Improving short-term conflict alert via tabu search

J.E. Beasley"
H. Howells?
J. Sonander?

February 2001
The Management School National Air Traffic Services
Imperial College 1 Kemble Street
London SW7 2AZ London WC2B 4AP

England England

ABSTRACT

In this paper we describe some work carried out by National Air Traffic
Services in the UK into developing optimisation tools to help improve the
effectiveness of one of their air traffic control safety systems — short-term conflict
alert. In short-term conflict alert a computer system continually monitors radar data
and alerts air traffic controllers if it detects a situation where two aircraft are in danger
of approaching too close to one other.

Within the computer program that makes up the short-term conflict alert
system are a large number of parameters. Choosing appropriate values for these
parameters is a task that is currently done via extensive human intervention. In this
paper we describe how a modern heuristic technique, tabu search, can be used to

make parameter choices.

Keywords: air traffic control, short-term conflict alert, tabu search, air transport

1. INTRODUCTION

National Air Traffic Services (NATS) are the principal providers of air traffic
control in the UK. They provide air traffic control at a number of the UK's airports,
including the busiest, London Heathrow. An important part of the air traffic control
system is short-term conflict alert (STCA). This is a computer system that, given
radar data as an input, alerts human air traffic controllers if it detects that two aircraft
are approaching too close to one another (have a potential conflict). As its name
suggests STCA is designed to detect conflicts that may occur in the immediate future
(typically two minutes).

As the reader will appreciate two aircraft approaching too close to one another
is potentially dangerous. Not only is there the risk of direct collision, but also the
aerodynamic stability of one (or both) aircraft could be disrupted by the other. In
addition passengers/crew may be injured if extreme manoeuvres are needed in order
to avoid a collision. Safety considerations therefore demand that pre-specified
minimum separation distances (both horizontal and vertical separation) be maintained
between aircraft in flight at all times. As such it is clearly important for air traffic
controllers to be given as early a warning as possible of situations that involve a loss
of separation so that they can redirect the aircraft in question. Hence the objective for
any STCA system is: to alert controllers to a developing conflict (loss of
separation) with sufficient warning time to enable them to resolve the situation.
As an illustration of the value of STCA the report covering the period July 1999 to
December 1999 issued by the UK Airprox Board [1] (which investigates incidents
where in the opinion of a pilot or controller safety has been compromised) details a
number of incidents in which STCA was instrumental in alerting controllers to a

conflict situation.

Inherent in any air traffic control STCA system however is the need for
tradeoff, between genuine alerts and nuisance alerts. A genuine alert is one where
either the aircraft are already involved in a conflict, or they are going to be in conflict
in the near future - for example they are heading towards one another and are only one
nautical mile apart. A nuisance alert is one where there is no danger of conflict in the
near future — for example the aircraft are heading towards one another but are 100
nautical miles apart. Any STCA system must be “tuned” so as not to miss situations
where genuine alerts are needed, but also not to issue too many nuisance alerts.
Nuisance alerts are distracting to controllers and, if too many are issued, degrade their
confidence in the system.

The simplified example above makes it seem easy to distinguish between
genuine and nuisance alert cases. In fact, because:

* many different situations can occur with two aircraft flying independently at high
speed through three-dimensional space; and

» what aircraft will do in the future is unknown, all that is known is current (and
historic) information;

then it is not an easy task for an automated system to quickly identify genuine conflict

situations.

NATS first introduced STCA for controllers in charge of en-route airspace at
its London Area and Terminal Control Centre (LATCC) at West Drayton in 1988.
Since that time the system has been progressively modified and evolved and now
STCA systems monitor air traffic at all of the UK's principal air traffic control
centres. As an indication of the amount of traffic dealt with by these centres there
were nearly two million aircraft movements in the financial year 1999-2000.

