimum in the short
term and greatly diminishes the chance of cycling in the long term.

How long a given restriction is in effect depends on a parameter called
the tabu tenure, which identifies the number of iterations a particular tabu
restriction remains in force. The tabu tenure can be either fixed or variable,
but a tenure that varies within a small range about a central value often proves
more robust. Moreover, in our application, we allow the central value to differ
according to the move type. Since adding a node introduces a fixed cost, and
thus makes the move appear less attractive than a destructive one, we assign a
longer tabu tenure to avoid destructive moves than to avoid constructive moves.

A TS restriction may be overridden by means of aspiration criteria if the
outcome of the move under consideration is sufficiently desirable. We use the
simple criterion of overriding the restriction if the current candidate move would
lead to a new best solution.

We implement the short term memory using a recency based memory struc-
ture as follows. Let iter denote the current iteration number and let tabu_add(x)
and tabu_drop(y) denote the future iteration values governing the duration that
will forbid a reversal of the moves of adding node x and dropping node y, (i.e.
by preventing node x from being dropped and node y from being added). Simi-
larly, let tabu_add_tenure and tabu_drop_tenure be the values of tabu tenures for
these two moves. Initially, tabu_add(x) and tabu_drop(x) are set to zero for all
nodes x, and iter starts at one. When the TS restriction is imposed, we update

the recency memory as:

TS for Optimizing a Ring-Based Telecomm. Network 11

tabu_add(x) = iter + tabu_add_tenure (for the constructive move of adding
node x),
tabu_drop(y) = iter + tabu_drop_tenure (for the destructive move of dropping
node y).

Thus the restriction to prevent x from being dropped is enforced when
tabu_add(x) > iter, and the restriction to prevent y from being added is enforced
when tabu_drop(y) > iter. As previously noted, we select the central value for
tabu_add_tenure to be smaller than that of tabu_drop_tenure. Let best_sol_cost
be the cost of the best solution found so far, and best_move_cost be the eval-
uation (estimated cost) of the move we select. Also define cost(.) as the move
evaluation value. Then the move selection procedure incorporating the TS

restrictions and aspiration criteria proceeds as follows:

Assign a large value to best_move_cost.
For each inactive steiner node x,do
if cost(x) < best_move_cost do
if cost(x) < best_sol_cost or tabu_add(x) < iter do
best_move_cost = cost(x).

For each active steiner node y,do
if cost(y) < best_move_cost do
if cost(y) < best_sol_cost or tabu_drop(y) < iter do
best_move = cost(y).

For the exchange move, we have

Assign a large value to best_move_cost.
For each candidate node pair composed of inactive steiner node x and
active steiner node y, do
if cost(x,y) < best_move_cost do
if cost(x,y) < best_sol_cost or
(tabu_add(x) < iter and tabu_drop(y) < iter) do
best_move_cost = cost(x,y).

Long Term Tabu Search Memory. The long term TS memory we employ makes
use of a frequency based memory structure to achieve a diversification effect,

encouraging the search to explore regions less frequently visited.

12 Jiefeng Xu, Steve Y. Chiu and Fred Glover

More specifically, we use this memory to discourage moves that occurred
frequently during the search (and consequently to encourage moves that oc-
curred less frequently). A transition measure is used to record the number of
times each steiner node changes from an active status to an inactive status or
vice versa. Let frequencyO(x) be the number of times that steiner node x is
changed from active to inactive, frequencyl(x) be the number of times that
steiner node x is changed from inactive to active. These frequencies can easily

be updated as follows:
frequency0(x) = frequencyO(x) + 1 if the move is destructive;
frequencyl(x) = frequencyl(x) + 1 if the move is constructive.

This transition measure is then normalized to lie in the interval [0,1] by di-
viding by the maximum of frequency0(.) or frequencyl(.) as appropriate. This
normalized value is then linearly scaled by a selected constant to create a
penalty term. The penalty term is added to the corresponding move evalua-
tion so that the frequency factor is taken into account in the move selection
procedure. It should be noted that this long term memory is designed strictly
for diversification, without any counterbalancing consideration of intensifica-
tion effects. A more advanced strategy would seek to integrate diversification
and intensification issues, and we will examine such an integration in future

research work.

3.4. Hierarchical Move Evaluation. Once the subset A is determined, the
cost of the current solution can be calculated by: (1) constructing a minimum
cost TSP tour over A and identifying the resulting cost, (2) linking every target
node to its cheapest (i.e. cheapest-link) active steiner node and finding the sum
of the resulting connection costs, and (3) summing all node costs (set-up costs)
for A. The second part can be easily implemented by maintaining a presorted
list for every target node, which records the connection costs from this target

node to every steiner node. Thus, (2) can be found in linear time for each

TS for Optimizing a Ring-Based Telecomm. Network 13

target node. The calculation of (3) is trivial. Therefore the key issue in the
move evaluation becomes the TSP tour construction.

