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Abstract. We present quantitative models for the selection pressure on
cellular evolutionary algorithms structured as a ring of cells. We obtain
results for synchronous and asynchronous cell update policies. Theoreti-
cal results are in agreement with experimental values and show that the
selection intensity can be controlled by using different update methods.

1 Introduction

Cellular evolutionary algorithms (cEAs) are an example of spatially structured
evolving populations that is often used in optimization and other applications
[1]. The structure may be an arbitrary graph, but more commonly it is a one-
dimensional or two-dimensional grid. This kind of evolutionary algorithm has
become popular because it is easy to implement on parallel hardware of the
SIMD or MIMD type. Although SIMD machines have almost disappeared except
for special purpose computing, cEAs can still be very conveniently implemented
on computer clusters with excellent performance gains. However, what really
matters is the model, not its implementation. Thus, in this work we will focus
on cEA models and on their properties without worrying about implementation
issues.

The theory of cEAs is relatively underdeveloped, although several results
have been published on selection pressure and convergence speed. Sarma and
De Jong performed empirical analyses of the dynamical behavior of cellular
genetic algorithms (cGAs) [2,3]. Their work concentrated on the effect that the
local selection method, the neighborhood size, and neighborhood shape have
on the selection pressure. Rudolph and Sprave [4] have shown how cGAs can
be modeled by a probabilistic automata network and have provided proofs of
complete convergence to a global optimum based on Markov chain analysis for
a model including a fitness threshold. We have recently studied the selection
pressure behavior in cEAs on two-dimensional, torus-shaped grids [5].

Our purpose here is to investigate selection pressure in one-dimensional sys-
tems in detail. We study two kinds of dynamical systems: synchronous and asyn-
chronous. For synchronous cEAs, some results are available, such as Sprave’s
hypergraph model [6], Gorges-Schleuter’s study of evolution strategies [7], and
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Rudolph’s theoretical analysis [8]. We complete these results and extend the in-
vestigation to asynchronous linear cEAs, which, to our knowledge, have never
been studied before from this perspective. In particular, we would like to be
able to model observed takeover-time curves with simple difference equations
describing the propagation of the best individual under probabilistic conditions.

Section two introduces linear synchronous and asynchronous cEAs. Next we
define the concept of takeover time and the models predicting the selection pres-
sure curves in the synchronous and asynchronous update methods. Empirical re-
sults and model accuracy are then discussed comparing the experimental curves
to the predicted curves. Section 6 gives our conclusions and the future lines of
this research.

2 Linear Cellular Genetic Algorithms

In a linear cEA the individuals (also called cells) are arranged along a line.
Depending on whether the last and the first individuals communicate or not we
have a ring or an array topology. Here we assume the first case, which is more
common. Each individual has the same number of neighbors on both sides, and
this number depends on the radius r. We will only consider the simplest case,
r = 1, which means that there are three neighbors, including the central cell
itself. Let us call S the (finite) set of the states that a cell can assume: this is the
set of points in the (discrete) search space of the problem. The set N; is the set
of neighbors of a given cell i, and let |N;| = N be its size. The local transition
function ¢ can then be defined as:

¢:8N 5 8,

which maps the state s; € S of a given cell i into another state from S, as a
function of the states of the NV cells in the neighborhood N;. In our case, namely
a line of cells with r =1, ¢ takes the following form:

¢() = Plzi(t +1) | zia(t), 2i(t), zita (D)},

where P is the conditional probability that cell z; will assume at the next time
step t + 1 a certain value from the set S, given the current (time t) values
of the states of all the cells in the neighborhood. We are thus dealing with
probabilistic automata, and the set S should be seen as a set of values of a
random variable. The probability P will be a function of the particular selection
and variation methods; that is, it will depend on the genetic operators. In this
paper we model cEAs using two particular selection methods: binary tournament
and linear ranking, but the same framework could easily be applied to other
selection strategies.

A cEA starts with the cells in a random state and proceeds by successively
updating them using evolutionary operators, until a termination condition is
met. Updating a cell in a cellular EA means selecting two parents in the indi-
vidual’s neighborhood, applying genetic operators to them, and finally replacing
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the individual if an offspring has a better fitness. Cells can be updated syn-
chronously or asynchronously. In synchronous, or parallel, update all the cells
change their states simultaneously, while in asynchronous, or sequential, update
cells are updated one at a time in some order.