Although there are minor differences between the STCA systems installed in different

control centres their underlying basic design and operation is the same. In this paper
therefore we will concentrate on STCA as implemented for the busiest centre, London
Terminal Control at LATCC — hereinafter referred to as LATCC-TC. In the next
section we describe this STCA system in more detail.

Note here however that although we refer in this paper to a single STCA
system for LATCC-TC there are in fact two separate implementations of this system
operating. One is an on-line system that continually processes radar data in an
operational environment to check for conflicts. The other is an off-line system that is
used for experimentation (such as described in this paper) into system improvement.
In terms of the underlying specification the two systems are identical (i.e. they have

identical functionality), but they are separated for safety reasons.

2. THE STCA SYSTEM

The NATS STCA system at LATCC-TC is a complex computer program that
processes current radar tracking data every four seconds (a cycle) to decide, for all
pairs of aircraft within radar range, whether any pair should be brought to the
attention of a human air traffic controller. As mentioned above aircraft pairs should be
brought to the controller's attention if they are already in conflict, or are likely to be in
conflict in the near future. Conflict alerts are displayed on a controller's screen and are
of two types - low severity alerts and high severity alerts. The severity of an alert is
determined automatically based upon factors such as the current positions of the
conflict pair and the predicted time at which the aircraft will be closest together.

The algorithms used to decide, for a given pair of aircraft (known as a track
pair), whether an alert is necessary or not are very complex and proprietary to NATS.
They make use of information such as aircraft position, speed, current heading and
current manoeuvre (e.g. turning). This information for each track pair is first passed to
a coarse filter. This is designed to reject from further processing any pairs that cannot
possibly conflict in the short-term (e.g. two aircraft that are far apart). Track pairs not
rejected by the coarse filter are further processed by three fine filters that are designed
to test for different conflict conditions:

e acurrent proximity filter — which checks for conflict based upon current
horizontal and vertical separation

» alinear prediction filter — which checks for conflict based upon predicted
horizontal and vertical separation assuming the aircraft continue in a straight line
along their current tracks

» amanoeuvre hazard filter — which checks for conflict when one or both of the

aircraft are turning.

At the end of this process the system will have determined which track pairs (if any)
are judged to be in conflict.

Typically however, unless the conflicting track pair have already violated
minimum separation (or are predicted to violate minimum separation in the very near
future), an alert is not immediately communicated to the controller. Instead an alert
confirmation process is invoked. In this process the conflicting track pair are
monitored with respect to a moving time window and an alert communicated to the
controller only when the pair have been in conflict for a sufficient number of cycles
(generally two or three cycles) within this moving time window. This alert
confirmation process helps prevent nuisance alerts, since a pair in conflict in one
cycle may have manoeuvred out of conflict by the next cycle.

In the NATS STCA system the airspace is divided into different regions, each
of which is assigned a 'region type' (such as stack and en-route). The reason for this is
that aircraft tend to behave differently in each type of region. For example, aircraft in
a stack are typically following procedural holding patterns involving 180° turns at
constant height, whilst en-route aircraft are typically heading in a straight line (either
climbing, descending, or at constant height). Obviously therefore knowing which
region an aircraft is in, and therefore its likely behaviour, assists conflict detection.
LATCC-TC, for example, currently have 13 region types defined within their STCA
system.

In the current NATS STCA system the coarse filter involves approximately
ten different numeric parameters. The fine filters and the alert confirmation process
however involve approximately eighty numeric parameters and these eighty

parameters can (and often do) have different values in each region. This implies that

for LATCC-TC the STCA system requires approximately 10+13x80 = 1050 numeric
parameter values.

In order to evaluate the effect of different parameter values NATS has at its
disposal a number of databases incorporating historic radar tracks, including cases
where there was a serious encounter between aircraft. Within these databases each

track pair has been individually categorised into one of five categories, as in Table 1.

Category | Definition Meaning
1 Alert necessary The situation involved a serious loss of separation or avoided such a
loss of separation only by means of a late manoeuvre.
2 Alert desirable Although there was no serious loss of separation the situation was

such that an alert would have been useful in drawing the attention of
the controller to a potential conflict.