Since finding the optimal TSP tour is a NP-hard problem, it is not practi-
cal to use exact methods to evaluate the tour even when the number of nodes
in the tour is moderate. Among the heuristics, some local search approaches
such as 2-opt, 3-opt, or-opt, etc., work fast, but unless they are embedded
in a design for going beyond local optimality, the solutions they obtain are of-
ten myopic. Metaheuristic approaches, which may incorporate simple heuristics
within them, can overcome the limitation of the local search and can yield much
better solutions, though typically at the expense of considerably more computa-
tion time. In our TS algorithm, we devise a hierarchical evaluation mechanism
with the goal of achieving an effective trade-off between the solution quality
and the speed. This hierarchical evaluation employs the evaluators at three
different levels (basic, intermediate, advanced), each associated with different
types of neighborhood moves and appropriate candidate lists. The evaluators
are based on identifing the cost of the corresponding TSP tour. (Note that
this is not the full cost to be considered, since the costs of (2) and (3) must
also be included in the complete evaluation of each move.) The higher level
evaluator is more powerful and time-consuming than the lower level evaluator,

and hence is applied more restrictively. We describe these evaluators as follows.

Basic Fvaluator. The basic evaluator is used to evaluate every constructive,
destructive and swap move in the candidate list. For constructive moves, the
evaluator identifies the minimum insertion cost by inserting the new node into
its cheapest insertion position. For destructive moves, the evaluator identifies
the cost of removing the given node and simply connecting its two adjacent
nodes in the current tour. For swap moves, the evaluator identifies the cost
of first removing the given node and then inserting the new node as described

above.

14 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Intermediate Fvaluator. The intermediate evaluator employs the 2-opt heuristic
to improve the current tour. The 2-opt proceeds by considering all possible
ways of removing two arcs from the cuurent tour and then reconnecting the
two resulting chains to form a new complete TSP tour. If the a new tour is
found to be shorter than the current tour, then accept this tour and continue
to proceed from this tour. The 2-opt terminates when no improvement can
be obtained. The theorectical complexity of the 2-opt for finding the first
improving move is O(|A|?), though in practice many implementation tricks can
reduce this complexity significantly (see Johnson and McGeoch, 1996).

The 2-opt procedure can be significantly simplified with our destructive and
constructive moves. Suppose that the current tour is already a local optimum
(e.g., improved by 2-opt), then the destructive move and the constructive move
only introduce one and two new edges in the tour respectively. Therefore, the
2-opt needs to evaluate only the options that remove at least one of these new
edges. The complexity of this simplified 2-opt for finding the first improving
move is thereby reduced to O(]A]). The changes brought by the swap moves can
be exploited in a more complicated, but for simplicity we apply the standard
2-opt procedure for those tours since we do not execute the swap moves as
frequently.

The intermediate evaluator is applied to a subset of selected neighborhood
moves, that is, the candidate list maintained for the probabilistic move seletion
(as described in the next subsection), which consists of the non-tabu neighbor-
hood moves at the current iteration that have the K highest evaluations, based

on the complete evaluation using the basic evaluator.

Advanced Evaluator The advanced evaluator uses more complicated search
teniques for improvement. First, it applies 3-opt local search to the current
tour. The 3-opt application improves the tour by evaluting all possible ways of
removing 3 arcs and reconnecting them to produce a new tour.

After the tour is improved by 3-opt, we employ a stand alone simple TS
algorithm for the TSP (TS-TSP). The TS-TSP uses simple ejection and swap

TS for Optimizing a Ring-Based Telecomm. Network 15

moves applied to the nodes in the tour. A rudimentary short term memory
structure is used to discourage the search from revisiting previous solutions.
At each iteration, the admissable move with the highest evaluation is selected
and performed. The search terminates at a pre-determined maximum number
of iterations while the best solution over the entire search is recorded. The
TS-TSP was first successfully used as a tour-improvement tool in the Vehicle
Routing Problem (VRP) by Xu and Kelly (1996). Computational experience
disclosed that the TS-TSP provides a simple approach to yield shorter TSP
tours than 3-opt and significantly improves the search quality for the VRP.

Since the advanced evaluator is more complicated and time-consuming, we
execute this evaluator on a more restrictive basis. The scenarioes where we
run the advanced evalautor are: (1) when a “new best” solution is found; (2)
when a current solution accumulates a certain degree of estimation error from
the use of the intermediate evaluator; (3) when the estimation errors of a set
of “elite solutions” need to be corrected periodically.

The periodic correction in (3) seeks to balance the tradeoff between expected
accuracy and speed of executing the algorithm. To achieve this, we manipulate
a priority queue that includes a selected number of elite solutions encountered
so far during the search, where these solutions consist of those actually visited
and also of those that may potentially be visited by means of currently available
candidate moves.

Before applying the error correction operation, the priority queue is ordered
by the estimated costs (produced by intermediate evaluator) of its component
solutions. Error correction using the advanced evaluator is then periodically
performed on each element in this queue. Once an element’s corrected cost is
thus identified, this element is marked so that no error correction is executed on
this element in the future. At the same time, the element is repositioned in the
queue according to its new cost. Thus, when a new elite element is encountered
whose estimated cost is better (smaller) than the cost of current worst element

of the queue, the new element is added and marked for error correction while

16 Jiefeng Xu, Steve Y. Chiu and Fred Glover

the worst element is dropped from the queue. Because of periodic updating, the
costs associated with queue elements can be a mix of estimated and corrected
costs. The updating of the priority queue is further enhanced by applying a
sorted pointer list to facilitate the add and drop operations.

