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Abstract. This paper presents a comparative study of several asyn-
chronous policies for updating the population in a cellular genetic al-
gorithm (cGA). Cellular GA’s are regular GA’s with the important ex-
ception that individuals are placed in a given geographical distribution
(usually a 2-d grid). Operators are applied locally on a set made of
each individual and the surrounding neighbors, thus promoting intra-
neighborhood exploitation and inter-neighborhood exploration of the
search space. Here, we analyze the respective advantages and draw-
backs of dealing with this decentralized population in the traditional
synchronous manner or in several possible asynchronous update policies.
Asynchronous behavior has proven to be better in many domains such
as cellular automata and distributed GA’s, which, in turn, is also the
main conclusion of this work. We will undergo a structured analysis on
a set of problems with different features in order to get well grounded
conclusions.

1 Introduction

Cellular evolutionary algorithms (cEA) models, also called diffusion or fine-
grained models, are based on a spatially distributed population in which genetic
interactions may only take place in a small neighborhood of each individual.
Individuals are usually disposed on a regular grid of dimensions d = 1, 2 or
3. Cellular evolutionary algorithms were popularized by early work of Gorges-
Schleuter [5], and by Manderick and Spiessen [9]. However, we here want to stress
the difference between the model and its implementation, and this is why we call
them cellular and not fine-grained EA’s. Cellular EA’s are just a new kind of
algorithm, and not a parallel implementation on massively parallel machines.

Although fundamental theory is still an open research line for cEA’s, they
have been empirically reported as being useful in maintaining diversity and pro-
moting slow diffusion of solutions through the grid. Part of their behavior is due
to a lower selection pressure compared to that of panmictic EA’s. The influence
of the neighborhood, grid topology, and grid size/shape on the induced selection
pressure has been investigated in detail in [1, 6, 11, 12] (and tested on different
applications such as combinatorial and numerical optimization).



Let us analyze a typical cGA, an important kind of cEA. The cGA iteratively
considers groups of individuals belonging to the same neighborhood to work with.
In a North-East-West-South (NEWS or Von Newmann) neighborhood type, the
central individual plus its 4 neighbors make up a small pool to apply operators
on. The cGA iterates through the population in various generations. In each
generation, it considers as a central string every individual in the population.
Since a string belongs to several neighborhoods, a change in its contents affects
its neighbors in a smooth manner, representing a good tradeoff between slow
convergence and good exploration of the search space. In a synchronous cGA,
we compute the full new generation incrementally onto a temporary population,
and them replace the full old population with the new one.

Synchronous Cellular Genetic Algorithm (cGA)

proc Reproductive_Cycle (ga):
for s=1 to MAX_STEPS do

for x=1 to WIDTH do
for y=1 to HEIGHT do

n_list = Calculate_neigbors (ga, position (x,y) );
parent1 = Select (n_list);
parent2 = Select (n_list);
Crossover(ga.Pc, n_list[parent1], n_list[parent2], ind_aux.chrom);
Mutate(ga.Pm, ind_aux.chrom);
ind_aux.fitness = ga.Evaluate ( Decode ( ind_aux.chrom) ) ;
Insert_New_Ind(position(x,y),ind_aux,[if better | always], ga, pop_aux);

end_for;
end_for;
ga.pop=pop_aux;
Collect_Statistics (ga);

end_for;
end_proc Reproductive_Cycle;

Cellular EA’s can also be seen as stochastic cellular automata (CA’s) [15, 16]
where the cardinality of the set of states is equal to the number of points in the
search space. CA’s, as well as cEA’s, usually assume a synchronous or parallel
update policy, in which all the cells are formally updated simultaneously. How-
ever, this is not the only option available. Indeed, several works on asynchronous
CA’s have shown that sequential update policies have a marked effect on their
dynamics (see e.g. [7, 13, 14]). While asynchronous updating is physically more
realistic for CA’s due to their finite signal propagation speed, this is not an issue
for cEA, unless they are implemented on an actual massively parallel cellular
machine, which is seldom the case in practice. However, it would be interest-
ing to investigate asynchronous cEA’s and their problem solving capabilities. To
our knowledge, the present paper is the first step in that direction. We will thus
present a few asynchronous update policies for a cEA, and compare them with
the customary synchronous updating on a set of test functions.