3 Level off with risk | Separation would have been lost if one or both aircraft had not
(alert desirable) performed a level off manoeuvre.

4 Alert undesirable The situation presented little threat of loss of separation and an alert
Or unnecessary was more likely to have proved distracting than helpful.

5 Bad track data No conflict existed, however invalid track data such as split tracks
(alert undesirable (the same aircraft appearing as two or more tracks in a multi-radar
or unnecessary) environment) or signal corruption of the altitude reported by the

aircraft transponder led to the generation of an alert.

This category is also used to cover military aircraft flying in
formation — which would otherwise generate many alerts.

Table 1: Track categorisation

When deciding STCA parameter values therefore the objective is essentially to
generate alerts for all category 1 track pairs and a high percentage of category 2 and 3
track pairs, whilst keeping to an acceptable level alerts for category 4 track pairs.
Category 5 track pairs are usually ignored unless that part of STCA which deals with
the conflict processing of split tracks is being considered. As well as generating an
alert however, the issue of warning time for genuine conflicts must also be
considered. Two parameter sets may generate exactly the same alerts, but one set may
give more warning time in terms of the time between the alert and the predicted time
at which the aircraft will be closest together.

To give some idea of the size of the problem a typical track database for

LATCC-TC might contain 250,000 track pairs of which 250 would be category 1, 200

category 2 and 2000 category 3 — the remainder being category 4 or 5. Processing a
track database of this size to determine the effectiveness of any set of parameters
requires approximately 6 minutes on a fast powerful computer, a DEC Alpha 4100
(533 MHZz, 2 processors).

Over the years NATS R&D staff have, via extensive human intervention,
experimented and arrived at a set of numeric parameter values for their STCA system
(1050 values for LATCC-TC) that seem appropriate — effectively tuning the system so
as to achieve a balance between genuine and nuisance alerts, whilst also considering
warning time. Essentially this has been done by a person sitting down and making a
change to one or more parameter values, running these new values through the STCA
computer program using a historic track database, and then inspecting the computer
output provided to see whether these new values have improved upon the previous
values or not. Prior to the work described in this paper NATS had no algorithmic
approach to the systematic generation and evaluation of many different parameter
sets.

In this paper we describe how a modern heuristic technique, tabu search, can
be used to make parameter choices and hence increase the effectiveness of tuning the

STCA system. Our tabu search algorithm is described in the next section.

3. ALGORITHM
In this section we shall first discuss our general algorithmic approach, then the
objective (scoring) function we have adopted and finally present the tabu search

algorithm we have developed.

3.1 General approach

In our approach, for any particular run of our algorithm, the parameters
associated with the NATS STCA model are divided into two types:

* those which are fixed
» those which can be varied.

Fixed parameters are those which take a pre-set fixed value during the current run of
the algorithm, whilst variable parameters are those for which values should be
decided by the algorithm. To deal with the fact that many of the variable parameters
may be region dependent we distinguish two possibilities:

» aparameter takes exactly the same value in all regions
» aparameter takes different values in each region.

Each (varying) parameter is allowed to vary between a lower limit and an upper limit
from its initial value in terms of a step value. For example if the lower limit for a
parameter is 180, the upper limit 210, the initial value 200 and the step value 10, then
possible values for the parameter are 200, 200+10=210, 200-10=190 and 200-
2x10=180. Each parameter also has associated with it an importance rating (the
higher the importance rating the more important the parameter is believed to be). This
is used within the algorithm to derive an ordering for parameter variation, parameters
which are more important are varied before parameters which are less important.

The choice of parameters that are fixed/variable must be made by NATS

personnel. Only a person with knowledge and experience of STCA can judge:

* which parameters should be regarded as fixed

* which parameters should be regarded as variable

» the range of possible parameter values that are legitimate
» the importance of each parameter.