Based on our empirical experience, the 2-opt based intermediate evaluator
works quite well for tours containing 10 or fewer nodes. Thus, we do not bother
performing the time-consuming advanced evaluator on those tours. Further-
more, since our TS algorithm generally starts from a poor solution (e.g., many
solutions contain unnecessarily large number of active nodes), and this solu-
tion can be rapidly improved by our TS algorithm, there is no need to find the
more accurate costs for these inferior solutions using the advanced evaluator.
Consequently, we disable the advanced evaluator in the very early stage of the
search.

Estimation errors can have a significant influence on move selection, espe-
cially for the large problem instances. To further compensate for the effects of
approximation, we also use a move selection rule based on probabilistic tabu

search, as described in the next subsection.

3.5. Probabilistic Move Selection. The fundamental idea of the move se-
lection approach of probabilistic tabu search (Glover 1989) is simply to translate
tabu restrictions and aspirations into penalties and inducements that modify
the standard evaluations, and then to map these modified evaluations into
probabilities that are strongly biased to favor the highest evaluations. We are
particularly motivated to apply this approach in the present setting as a result
of observations of Glover and Lgkketangen [1994] concerning the uses of prob-
abilities to combat “noise”. Since we refine the candidate list and create the
move evaluation based on a cost approximation, the move evaluation is con-
taminated by a form of noise, so that a “best evaluation” does not necessarily
correspond to a “best move”. Therefore we seek a way to assign probabilities

that somehow compensates for the noise level.

TS for Optimizing a Ring-Based Telecomm. Network 17

We apply probabilistic tabu search in the following simple form.

Step 1 Generate the candidate list and evaluate the moves of this list,
asssigning penalties to moves that are tabu.

Step 2 Take the move from the candidate list with the highest evalua-
tion value.
If the move satisfies the aspiration criterion, accept it and exit;
Otherwise, continue to Step 3.

Step 8 Accept the move with probability p and exit;
Or reject the move with probability 1 — p, go to Step 4.

Step 4/ Remove the move from the candidate list.
If the list is now empty, accept the first move of the original
candidate list and exit. Otherwise, go to Step 2.

In practice, if the candidate list is moderately large, the above procedure
can be simplified by considering a reduced number of moves for probabilistic
selection. For that, a pool is created to store a certain number of best moves
from the candidate list (penalizing tabu moves as before), thus effectively cre-
ating a new and smaller candidate list. This simplification is based on the high
probability of choosing one of the first d moves, for modest values of p, even
if d is relatively small. Note that the probability of choosing one of the d best
moves in the candidate list is 1 — (1 — p)q.

Thus if p = 0.3, the probability is about 0.832 for picking one of the top
five moves, and about 0.972 for picking one of the top ten moves. We selected
p = 0.3 as a basis for our subsequent experiments.

Instead of using the static value of selection probability p in Step 3, we in-
troduce a modification to take fuller account of the relative move evaluations.
Specifically, we fine-tune the probability of selection based on the ratio of the
move evaluation currently examined to the value of the best solution found so
far. This selection probability is calculated by p®~ where r represents the in-

dicated ratio and « and (3 are positive parameters. With the values of o and [

18 Jiefeng Xu, Steve Y. Chiu and Fred Glover

set appropriately, the new probability function provides a fine-tuned probabil-
ity to discriminate among different evaluations, and favor those proportionately
closer to the best solution value. This increases the chance of selecting “good”
moves. For example, if « is set to 1.0 and [is set to 0.15, then a move with
an evaluation 1.01 times the best solution cost (r = 1.01) has a selection prob-
ability of 0.355, which is higher than the base probability 0.3; for a move with
r = 1.2, the selection probability is 0.282, which is lower than the base probabil-
ity 0.3. In particular, the additional fine-tuned mechanism yields probabilities

greater than p for r < (14 () /«, and probabilities less than p forr > (1 + 3)/a.

3.6. Advanced Recovery. The use of advanced recovery strategies as an
intensification component in Tabu Search has proved effective in a number of
applications (see Glover 1995). In this application, we employ a variant pro-
posed in Xu, Chiu and Glover (1996a, 1996b) and Xu and Kelly (1996) that
postpones the recovery of elite solutions until the last stage of the search. Each
recovered solution launchs a search that constitutes a fixed number of itera-
tions before selecting the next solution to recover. The same elite solution list
maintained for error correcting by the advanced evaluator, described in section
3.3, serves naturally as a pool of solution for this final stage. Solutions are
recovered from this pool in reverse order, that is, by starting from the solu-
tion with the worst evaluation and working toward the solution with the best
evaluation. The list is updated each time a solution is found better than the
current worst solution in this elite pool. We merely insert the new solution in
its proper location, dropping the worst solution. To enable more elite solutions
to be recovered, we thus allow the number of solutions recovered to be larger
than the size of the original size of the elite pool. We implement the elite pool
for advanced recovery as a circular list, that is, when the best solution (last
element) in this pool is recovered, we move back around to the current worst
solution (first element) and work toward the best solution again. For each

solution recovered, all tabu restrictions are overridden and reinitialized.