The paper is structured as follows. The next section contains some back-
ground on asynchronous cEA’s and explains the techniques we are considering.
Section 3 describes the test problems used, while section 4 gives details on the
cEA parameters employed in the simulations, the performance measures, and
the statistics used. Section 5 contains a discussion of the experimental results,
and section 6 offers our conclusions, as well as some comments on the future
work.



2 Asynchronous Cellular Evolutionary Algorithms

There are many ways for sequentially updating the cells of a cEA with a popu-
lation on a 2-d grid (see an excellent discussion of asynchronous CA’s in [13]).
The most general one is independent random ordering of updates in time, which
consists in randomly choosing the cell to be updated next, with replacement.
This corresponds to a binomial distribution for the update probability. The li-
miting case of such distribution for large n is the Poisson distribution (where n
is the number of cells, or individuals, in the grid). This update policy will be
called uniform choice (UC) in the following.

For comparison purposes we also consider three other update methods: fixed
line sweep, fixed random sweep and random new sweep (we employ the same
terms as in [13]).

– In fixed line sweep (LS), the simplest method, grid cells are updated sequen-
tially (1, 2 . . . n), line by line of the 2-d grid.

– In the fixed random sweep update (FRS), the next cell to be updated is
chosen with uniform probability without replacement; this will produce a
certain update sequence (cj

1, c
k
2 , . . . , cm

n ), where cp
q means that cell number p

is updated at time q and (j, k, . . . , m) is a permutation of the n cells. The
same permutation is then used for the following update cycles.

– The new random sweep method (NRS) works like FRS, except that a random
new cell permutation is chosen anew for each sweep through the array.

A time step is defined to be the action of updating n times, which corresponds
to updating all the n cells in the grid for LS, FRS and NRS, and possibly
less than n different cells in the uniform choice method, since some cells might
be updated more than once. It should be noted that, with the exception of
fixed line sweep, the other asynchronous updating policies are non-deterministic,
representing an additional source of non-determinism besides that of the genetic
operators. An asynchronous parallel implementation could be easily derived for
these algorithms, although we do not explore physical parallelism in this work.

3 Description of the Test Problems

To test the differences between the synchronous and the four asynchronous up-
date models we have decided to use problems representing three large classes of
difficulty with interest in evolutionary computation, namely: deception, multi-
modality, and epistasis. Similarly to the work of Alba and Troya [1], the choice
has been driven to the Massive Multimodal Deceptive Problem (MMDP), the
Frequency Modulation Sounds Problem (FMS), and the P-PEAKS multimodal
generator.

The MMDP has been specifically designed by Goldberg et al. [4] to be dif-
ficult for an EA. It is made up of k subproblems of 6 bits each (see equation
1). The optimum has a value of k and is attained when the unitation of each
subproblem, i.e. the number of ones of its 6-bits defining string, is 0 or 6. Thus



every subproblem xi =< xi1 , ..., xi6 > (i = 1, ..., k) contributes to the fitness of
a possible solution −→x =< x1...xk > according to its unitation:

fMMDP (−→x ) =
k∑

i=1

g(unitation(xi)), (1)

where g is such that g(0) = g(6) = 1, g(1) = g(5) = 0, g(2) = g(4) = 0.36,
g(3) = 0.64. Such function has a quite large number of local optima (22k), while
only 2k are global solutions, and therefore its degree of multimodality is defined
by k. Here we set k = 40, obtaining a considerably large degree of multimodality.