In addition, since our primary objective is to improve upon the current situation, we
typically use the best parameter values known to NATS as the initial values for any
run of the algorithm.

The reader may be wondering why, if choices still have to be made by NATS
personnel (as detailed above), the work presented here improves upon what NATS
currently does. The answer is two-fold:

* The current NATS system requires regular human intervention to produce new
parameter sets to be evaluated in order to move towards an 'optimum’ set of
parameters. As such it is very labour intensive and, as a consequence, only a
limited number of parameter sets are ever evaluated.

* Inour tabu search algorithm many sets of parameters can be systematically
generated and evaluated with the algorithm automatically guiding the search
towards an 'optimum’ set of parameters. As such many more parameters sets can
be evaluated without the need for human intervention.

In summary then our system both lessens the workload on NATS personnel and

enables many more parameter sets to be systematically investigated. We would also

mention here that one of the motivations for NATS in undertaking the work reported
in this paper was the belief that a computerised approach to investigating many
different parameter sets in a systematic fashion would enable them to explore regions
of parameter space that had hitherto been unexplored.

Our algorithmic design is governed by the computation time (6 minutes, as
mentioned above) needed to evaluate a single set of parameters. Reflect that there are
1050 numeric parameter values in the STCA system for LATCC-TC. Were all of
these to be varied (singly) just once only we would need 6x1050/60=105

computational hours (approximately 4% days). As the computer system on which this

work is done also has other tasks to perform the elapsed time required could become

10

very high. For this reason the tabu search algorithm presented below (e.g. in its use of
priority ordering) has been designed to make improvements in parameter choice as

quickly as possible.

3.2 Objective (scoring) function

In order to evaluate a given set of parameters we compute a single numeric
score associated with “how good” that set is. In algorithmic terms we regard this as an
objective function which is to be maximised. The current objective function (scoring
function):

» uses the given initial set of input parameters as a base case against which new
parameter sets are evaluated
» evaluates each new parameter set against this base case in terms of:

 total number of alerts gained or lost
» amount of warning time gained or lost (measured in terms of cycles).

In more detail the contribution to the overall objective function made by alerts and by

warning time (cycles) is given in Table 2.

Track Alerts Warning time (cycles)
category Gained Lost Gained Lost
1 500xnumber gained | -500x(number lost)> | 10xnumber gained | -8x(number lost)"*
2 50xnumber gained -50xnumber lost 1xnumber gained -1xnumber lost
3 20xnumber gained -20xnumber lost 0.5xnumber gained | -0.5xnumber lost
4 -10x(number gained)*? 10xnumber lost 0 0
5 -2.5xnumber gained 2.5xnumber lost 0 0

Table 2: Example scoring function

To illustrate the scoring (objective) function suppose that a particular parameter set,

compared to the base case, has:

» 1 more category 2 alert, 5 less category 3 alerts, 7 less category 4 alerts; and

» 2 less cycles warning for category 1 tracks, 2 more cycles warning and 4 less
cycles warning for category 3 tracks;

then its score is (50x1) + (-20x5) + (10x7) + (-8%(2)"?) + 0.5x2 + (-0.5x4) = 0.621,

indicating that this parameter set is better than the base case (which by definition has

11

a score of zero).

Choosing the values used in Table 2 inevitably implies the existence of a
tradeoff between factors. For example in terms of alerts, the value of -50 for category
2 alerts lost and the value of 10 for category 4 alerts lost mean that we would be
prepared to lose a category 2 alert (which is desired, see Table 1) if it meant five
(=50/10) less category 4 (nuisance) alerts.

Table 2 reflects the reality of STCA, typically improvements in one positive
characteristic (e.g. a reduction in category 4 nuisance alerts) must be balanced by
negative characteristics (e.g. the loss of a desired category 2 alert). Note here however
that the values given in Table 2 are only example values. Attitudes to alerts and
warning time (i.e. desired tradeoffs between positive and negative characteristics)
vary both between different air traffic control centres and over time.