TS for Optimizing a Ring-Based Telecomm. Network 19

4. Computational Results

In this section, we first report our computational outcomes for two sets of
test problems. The problems are generated randomly from distributions whose
parameters are selected to create the most difficult problem instances for ran-
domly generated problems from a computational standpoint. The locations of
target nodes and steiner nodes are randomly generated in Euclidean space with
coordinates from the interval [0, 1000]. Euclidean distances are used for cal-
culating the link costs. The fixed cost of selecting a steiner node is generated
randomly from the interval [10, 1000]. We observed that a small fixed cost
in this case tends to produce difficult instances because of the ”steiner” na-
ture of the problem. The first set of test problems is taken from Lee, Chiu and
Ryan (1996a) , and is restricted to problems of relatively small dimensions that
were capable of being solved by the branch and cut approach of their study.
Problems from the second test set have larger dimensions, and are beyond the
ability of current exact methods to solve. The tables that report our results
represent the problem dimensions by m and n, which identify the number of
target and steiner nodes respectively.

We conducted all our tests on a Sun Sparc workstation 20 , Model 512 and

report CPU time in seconds.

4.1. Parameter Description. An initial solution for our TS approach is
produced by linking every target node to its closest steiner node, and then
constructing a TSP tour using 2-opt on the set of selected steiner nodes. Since
this initial solution does not address the tradeoff between steiner node costs
and link costs, it is usually a very poor quality solution. Our TS approach
starts from this solution to search for progressively better solutions.

Tabu tenures for the three types of moves in the T'S procedure are randomly
generated from an associated (relatively small) interval each time a move is
executed. The interval [1,3] is used for constructive moves and the interval

[2,5] is used for destructive moves. In the case of swap moves, an interval of

20 Jiefeng Xu, Steve Y. Chiu and Fred Glover

[1,3] is used for each of the two elementary moves composing the swap. Most
TS applications use intervals that are centered around somewhat larger values.
Apparently, the ability to use these small intervals successfully, without cycling,
is aided by the oscillation strategy whereby the search alternates between the
different types of moves. The smaller tabu tenures conceivably help the search
explore promising regions more thoroughly under these conditions.

Swap moves are executed either once every seven iterations or in a block of
five consecutive iterations when no “new best” solution is found during the most
recent 100 iterations. The candidate list for swap moves consists of the top (up
to) ten best destructive moves and top (up to) ten constructive moves from the
last iteration. At each iteration, the intermediate evaluator is always applied
to the top ten best candidate moves estimated by the basic evaluator. The
error correction procedure (by the advanced evaluator) is executed each time a
“new best” solution is found, and is applied to the current solution after every
three accumulated moves, not counting destructive moves that drop nodes of
degree one. Error correction is also applied every 100 iterations to the priority
queue that stores the thirty best solutions. Also, as mentioned in section 3.3,
the error correction is not executed before iteration 200 and is omitted when
the current TSP tour contains less than ten nodes. The embedded TS-TSP
procedure is terminated at 200 iterations. The maximum allowable number of
iterations for our complete method is set to 150 for the first test set (which we
found to be trivially easy for our method) and 5000 for the second set.

Long term memory is activated after 500 iterations, so that it can be based
on relatively reliable frequency information. The penalty term based on long
term memory is calculated by multiplying 320 by the normalized frequency for
elementary moves, and multiplying 135 by the sum of the two respective nor-
malized frequencies for swap moves. In probabilistic move selection, we choose
the probability of acceptance p = 0.3, as previously noted. The parameters for
fine-tuned probability described in section 3.4 are set as: a = 1.0 and 3 = 0.15.
We additionally use the simplification of shrinking the candidate list for the

TS for Optimizing a Ring-Based Telecomm. Network 21

probabilistic rule to contain the ten best moves (d = 10), since the probability
of selecting a move outside the reduced list would be less than 0.03.

Note that all the above parameters are selected intuitively or based on
several preliminary experiments, without any attempt at fine tuning. An effort
to fine-tune these parameters, for example, using a systematic procedure based
on statistical tests (see Xu, Chiu and Glover, 1996¢), may significantly improve

the performance of our algorithm.

4.2. Test Results. The first set consists of 175 test problems where m ranges
from 10 to 90, n ranges from 10 to 50, and m + n does not exceed 100. For
each problem size, we generate five instances using different seeds for random
number generator. We report average results for these five instances.

For comparison, we also list the average results for the branch and cut al-
gorithm described in Lee, Chiu and Ryan (1996a). We also include solution
information for a special heuristic (denoted LS) that is described in Lee, Chiu
and Ryan (1996a) and provides the upper bound for their exact algorithm.
This heuristic strategically generates a set of initial solutions and then im-
proves them using local search. We enclose the description of this heuristic
in the appendix. In addition, the LS approach can be significantly enhanced
by iteratively restarting the process. That is, at each iteration, we randomly
generate an initial solutions and then apply the LS to improve it. The best
solution found in all iterations is reported. Since in this restarting extension,
the move selections are probabilistically selected based solely on the LS choice
criteria, it can be classified as a memoryless variant of probabilistic tabu search
(see Glover 1995). We denote this latter method by LS-PTS where the number
of iterations for restarting is set to 150. Since the exact method based on the
mathematical formulation in Section 2 requires at least three nodes for the TSP
tour, we disallow any heuristic solution with less than three active nodes for
an equitable comparison.