There are many ways for sequentially updating the cells of a cEA (for a
discussion of asynchronous update in cellular automata see [9]). We consider
four asynchronous update methods [9]:

— In fized line sweep (LS), the n grid cells are updated sequentially (1,2...n).

— In fized random sweep (FRS), the next cell to be updated is chosen with
uniform probability without replacement; this will produce a certain update
sequence (cj,ck,...,c™), where ch means that cell number p is updated at
time g and (4, k, .. . ,m) is a permutation of the n cells. The same permutation
is then used for all update cycles.

— The new random sweep method (NRS) works like FRS, except that a new
random cell permutation is used for each sweep through the array.

— In uniform choice (UC), the next cell to be updated is chosen at random with
uniform probability and with replacement. This corresponds to a binomial
distribution for the update probability.

A time step is defined as updating n times sequentially, which corresponds
to updating all the n cells in the grid for LS, FRS and NRS, and possibly less
than n different cells in the uniform choice method, since some cells might be
updated more than once.

3 Takeover Time

To study the induced selection pressure without introducing the perturbing effect
of variation operators, a standard technique is to let selection be the only active
operator, and then measure the time it takes for a single best individual to
conquer the whole population i.e., the takeover time [10]. A shorter takeover
time thus means a higher selection pressure. Takeover times have been derived by
Deb and Goldberg [10] for panmictic populations and for the standard selection
methods. These times turn out to be logarithmic in the population size, except
in the case of proportional selection, which is a factor of n slower, where n is the
population size.

It has been empirically shown in [2] that when we move from a panmictic
to a square grid population of the same size with synchronous updating of the
cells, the selection pressure induced on the entire population is weaker.

A study on the selection pressure in the case of ring and array topologies in
one dimensional cEAs has been done by Rudolph [8]. Abstracting from specific
selection methods, he splits the selection procedure into two stages: in the first
stage an individual is chosen in the neighborhood of each individual, and then, in
the second stage, for each individual it is decided whether the previously chosen
individual will replace it in the next time step. Rudolph derives the expected
takeover times for the two topologies as a function of the population size and
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the probability that in the selection step the individual with the best fitness is
selected in the neighborhood.

Following Rudolph’s hypothesis of non-extinctive selection methods, in this
paper we study in detail the one-dimensional case. Moreover, we obtain results
not only in the synchronous update case, but also for the asynchronous models
presented in the previous section. Models for the growth of the best individual in
the form of difference equations are presented in the next section. These models
will then be compared with the experimental results in Section 5.

4 Models

Let us consider the random variables V;(k) € {0,1} indicating the presence in
cell i(1 <4 < n) of a copy of the best individual (V;(k) = 1) or of a worse
one (V;(k) = 0) at time step k, where n is the the population size. The random
variable

denotes the number of copies of the best individual in the population at time
step k. Initially V;(1) =1 for some individual 4, and V;(1) = 0 for all j # 3.

Following Rudolph’s definition [8], if the selection mechanism is non-extinctive,
the expectation E[T] with T = min{k > 1 : N(k) = n} is called the takeover
time of the selection method. In the case of spatially structured populations the
quantity E;[T], denoting the takeover time if cell ¢ contains the best individual
at time step 1, is termed the takeover time with initial cell . Assuming a uni-
formly distributed emergence of the best individual among all cells, the takeover
time is therefore given by

E[T) = %ZEi[T].

In the following sections we give the recurrences describing the growth of
the random variable N (k) in a cEA with ring topology for the synchronous and
the four asynchronous update policies described in Section 2. We consider a
non-extinctive selection mechanism that selects the best individual in a given
neighborhood with probability p € (0,1).

4.1 Synchronous Takeover Time

In a synchronous cEA, at each time step k the expected number of copies N (k)
of the best individual is independent from its initial position. Since we consider
neighborhoods of radius 1, the set of cells containing a copy of the best individual
will always be a connected region of the ring. Therefore at each time step, only
two more individuals (the two adjacent to the connected region of the ring)
will contain a copy of the best individual with probability p. The growth of the
quantity N (k) can be described by the following recurrence:
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N(O) =1,

E[N(k)] = PIN(k—1) =j] (j + 2p).