It is possible however to use our algorithm in an “all improve” mode whereby
only solutions that improve all characteristics are sought. The easiest way to achieve
this is by adjusting the scoring (objective) function so that each negative characteristic
has a large negative score (e.g. —M say) and each positive characteristic retains its

original score, as shown in Table 3.

Track Alerts Warning time (cycles)
category Gained Lost Gained Lost
1 500xnumber gained -M 10xnumber gained -M
2 50xnumber gained -M 1xnumber gained -M
3 20xnumber gained -M 0.5xnumber gained -M
4 -M 10xnumber lost 0 0
5 -M 2.5xnumber lost 0 0

Table 3: Example scoring function for “all improve” mode

With this scoring function any parameter set with a score greater than zero will
dominate the base case, having no increase in negative characteristics but having

gained positive characteristics.

12

3.3 Tabu search algorithm

We now consider how we systematically generate different parameter sets in
an attempt to produce parameter sets that give better STCA performance. The
algorithm given below is based on a technique called tabu search which is a local
search heuristic due to Glover [2] and Hansen [3]. In tabu search the fundamental
concept is that of a "move", a systematic operator that, given a single starting solution,
generates a number of other possible solutions. In local search terms these other
solutions are the "neighbourhood" of the single starting solution.

From the neighbourhood the "best" solution is chosen to become the new
starting solution for the next iteration and the process repeats. This best solution may
either be the first improving solution encountered as the move operator enumerates
the neighbourhood, or it may be based upon complete enumeration of the
neighbourhood.

In order to prevent cycling a list of "tabu moves" is employed. Typically this
list prohibits certain moves which would lead to the revisiting of a previously
encountered solution. This list of tabu moves is updated as the algorithm proceeds so
that a move just added to the tabu list is removed from the tabu list after a certain
number of iterations (the "tabu tenure™) have passed. A more comprehensive
overview of tabu search can be found in [4,5,6].

In our tabu search algorithm for STCA a move is defined as a change in a
parameter value and corresponds to:

* increasing a parameter, by adding its step value to its current value; or
» decreasing a parameter, by subtracting its step value from its current value.

For simplicity we shall refer to these moves as the up move and the down move
respectively.

In our tabu search algorithm we disallow (make tabu) reverse moves. For

13

example suppose we choose (because it gives a better overall value for the objective

function) to increase a parameter by its step value of 10 from its current value of 200

to 210 (i.e. to make the up move). Then the reverse move, reducing the parameter by

10 (e.g. from 210 to 200), the down move, is declared tabu (i.e. it cannot be made)

until after a given number of other moves have been examined. Colloquially we can

say that after making a move we are not allowed to reverse the situation straightaway.

Before giving our tabu search algorithm in detail we need define some

notation. Let:

K be the number of parameters that can be varied

L(k) k=1,2,...,K be a list of the these parameters in descending importance order
VALUE(K) be the current value associated with parameter k

T(k,m) be the number of examined moves for which move m for parameter Kk is
tabu, where T(k,m)=0 if the move is not tabu and we use m=1 for the up move and
m=2 for the down move

BEST be the objective function value for the best set of parameter values found
over all iterations

IBEST be the objective function value for the best set of parameter values found
in the current iteration

IBEST_VALUE(K) be the parameter value for variable parameter k in the IBEST
solution

IMPROVED=L1 if an improved solution has been found, else IMPROVED=0
TABU_TENURE be how long a move is tabu for (e.g. TABU_TENURE=20
would tabu moves until 20 other moves have been examined)

Then our tabu search algorithm is as follows:

1.

Initialise all parameter values VALUE(k) k=1,...,K to the base case initial values
as set by NATS personnel and evaluate the solution. Set BEST = the base case
objective function value.

Set T(k,m)=0 k=1,...,K; m=1,2 (i.e. set all up and down moves as not tabu).

Set p=1 (p represents which of the K variable parameters is currently being
examined). Set IMPROVED=0 and IBEST=-co.