Since problems of the first test set are relatively small and easy for our

algorithm, we reduced the maximum number of iterations to 150. With this

22 Jiefeng Xu, Steve Y. Chiu and Fred Glover

stopping criterion, a few advanced features in our TS algorithm, such as the
long term memory strategy, and the elite solution error correction and recovery
strategies, are disabled. In Table 1, we report the percentage of the error
relative to the optimum objective values obtained by the exact method and
CPU times of our TS, LS and LS-PTS methods. In the last column, we list the
CPU time required by the branch and cut method on the same machine. Recall
that all results are the average values over 5 instances for the same problem

size, and all CPU times are measured in seconds.
Insert Table 1 here ***

From Table 1, we find that the computation times for the exact method
increase exponentially with n for each fixed m. Consequently, it is truly hard
to solve the larger instances of the ring-based DDS problem using the current
exact method. The LS is very fast and obtains good solutions, but it cannot find
the optimal solutions for all five problem instances for any problem size. LS-
PTS significantly improves LS at very reasonable extra computational effort,
finding optimal solutions for the five problem instances in 28 out of the 35
different problem sizes tested (hence in 80% of these problem sizes). Our TS
performs extremely well by finding optimal solutions for all problem instances
in all problem sizes (hence for all 175 test problems). We emphasize that the
TS procedure we are testing in these cases is a simple TS algorithm without
the assistance of advanced features.

We then extended our tests to larger problem instances. The dimensions
for the second set of test problems are as follows. The value of n for the
first fifteen problems ranges from 100 to 200 in increments of 25. For each
n, three problems are generated by setting m equal to n, n + 50 and n + 100
respectively. The last six problems in this set are designed to be particularly
large and have dimensions 250 x 250, 300 x 250, 350 x 250, 100 x 300, 200 x 300
and 300 x 300. Since exact methods are unable to handle problems of this

second set and it is also difficult to find a reasonably good lower bound from

TS for Optimizing a Ring-Based Telecomm. Network 23

the mathematical formulation, we evaluate the TS heuristic by comparing its
performance to those of the LS and LS-PTS heuristics, which proved capable
of finding optimal or near-optimal solutions for the first set of problems. Since
the problems are large, the search termination condition is extended to 5000
iterations, which enables the advanced features of our TS algorithm.

As for the first problem set, we generate five instances for each problem size
in the second problem set. Since our tabu search algorithm outperforms the
LS and LS-PTS, we report the outcomes in the form of error percentages of
the LS and LS-PTS over TS. We list the maximum (MAX), minimum (MIN)
and average (AVG) error percentages for each problem size in Table 2. In
addition, we also list the number (NUM) of problems where TS improves the
LS or LS-PTS among the five instances.

*** Tnsert Table 2 here ***

From Table 2, we observe that TS consistently outperforms LS and LS-PTS.
In particular, TS improves LS solutions in 104 instances out of 105 test prob-
lems with average cost savings of 3.64%. Compare with the solutions obtained
by LS-PTS, TS improves 79 LS-PTS solutions and the average improvement is
0.23%. The magnitude of improvement is more noticeable for larger problem
size. Given the relatively good performance of LS-PTS in the first problem
set (where 80% of the LS-PTS solutions are in fact optimal solutions), the im-
provement by our TS method on this larger test set is quite significant. Such
an improvement provides a valuable competitive edge in attracting customers,
with the associated benefit of increasing the company’s market share and prof-
its.

We also compare the CPU time required by TS with those required by
LS and LS-PTS. We list the maximum (MAX), minimum (MIN) and average
(AVG) CPU time (in second) by each algorithm among the five instances for
each problem size in Table 3. The times reported herein are times required by

obtaining the best solutions for the corresponding heuristic.

24 Jiefeng Xu, Steve Y. Chiu and Fred Glover

*** Tngert Table 3 here ***

Table 3 discloses that the T'S uses very reasonable CPU times to obtain high
quality solutions and can meet the time requirement for real world applications.
LS uses much less CPU time, however, it can be easily improved by LS-PTS and
TS. The enhanced local search method, LS-PTS, though taking advantages of
using more CPU time and randomly escaping local optima, is still outperformed
by our TS heuristic. This confirms the more “intelligent” nature of tabu search
over the local search techniques.

Finally we present an algorithmic analysis to investigate the relative contri-
butions made by the various components of our TS algorithm. We test a series
of variants which disable certain TS components on the second problem set.
The variants under investigation include the one without short-term memory
(STM), the one without long-term memory (LTM), the one without probabilis-
tic selection rule (PSR), the one without advanced recovery strategy (ARS),
the one without the use of advanced evaluator (AE), and the simple TS (STS)
which we tested in the first set of problem (which disables the LTM, ARS,AE,
and terminates at 150 iterations). For ease of exposition and to simplify the
comparisons, we only report the percentage of problems in which the variant
could not match the best TS solutions reported in Table 2. In other words,
this percentage indicates the degree of improvement that the corresponding

component can contribute. The comparisons are presented in Table 4.