Proposed by Tsutsui et al. [10], the Frequency Modulation Sounds parameter
identification problem (FMS) consists in adjusting a general model y(t) (equation
2) to a basic sound function y0(t) (equation 3). The problem is to evolve a
solution −→x consisting in 6 real parameters (−→x =< a1, w1, a2, w2, a3, w3 >) each
one encoded with 32 bits in the range [−6.4, 6.35], in order y(t) to fit the target
function y0(t).

y(t) = a1 sin(w1tθ + a2 sin(w2tθ + a3 sin(w3tθ))), (2)

y0(t) = 1.0 sin(5.0tθ + 1.5 sin(4.8tθ + 2.0 sin(4.9tθ))). (3)

The goal is, therefore, to minimize the sum of square errors (equation 4):

fFMS(−→x ) =
100∑
t=0

(y(t)− y0(t))2. (4)

The resulting problem is a complex multimodal function having strong epista-
sis with minimum value in −→z , where f(−→z ) = 0. For our calculations, we consider
the algorithm having found an optimum when the error falls below 10−2.

The last optimization task solved in this paper is a problem generator pro-
posed by De Jong et al. [8]. This problem generator is an easily parameterizable
task which has a tunable degree of epistasis, thus allowing to derive instances
with growing difficulty at will. With a problem generator we evaluate our al-
gorithms on a high number of random problem instances, thus increasing the
predictive power of the results for the problem class as a whole. Such a char-
acteristic allows a larger fairness when comparing algorithms, since it implicitly
removes the opportunity to hand-tune algorithms to a particular problem. In
this paper we use the multimodal generator called P-PEAKS (see equation 5).

fP−PEAKS(−→x ) =
1
N

maxp
i=1{N −HammingD(−→x , Peaki)} (5)

The idea is to generate P strings, each of N random bits, that represent
the location of the global optima in the search space. The fitness of a possible
solution (a bit string of length N) is the number of bits it has in common with
the nearest peak in the Hamming space, divided by the length N of the strings.
Problems with a small/large number of peaks are weakly/strongly epistatic. The
instance we use has P = 100 peaks of N = 100 bits each, which represents a
medium-high epistasis level.



4 Parameters and Statistics Used

As we said in the introduction, many authors have already investigated the
influence of the neighborhood, grid topology and grid dimensions on the induced
selection pressure [1, 6, 11, 12]. Reduced grid dimensions of 20×20 have been used
to design efficient cGA’s [1], but, most of the time, larger grids are preferred for
the analysis. For the three problems described in section 3 we have investigated
four different grid sizes, so as to choose the dimension that, for all the problems,
guarantees significant success rate of the five update methods. Each grid size has
been tested 50 times for each update method.

MMDP Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 0% 0% 0% 0% 0%

32× 32 74% 32% 38% 44% 56%

40× 40 98% 86% 92% 84% 94%

50× 50 100% 98% 100% 100% 100%

Table 1. Success rate for the Massive Multimodal Deceptive Problem of the syn-
chronous and the four asynchronous update methods (horizontally) with different grid
dimensions (vertically).

All the results are summarized in tables 1, 2 and 3 and were obtained with
the same internal parameters. For the parent’s selection we have used a roulette
wheel operator among the five individuals in the von Neumann neighborhood
(the central plus the four neighbors in the North, East, West and South posi-
tions). A two point crossover is applied to the two selected parents with prob-
ability 1.0, thus producing an offspring individual (the one with the largest
proportion of the best parent). Such a new solution is then mutated with dif-
ferent mutation probabilities pm for the three problems. The obtained offspring
will replace the considered individual only if it has a better fitness. We stop
the algorithm when a global optimum is found, and we analyze the cost of a
successful run of a cEA by measuring the number of evaluations done. In the
MMDP, an individual is encoded by a 40× 6 = 240 bit string, in the FMS prob-
lem by a 6 × 32 = 192 binary chromosome, and in the P-PEAKS problem by
a binary vector of length 100. The problems’ differences and the different chro-
mosomal lengths determine three mutation probabilities: for the MMDP and
the P-PEAKS problem we set pm to 1/L, having respectively pm = 0.0042 and
pm = 0.01, while for the FMS problem pm is set to 10/L, i.e. pm = 0.052.