Form=1to 2 do:

5. Set M=2 and S=+1 if m=1 or M=1 and S=-1 if m=2 (M is the reverse move to
mand S is +1 for an up move, -1 for a down move).

6. Examine, if possible, move m for the parameter associated with L(p). It will

14

not be possible to examine this move if the move is tabu (i.e. T(p,m)>0) or if
the current value VALUE(p) of the parameter is already at its pre-set limit
(upper limit if m=1, lower limit if m=2).

If it is possible to examine the move then:

7. Set VALUE(p)=VALUE(p)+Sx[step value for L(p)] and let V be the
resulting objective function value associated with the parameter set
after the move has been made.

8. Set T(k,j)=max[0,T(k,j)-1] k=1,...,K; j=1,2 (reduce all tabu values by
1).

9. If V> IBEST then set g=p, r=M, IBEST=V and IBEST_VALUE(K)=
VALUE(K) k=1,...,K.

10. If V > BEST (i.e. we have found a better solution) then:

set IMPROVED=1, BEST=V and T(p,M)=TABU_TENURE to
tabu the reverse move; go to step 6 to examine the same move
again. This is an aggressive strategy in that if a move is successful
at finding an improved solution we immediately examine the same
move for the same parameter again to see if we can get further
improvement.

else
set VALUE(p)=VALUE(p)-Sx[step value for L(p)] to reset the
current value for parameter p

endif

endif

enddo

11. Set p=p+1 and if p<K go to step 4 to examine moves for this new parameter.

12. If IMPROVED-=1 then we have improved the BEST solution at some point in the
last examination (steps 3 to 11) of up/down moves for the K variable parameters.
Go to step 3 to see if further improvements can be made.

13. If IMPROVED=0 then we have failed to improve the BEST solution in the last
examination (steps 3 to 11) of up/down moves. To proceed from this point we
start another iteration but with the solution from which we examine moves being
the IBEST solution. Set VALUE(k)=IBEST_VALUE(K) k=1,...,K; T(q,r)=
TABU_TENURE (tabu the reverse of the move that led to IBEST); and go to step
3.

With regard to implementing the above algorithm we typically stop after a pre-

specified computation time or if all moves are tabu (T(k,m)>0 [k,m). In terms of

15

computation time one iteration (steps 3 to 11) requires the evaluation of O(2K)
different parameter sets.

Probably the most difficult aspect of the above algorithm to grasp is the role of
IBEST. At step 12 above if BEST has been improved then the next iteration at step 3
starts with VALUE(K) k=1,...,K being the parameter values associated with this
BEST solution. Hence in this case the value of IBEST is irrelevant. IBEST only
becomes relevant if we do not improve BEST in an iteration. In such a case were we
to start the next iteration with BEST (which has been unchanged since the last
iteration) we would be repeating ourselves. Therefore we start the next iteration with
IBEST (step 13).

To illustrate this suppose that we have an example with two parameters A and
B currently set in the BEST solution to values [a,b] with this solution having an
objective function evaluation of value 10. Assuming (for simplicity) that the step
value for both parameters is 1, and no moves are tabu, then an iteration though these
parameters will involve examining four options: [a+1,b], [a-1,b], [a,b+1] and [a,b-1].
Suppose the objective function evaluation of these solutions is 8, -2, 5 and 9
respectively. None of these solutions improves upon BEST and so the next iteration
will start from the IBEST solution, which in this case is [a,b-1] of value 9. This
solution was produced by a down move for B so the up move for B will now be tabu.
Hence the next iteration will involve only three options: [a+1,b-1], [a-1,b-1] and

[a,b-2]. Note that none of these options were examined in the previous iteration.

16

4, RESULTS

The tabu search algorithm described in this paper has been used by NATS to
test the combined effectiveness of new STCA logic proposed to improve alerting
performance. By logic here we mean the rules that are embedded in the STCA
computer system for conflict alert. In this section we describe this application of the
algorithm.