Variant | Contribution (%)
STM 124
LTM 32.4
PSR 14.3
ARS 32.4
AE 48.6
STS 68.9

Table 4: Tests on Various TS Components

TS for Optimizing a Ring-Based Telecomm. Network 25

The outcomes from Table 4 validate that all components can significantly
enhance the basic tabu search algorithm. In particular, the long-term memory
and the probabilistic selection rule play important roles in diversification and
therefore improve the overall search quality. The advanced recovery strategy
provides an effective intensification role and helps locate better solutions in late
stages of the search. The short-term memory is primarily used to prevent the
search from revisiting local optima and to reduce the chance of cycling. Though
these functions are diminished by the introduction of the probabilistic move se-
lection strategy, the short-term memory still make a notable impact. The use
of probabilistic move selection additionally affords an effective means to com-
pensate for the noise caused by the approximate move evaluation. Incidentally,
we note that the advanced evaluator (incorporating TS-TSP) is impressive in
finding better TSP tours than 2-opt, and it can be efficiently executed within a
hierarchical framework. The impact of integrating the more advanced TS com-
ponents such as LTM, PSR, ARS and AE becomes even more evident since
they improve the solutions in nearly 70% of the problem instances, by com-
parison with the elementary TS heuristic (which in this application embraces

probabilistic move choice and short term memory).
5. Conclusion

We have developed and tested alternative tabu search implementations for
solving a ring-based DDS network design problem encountered in telecommu-
nications industry. In our approach, the search incorporates constructive and
destructive moves as well as exchange moves to explore different neighborhood
structures. We introduce evaluation estimates to allow moves to be selected
more efficiently, and accompany these estimates with an error correction pro-
cedure that employs hierarchical move evaluators in order to offset the risk of
making improper choices. Long term memory and probabilistic move selec-
tion are also included for diversification while the advanced recovery strategy

is implemented for intensification.

26 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Numerical tests, for two sets of randomly generated test problems, show
that for the 175 smaller test problems (up to 100 nodes), a simple variant of
our TS algorithm yields optimal solutions in all cases while using only a very
small fraction of the CPU time required by the exact method (running about
three orders of magnitude faster). For the 105 larger problems, the tabu search
algorithm consistently outperforms the best local search heuristic previously
available, including a probabilistic enhancement of this heuristic designed in
this study. Our outcomes also demonstrate the relative contributions of short-
term memory, long-term memory, probabilistic move selection, advanced recov-
ery, and the advanced move evaluator, showing that the combination of these
components can obtain significantly better results than the simple TS version.
The gains afforded by the advanced components of tabu search become more
appreciable as the problems increase in complexity.

Future improvements of our TS approach are anticipated to result by includ-
ing additional long term memory functions and by using more refined candidate
list strategies. We observe that some of the steiner nodes always reside in the
active set for good solutions, while other are always inactive. An intensification
strategy that takes advantage of this fact could yield additional useful infor-
mation for probabilistic TS designs. In addition, we anticipate that the use
of evolutionary strategies, such as scatter search and path relinking (Glover,
1977,1996), may provide an effective post-optimization approach for our TS

algorithm.

References

ANDERSON, A., K.F. JONES AND J. RYAN (1993), Path Assignment for Call Rout-
ing: An Application of Tabu Search, Annals of Operations Research, 41, (J.C.
Baltzer).

GLOVER, F. (1977), Heuristics for Integer Programming Using Surrogate Constraints,
Decision Sciences, 8, 156-166.

GLOVER, F. (1989), Tabu Search - Part I, ORSA Journal of Computing, 3,190-206.

TS for Optimizing a Ring-Based Telecomm. Network 27

GLOVER, F. (1996), Tabu Search and Adaptive Memory Programming — Advances,
Applications and Challenges, in: Interfaces in Computer Science and Operations Re-
search, Barr, Helgason and Kennington, eds., Kluwer Academic Publishers, 1-75.

GLOVER, F. AND M. LAGUNA (1997), Tabu Search, Kluwer Academic Publishers.

GLOVER, F. AND A. LgKKETANGEN (1996), Probabilistic Move Selection in Tabu
Search for Zero-One Mixed Integer Programming Problems, in: Meta-Heuristics:
Theory and Applications, I.H. Osman and J.P. Kelly, eds., Kluwer Academic Pub-
lishers, 467-487.

JOHNSON, D.S. AND L.A. McGEOCH (1996), The Traveling Salesman Problem: A
Case Study in Local Optimization, in: Local Search in Combinatorial Optimization,
eds. E.H.L. Aarts and J.K. Lenstra (John Wiley and Sons, New York).

LAGUNA, M. (1994), Clustering for the Design of SONET Rings in Interoffice Telecom-
munications, Management Science, 40, 11, 1533-1544.

LAGUNA, M. AND F. GLOVER (1993), Bandwidth Packing: A Tabu Search Ap-
proach, Management Science, 39, 4, 492-500.

LAPORTE, G. (1992), The traveling Salesman Problem: An overview of exact and
approximate algorithms, Furopean Journal of Operational Research, 59, 231-247.

LAWLER, E.L., J.K. LENSTRA, A.H.G. RINNOOY KAN AND D.B. SHMOYS (1985),
The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,
Wiley, Chichester.

LEE, Y., S.Y. CHIU AND J. RYAN (1996a), A Branch and Cut Algorithm for a
steiner Ring-Star Problem, Working Paper, U S WEST Advanced Technologies Inc.,
Boulder, CO.

LEE,Y., S.Y. CHIU AND J. RYAN (1996b), A Branch and Cut Algorithm for a steiner
Tree-Star Problem, INFORMS Journal on Computing, 8, 3, 194-201.