FMS Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 0% 0% 0% 2% 0%

32× 32 4% 0% 2% 0% 2%

40× 40 8% 8% 6% 8% 6%

50× 50 24% 22% 12% 12% 12%

Table 2. Success rate for the Frequency Modulation Sounds problem of the syn-
chronous and the four asynchronous update methods (horizontally) with different grid
dimensions (vertically).

P-PEAKS Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

20× 20 52% 26% 36% 34% 36%

32× 32 100% 100% 100% 100% 100%

40× 40 100% 100% 100% 100% 100%

50× 50 100% 100% 100% 100% 100%

Table 3. Success rate for the P-PEAKS problem of the synchronous and the four
asynchronous update methods (horizontally) with different grid dimensions (vertically).

Capcarrère et al. defined a number of statistical measures that are useful for
understanding the dynamical behavior of cellular evolutionary algorithms. Two
kinds of statistics were used: genotypic and phenotypic. Genotypic measures em-
body aspects related to the genotypes of individuals in a population. Phenotypic
statistics concern properties of individual performance, essentially fitness (see [3]
for the exact definitions). Here, we use the variance and the mean fitness as phe-
notypic statistics, and the entropy as a statistics pertaining to the genotype (a
phenotypic diversity index based on fitness entropy can also be defined but it
will not be used here). Differently from the paper of Capcarrère et al., we calcu-
late the entropy in the interval [0, 1], instead of in the interval [0, log(N)] (where
N is the population size). Such a result is obtained setting the multiplicative
constant in the entropy formula to 1/ log(N) instead of using 1.

5 Experimental Results

In order to have comparable results for all the three problems, we have decided
to set the population to the 50× 50 grid size (non-square grids analyzed in [1]).
The results, for all the runs, are summarized in table 4: for each update method
the average number of evaluations needed to solve the three problems is shown.

For the MMDP and the P-PEAKS problem, where success rate is 100%,
we can see that the synchronous update method is more expensive than every
asynchronous method. We can therefore deduce that for multimodal, deceptive
(MMDP) and highly epistatic (P-PEAKS) problems it should be more efficient
to implement an asynchronous update method rather than a synchronous one.



Synchronous Line Sweep Fixed Random Sweep New Random Sweep Uniform Choice

MMDP 277950 201887 216300 217850 238850

FMS 560760 543928 427291 480500 534772

P-PEAKS 243300 189550 191700 201400 203350

Table 4. Mean number of evaluations for the three problems (vertically) and the five
update methods (horizontally).

The behavior of these two problems is slightly different for each asynchronous
updating policy. For MMDP and P-PEAKS the Line Sweep method is the fastest
policy, and the New Random Sweep is faster than Uniform Choice. The Fixed
Random Sweep policy has a convergence speed similar to the Line Sweep for the
highly epistatic problem, and to the New Random Sweep for the multimodal
and deceptive problems. Such a different speed can be seen in figure 1, where
a sample curve is drawn for each update method, both for MMDP (a) and for
P-PEAKS (b).
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Fig. 1. A sample run of each update method for the MMDP (a), and for the P-PEAKS
problem (b).

This difference in the speed of convergence is followed by a consistent beha-
vior of the entropy curves (see figure 2): the faster the convergence speed is, the
lower the entropy is. Such a result confirms the intuitive idea that the genotypic
diversity decreases proportionally to the convergence speed, i.e. the faster a cEA
is, the bigger the upward thrust of the populations is. The variance and the
standard deviation values are consistent with the described behaviors.

For the FMS problem the comparison between the convergence speeds of the
different update methods must be coupled with their different success rates. In
fact, as it can be seen comparing tables 2 and 4, the synchronous and the Line
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Fig. 2. A sample curve of the entropy of each update method for the MMDP (a) and
for the P-PEAKS problem (b).