New STCA logic (either changes to existing rules or the addition of new rules)
is generally proposed following analysis of current alerting performance for a serious
encounter incident (such as an incident that would be classified as category 1 in Table
1). As such new logic tends to be proposed in isolation, i.e. with reference to a
particular encounter. Before any proposed logic can be implemented it is necessary to
test the effect it has on overall system performance. This involves optimising any new
parameters associated with the new logic, and also re-optimising some existing
parameters to take into account the addition of the new logic. This task is made more
difficult when more than one set of new logic has been proposed, as optimisation is
then required for a range of new parameter values and a number of existing parameter
values may need modification.

Previously, this process involved optimising each new set of logic individually
and assessing the benefit provided to alerting performance. The combined effect was
then tested by incrementally activating each new set of logic (starting with the set that
provided the most benefit when tested individually) and measuring the cumulative
benefit. Due to constraints upon the time/effort that could be devoted to this process it
was generally only possible to undertake a limited re-optimisation of parameters at

this stage.

17

This approach aimed to identify which subset of proposed logic enhancements
provided the most benefit, however it was recognised that adding new logic with
parameter sets optimised in isolation does not necessarily give a true indication of the
potential benefit of a subset of new logic.

The tabu search algorithm described in this paper has been used to test, and
optimise, the combined effectiveness of a set of proposed logic. This showed that the
tabu search algorithm was effective as it allowed thorough testing of the new logic.
Moreover analysis of the BEST solutions generated from a number of runs
highlighted combinations of new logic that offered some potential benefit.

In certain situations the introduction of new logic into the STCA system can
change the functionality required from existing logic, hence some quite radical
changes in existing parameters may be required to improve performance. When this
was the case it was found that the tabu search algorithm could have some difficulties
in finding new BEST solutions as the addition of the new logic would initially lead to
a worsening of performance — thus the search procedure could become trapped in a
region of the parameter search space which did not utilise the new logic. This was
overcome by manual analysis to find an appropriate starting point for the
optimisation.

One problem, related to the objective function adopted as opposed to the tabu
search algorithm itself, is with regard to the assessment of additional warning time for
encounters. The value of additional warning time depends both on the encounter
characteristics and on the characteristics of the alert before and after a parameter
change. The objective function (Table 2) currently considers the former in terms of
severity category only, and does not consider the latter at all. As a result the objective

function would erroneously value a gain of seven cycles warning time for a category 1

18

encounter that already had sufficient warning time, above a gain of a single cycle of
warning time for six category 1 encounters which had short warning times.

Overcoming this problem is only possible by adaptation of the objective
function to consider each encounter individually and in detail. For example this could
be done by defining a warning time value W(j) for each category 1/2/3 track pair j in
the track database such that only warning times < W(j) for track pair j contribute to
the objective function. Since a typical track database for LATCC-TC might contain
250,000 track pairs of which 250 would be category 1, 200 category 2 and 2000
category 3 this would involve individually setting values for W(j) for
j=250+200+2000=2450 track pairs. This would be a time-consuming task.

One other problem encountered was overfitting. Validation of the final BEST
solution parameter set on an independent track database showed less benefit than
demonstrated on the track database used for parameter determination. Whilst it may
be possible to reduce this problem by increasing the size of the track database used for
parameter determination, in practice this is difficult due to the time required to
produce a track database containing sufficient detail for this type of optimisation. In
any event it is clear that, however we choose to generate parameter sets for
examination, whether by tabu search or some other algorithm or (as previously) by
human insight, overfitting in the sense of the parameters that best fit the track
database used for parameter determination performing less well when validated
against an independent track database will often exist.

The above problems mean that some manual analysis by NATS personnel is
still required, both before and after an optimisation. However despite these problems
our tabu search algorithm has clearly demonstrated the potential to reduce the

requirement for human intervention, thus enhancing NATS’s ability to discover

19

parameter sets which improve STCA performance, whilst also improving the
efficiency by which this may be achieved.