REINELT, G. (1994), The Traveling Salesman: Computational Solutions for TSP
Applications, Springer-Verlag.
SKORIN-KAPOV, D. AND J. SKORIN-KAPOV (1995), On tabu search for the location

of interacting hub facilities, EJOR, 73, 502-509.

Xu, J., S. Y. CHIU AND F. GLOVER (1996a) Using Tabu Search to Solve the steiner
Tree-Star Problem in Telecommunications Network Design, Telecommunication Sys-
tems, 6, 117-125.

28 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Xu, J., S. Y. CHiUu AND F. GLOVER (1996b), Probabilistic Tabu Search for Telecom-
munications Network Design, Combinatorial Optimization: Theory and Practice,
Vol. 1, No. 1, 69-94.

Xu, J., S. Y. CHIU AND F. GLOVER (1996¢), Fine-Tuning a Tabu Search Algorithm
with Statistical Tests, International Transactions in Operational Research, Vol. 4,
forthcoming.

Xu, J. S. Y. CHiu AND F. GLOVER (1997), Tabu Search for Dynamic Routing
Communications Network Design, Telecommunication Systems, 8, 55-77.

Xu, J. AND J. P. KELLY (1996), A New Network Flow-Based Tabu Search Heuristic
for the Vehicle Routing Problem, Transportation Sciences, 30, 4, 379-393.

Appendix

In this appendix, we describe the LS heuristic procedure that has been used
to provide an initial upper bound on the optimal solution value in the branch-
and-cut algorithm in Lee, Chiu and Ryan (1996). The following notation and
definitions will be used for that purpose . First recall that m is the number of
target nodes and n is the number of steiner nodes. A star is a subgraph that
consists of a single steiner node (the center of the star) and a set of target nodes
with edges connecting them to the center. The weight of a star is equal to the
sum of its edge costs and its steiner node cost. The size of a star is equal to the
number of target nodes contained in that star. Finally, the steiner number and
TSP tour of a solution are defined respectively as the number of steiner nodes
being used and the TSP tour connecting these nodes in that particular solution.

Heuristic procedure for the ring-based DDS problems:
For star size k = 2,3, ..., m, repeat the following steps:

Step 1. (Generating an initial current solution)

Step 1.1 Label all nodes in M U N “unselected” and set ¢+ = 1. While ¢
< min { [%1 ,n} , determine the minimum-weight star of size k£ that
contains only unselected nodes (the last iteration may find a smaller
star), and then label all the nodes in the star “selected”; set i = i+1.
Each selected target node has been currently assigned to the center

of its star.

TS for Optimizing a Ring-Based Telecomm. Network 29

Step 1.2 Reassign each selected target node in M to its closest selected
steiner node in N if necessary.

Step 1.3 If any, assign each unselected target node in M to its closest
steiner node in N and then label it “selected”.

Step 1.4 Connect all selected steiner nodes in N with a TSP tour using
random insertion.

Step 2. If the steiner number of the current solution is greater than or equal
to 4, try to improve the solution as follows:

Step 2.1 Improve the TSP tour using 2-opt heuristic.
Step 2.2 Further improve the TSP tour using Or-opt heuristic.

Step 3. If the steiner number of the current solution is greater than or equal
to 2, perform the following steps for each selected steiner node:

Step 3.1 Generate a new temporary solution by deleting the selected
steiner node from the current solution as follows: remove the selected
steiner node from the TSP tour; reassign its target nodes to the
closet remaining steiner nodes in the tour; connect the two neighbors
of the steiner node in the TSP tour.

Step 3.2 Replace the current solution with the temporary solution if the
latter is better.

Step 4. For each unselected steiner node, perform the following steps:

Step 4.1 Generate a new temporary solution by adding the unselected
steiner node to the current solution as follows: insert the new steiner
node into the TSP tour such that the increase of the tour length is
minimized; reassign target nodes to the newly-added steiner node if
it is closer.

Step 4.2 Replace the current solution with the temporary solution if the
latter is better.

Step 5. If any improvement is made to the current solution in Step 3, or 4,
go back to Step 2.

If the current solution is better than the best solution found, record the current
solution as the new best solution found.