Sweep methods are slower than the Fixed Random Sweep, the New Random
Sweep and the Uniform Choice methods (see also figure 3), but their success
rate are twice the percentage of the other three asynchronous update methods.
So, Line Sweep seems a good tradeoff between speed and accuracy, at least for
problems similar to FMS. FMS showed to be the most difficult problem on which
our cEA’s have been tested in this study, due to its huge and complex search
space. The entropy at the end (not shown here) is always very high, in the
interval [0.9, 0.92] for every algorithm.
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Fig. 3. A sample run of each update method for the FMS problem.



We have seen that, contrary to the behavior of cellular automata (CA’s), the
simple Line Sweep policy performs better than the rest in cEA’s. Such a result
can be explained by the fact that, in cEA’s, we don’t have a propagation of signals
like in CA’s, having instead a propagation of information on the solution of the
problem. It is true that Line Sweep fixes a preferred direction of propagation in
the axes of the grid, but such an order speeds the propagation of information
in the population. In fact, if we take our 50× 50 toroidal population grids with
the chosen von Neumann neighborhood, in synchronous cEA’s the information
of an individual will take at least 50 time steps (i.e. 125000 evaluations) to
reach the farthest individual in the grid, while in a cEA with asynchronous Line
Sweep update method, it can take a small value such as 1 time step (i.e. 2500
evaluations).

6 Conclusions

In this paper we have analyzed the behavior of three alternative policies for
asynchronously updating the population of a decentralized cellular GA. We have
initiated this research line because we had some preliminary expectations relating
asynchronous policies in the field of cellular automata [14] and distributed GA’s
[2]. We have tackled this study by considering three representative problems:
deceptive (MMDP), epistatic (P-PEAKS) and hard (FMS) problems. Our first
conclusion is that, for any size of the search grid, the synchronous update policy
is the best in terms of percentage of hits, because it always provides an equal or
larger success rate with respect to any of the asynchronous policies.

However, if we consider the number of evaluations needed to locate the op-
timum (efficiency) we got the opposite conclusion: asynchronous methods are
faster (sometimes much faster) than the synchronous one. A simple asynchronous
policy such that Line Sweep (LS) provides the faster convergence for two of the
problems (MMDP and P-PEAKS), while it shows a high and desirable success
rate (similar to that of the synchronous update). In the hard FMS problem,
Fixed Random Sweep got a considerably faster solution, and can be pointed out
as a good approach.

Globally stated, fast convergence means local optima in evolutionary algo-
rithms, but cellular GA’s in general, and the Line Sweep policy in particular,
offers a good tradeoff solution to this problem without bothering researchers
with a large number of parameters to be tuned (maybe only the ratio between
the size of the grid and the neighborhood being used [1]).

As a future work, we will enlarge the set of considered problems, include a
study of the influence of the shape of the 2-d grid containing the population,
and try to better characterize the relationship between the performance measures
and the kind of problems.
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the effects of epistasis. In T. Bäck, editor, Proceedings of the Seventh ICGA, pages
338–345. Morgan Kaufmann, 1997.

9. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Genetic Al-
gorithms, pages 428–433. Morgan Kaufmann, 1989.

10. D. Corne S. Tsutsui, A. Ghosh and Y. Fujimoto. A real coded genetic algorithm
with an explorer and an exploiter populations. In T. Bäck, editor, Proceedings of
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Seventh International Conference on Genetic Algorithms, pages 181–186. Morgan
Kaufmann, 1997.

13. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in cellular
automata. BioSystems, 51:123–143, 1999.

14. M. Sipper, M. Tomassini, and M. S. Capcarrere. Evolving asynchronous and scal-
able non-uniform cellular automata. In G. D. Smith, N. C. Steele, and R. F.
Albrecht, editors, Proceedings of International Conference on Artificial Neural Net-
works and Genetic Algorithms (ICANNGA97), pages 67–71. Springer-Verlag, Vi-
enna, 1997.

15. M. Tomassini. The parallel genetic cellular automata: Application to global func-
tion optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors,
Proceedings of the International Conference on Artificial Neural Networks and Ge-
netic Algorithms, pages 385–391. Springer-Verlag, 1993.

16. D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms, page 658. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.