In organisational terms the algorithm described in this paper has highlighted
two issues:

1. NATS STCA optimisation tools require some modifications to enable more
effective comparisons to be made between different parameter sets; and

2. the time required to process a track database for a single set of parameter values
means that some runs of the algorithm are resulting in elapsed times of a week or
more.

This first issue is one of inherited software. NATS has a number of tools for

generating text files that give a detailed analysis of precisely where a new parameter

set differs from a base case, as well as summary statistics. However wading through

text files to try and find desired figures, whilst feasible, is time-consuming for the

personnel concerned.

This second issue relates to the size of the track database, typically around
250,000 track pairs, and the inherent nature of the process. All of these track pairs
have to be individually processed to see if a conflict is occurring. As mentioned
previously this can take around 6 minutes. As O(2K) parameter sets need to be
evaluated for one iteration though K variable parameters then this corresponds to a
computation time of O(12K) minutes. Moreover a significant number of such
iterations may be desired, since we cannot guarantee to improve BEST at each and
every iteration. The combined effect of this is elapsed times running to one week or
more, hardly ideal in the 21 century.

It is clear that computationally the bottleneck is the 6 minutes required by the

STCA system to process the track database. This equates to processing 250000/(6x60)

20

= approximately 700 track pairs per second. There are two possible options for
reducing the time required by the STCA system:

1. reduce the size of the track database; and/or

2. process more track pairs per second.

NATS has experimented with the first option. However experience has been that
unless the track database used in the tabu search algorithm for parameter
determination is relatively large the parameters found, when validated against an
independent track database, often do not improve upon the base case parameters
applied to the same independent track database.

With respect to the second option the rate of processing of track pairs is
governed by the underlying speed of the computer involved, and the complexity of the
equations that must be considered to determine if a conflict is occurring. Currently
NATS already uses a powerful computer, and the nature of the equations is fixed, so
the only realistic option for significantly increasing the number of track pairs
processed per second is to move to parallel (or distributed) processing. As each track
pair is considered independently this is conceptually easily done. Whilst
implementing the current NATS STCA computer program in a parallel/distributed
computing environment was far beyond the scope of the study reported in this paper it

is both a feasible and logical course of action for the future.

21

5. CONCLUSIONS

In this paper we have described a tabu search algorithm for improving the
parameters associated with the short-term conflict alert system used by NATS. Prior
to the work described here parameter values were determined via extensive human
intervention. Experience with our tabu search approach indicates the potential for
significantly less human intervention and the examination of a greater number of

parameter sets.

REFERENCES

1.

UK Airprox Board, Analysis of airprox in UK airspace — report number 3, (2000).
Available from the UK Airprox Board, Hillingdon House, Uxbridge, Middlesex,
UB10 ORU.

F. Glover, Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research 13 (1986) 533-549.

P. Hansen, The steepest ascent mildest descent heuristic for combinatorial
programming. Presented at the Congress on Numerical Methods in Combinatorial
Optimization, Capri, Italy (1986).

C.R. Reeves (editor), Modern heuristic techniques for combinatorial problems.
Blackwell Scientific Publications, Oxford, (1993).

E.H.L. Aarts and J.K. Lenstra (editors), Local search in combinatorial
optimization. Wiley, (1997).

F.W. Glover and M. Laguna, Tabu search. Kluwer Academic Publishers, (1997).

	National Air Traffic Services (NATS) are the principal providers of air traffic control in the UK. They provide air traffic control at a number of the UK's airports, including the busiest, London Heathrow. An important part of the air traffic control sys
	
	Table 1: Track categorisation

	Each (varying) parameter is allowed to vary between a lower limit and an upper limit from its initial value in terms of a step value. For example if the lower limit for a parameter is 180, the upper limit 210, the initial value 200 and the step value 10,
	
	Table 2: Example scoring function
	Table 3: Example scoring function for “all improve” mode