30 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Problem TS LS LS-PTS | Exact Method
(m xn) | Error | CPU | Error | CPU | Error | CPU CPU
(10x10) | 0 0 |1182] 0 | 008 | 0 14
(10 x 20) 0 0 8.72 0 0 0 12.0
(10 x 30) 0 0 4.38 0 0.28 0 45.0
(10 x 40) 0 0 3.09 0 0 0 164.2
(10 x 50) 0 0 9.83 0 0 0 292.4
20x10) | 0 0 | 420 | 0 0 0 2.2
(20 x 20) 0 0 2.96 0 0 0 13.8
(20 x 30) 0 0 1.01 0 0 0 57.4
(20 x 40) 0 0 2.39 0 0 0 287.8
(20 x 50) 0 0 0.82 0 0 0 854.8
(30 x 10) 0 0 0.70 0 0 0 2.8
(30 x 20) 0 0 2.60 0 0 0 21.6
(30 x 30) 0 0 3.79 0 0 0 224.0
(30 x 40) 0 0 291 0 0 0.6 351.8
(30 x 50) 0 0 1.08 0 0 1 411.6
(40 x 10) 0 0 0.66 0 0 0 2.6
(40 x 20) 0 0 2.39 0 0 0 22.6
(40 x 30) 0 0 2.80 0 0.06 | 0.8 80.2
(40 x 40) 0 0 3.71 0 0 1.0 719.8
(40 x 50) 0 0 1.79 0 0.03 1.0 1037.6
(50 x 10) 0 0 0.43 0 0 0 3.6
(50 x 20) 0 0 1.72 0 0 0.4 37.8
(50 x 30) 0 0 2.48 0 0.05 1.0 139.6
(50 x 40) 0 0 2.38 0 0 1.0 384.8
(50 x 50) 0 1 1.20 0 0 2.4 1003.8
(60 x 10) 0 0 1.15 0 0 0 4.6
(60 x 20) 0 0 0.89 0 0 1 30.2
(60 x 30) 0 0.2 0.01 0 0 1.2 108.6
(60 x 40) 0 0.8 1.37 0 0.04 | 24 368.6
(70 x 10) 0 0 0.80 0 0 0 5.0
(70 x 20) 0 0 2.35 0 0 1.0 35.6
(70 x 30) 0 0.2 1.23 0 0 2.0 175.0
(80 x 10) 0 0 0.55 0 0 0 6.0
(80 x 20) 0 0 1.60 0 0.20 14 34.4
(90 x 10) 0 0 0.81 0 0 0.4 5.8

Table 1: Computational Results on Small Size Random Problems

TS for Optimizing a Ring-Based Telecomm. Network

31

Problem LS over TS LS-PTS over TS

(m x n) MAX | MIN | AVG | NUM | MAX | MIN | AVG | NUM
(100 x 100) 4.77 1.89 2.93 5 0.33 0 0.07 1
(150 x 100) 3.42 0.8 1.94 5 0.5 0 0.2 3
(200 x 100) 3.32 0.78 2.06 5 0.48 0 0.17 4
(125 x 125) 3.93 1.15 2.28 5 0.39 0 0.2 4
(175 x 125) 3.03 0.36 1.17 5 0.3 0 0.1 3
(225 x 125) 3.94 0.08 2.35 5 0.6 0 0.2 4
(150 x 150) 7.02 1.5 4.58 5 0.36 0 0.13 2
(200 x 150) 2.94 0.26 1.49 5 0.38 0 0.11 3
(250 x 150) 4.01 1.31 2.96 5 0.58 0 0.24 3
(175 x 175) 2.37 0.83 1.46 5 0.38 0 0.21 4
(225 x 175) 4.31 0.98 2.54 5 0.25 0 0.12 4
(275 x 175) 2.99 1.16 2.02 5 0.22 0 0.06 3
(200 x 200) 2.31 0 1.04 4 0.56 0 0.27 3
(250 x 200) 3.25 0.51 1.71 5 0.2 0 0.12 4
(300 x 200) 2.73 1.91 2.2 5 0.44 0.03 0.29 5
(250 x 250) 3.47 2.07 2.69 5 0.59 0.13 0.32 5
(300 x 250) 3.15 2.04 2.56 5 0.7 0.39 0.57 5
(350 x 250) 2.37 0.75 1.48 5 0.5 0.05 0.29 5
(100 x 300) 4.53 0.61 2.88 5 0.83 0 0.28 4
(200 x 300) 3.64 2.15 2.73 5 0.98 0.12 0.39 5
(300 x 300) 4.94 2.27 3.41 5 0.7 0.11 0.39 5

Average 3.64 1.11 2.31 4.95 0.49 0.04 0.23 3.76

Table 2: Cost Comparisions on Larger Size Random Problems

Problem LS LS-PTS TS

(m xn) MAX | MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG
(100 x 100) 0 0 0 31 31 31 4 1 2.6
(150 x 100) 0 0 0 62 61 61.6 85 2 26.4
(200 x 100) 0 0 0 104 101 102.4 9 2 5
(125 x 125) 1 0 0.2 58 57 57.4 36 2 12.2
(175 x 125) 1 1 1 104 102 103 51 3 20.2
(225 x 125) 1 1 1 164 158 160.2 143 4 37.8
(150 x 150) 1 1 1 96 95 95.6 133 3 40
(200 x 150) 1 1 1 163 158 159.8 95 5 42
(250 x 150) 1 1 1 250 238 242 115 29 74.6
(175 x 175) 1 1 1 148 146 146.8 85 8 42.8
(225 x 175) 2 1 1.8 230 227 228.8 118 11 55.4
(275 x 175) 2 2 2 334 332 332.6 307 44 161.6
(200 x 200) 2 2 2 219 214 216.4 23 6 10.6
(250 x 200) 2 2 2 331 324 326.8 387 12 164.2
(300 x 200) 2 2 2 473 461 465.6 178 15 63.2
(250 x 250) 4 3 3.6 431 420 424.4 448 120 249.8
(300 x 250) 4 3 3.2 598 585 588.6 420 21 254.4
(350 x 250) 5 4 4.2 771 763 767.4 537 61 301
(100 x 300) 1 1 1 98 96 96.4 116 4 46
(200 x 300) 3 2 2.2 344 338 341 280 17 209
(300 x 300) 8 5 6.2 729 709 719 649 23 356

Table 3: CPU Time Comparisions on Larger Size Random Problems