Jj=1

Since 377, P[N(k—1) = j] = 1, and the expected number E[N (k—1)] of copies
of the best individual at time step k —1 is by definition 2;21 P[N(k—1) =j] 4,
the previous recurrence is equivalent to

{N@zL
E[N(k)] = E[N(k — 1)] + 2p.

The closed form of this recurrence is E[N (k)] = 2pk + 1, therefore the expected
takeover time E[T] for a synchronous ring cEA with n individuals is

E[T)= 2ip (n—1).

Rudolph [8] gave analytical results for the ring with synchronous update only
and for a generic probability of selection p. Although obtained in a different way,
the previous expression and his equation (2) give nearly the same results for large
population sizes n. In fact, his equation, for large n, reduces to % — %, while our

equation gives % - %. Given that the first term quickly dominates the second

for large n, the two expressions are equivalent.

4.2 Asynchronous Fixed Line Sweep Takeover Time

Let us consider the general case of an asynchronous fixed line sweep cEA, in
which the connected region containing the copies of the best individual at time
step k is B(k) = {r,...,s}, 1 <r < s < n. At each time step the cell » — 1 will
contain a copy of the best individual with probability p, while the cells s+ j (with
j=1,...,n — s) will contain a copy of the best individual with probability p’.
The recurrence describing the growth of the random variable N (k), is therefore

N(O) =1, |
E[N(k)] = Z P[N(k—1) = j] (J' +p+ Zp’) :

Since Z?;lj p' is a geometric progression, for large n we can approximate this
quantity by the limit value p/(1 — p) of the summation. The recurrence is there-
fore equivalent to the following one:

N(0) =1,
{ E[N(k)] = BIN(k = 1)]+p+ & = E[N(k - 1)] + 1=5.

1-p

The closed form of the previous recurrence being
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1
E[N(k)] = - k+1,
we conclude that the takeover time for an asynchronous fixed line sweep cEA
with a population of size n is

ET]=(1-p)(n-1).

4.3 Asynchronous Fixed and New Random Sweep Takeover Time

The mean behaviors of the two asynchronous fixed and new random sweep up-
date policies among all the possible permutations for the sweeps are equivalent.
We therefore give only one model describing the growth of the random variable
N(k) for both policies.

Let us again consider the general case in which the connected region contain-
ing the copies of the best individual at time step k is B(k) = {r,...,s} (with
1 <7 <s<n). The cells r — 1 and s + 1 have a probability p of containing a
copy of the best individual at the next time step. Because of symmetry reasons,
we consider only the part of the ring at the right side of the connected region.
The cell s 4+ 2 has a probability 1/2 to be contained in the set of cells after cell
s+ 1 in the sweep, so it has a probability (p/2)p to contain a copy of the best
individual in the next time step. In general, a cell s+ j + 1 has a probability 1/2
to be after cell s + j in the sweep, so it has a probability (p/2)?p to contain a
copy of the best individual in the next time step. The recurrence describing the
growth of the random variable N (k), is therefore

N(0) =1,
FING] = Y PING—1) = 7 <y+22 )" )
j=1
which can be transformed into the recurrence
N(0) =1,
E[N(k)] =" PIN(k-1) = j] <]+4Z()>
j=1

Since Y1 (p/ 2)% is a geometric progression, for large n we can approximate
this quantlty by the limit value p/(2 — p) of the summation. The recurrence is
thus equivalent to the following one:

N(0) =1,
{E[N(k)] = E[N(k - 1)]+ 5.

The closed form of the previous recurrence being

EING) = 2 k41,
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we conclude that the expected takeover time for an fixed (or new) random sweep
asynchronous cEA with a population of size n is

ﬂﬂ:zigm—u

4.4 Asynchronous Uniform Choice Takeover Time

To model takeover time for asynchronous uniform choice cEAs it is preferable to
use cell update steps u instead of time steps in the recurrences. As for the other
update policies the region containing the copies of the best individual at update
step u is a connected part of the ring B(u) = {r,...,s} (with 1 <r < s < n).
At each update step the two cells  — 1 and s — 1 have probability 1/n to be
selected, and each cell has a probability p, if selected, to contain a copy of the
best individual after the selection and the replacement phases. The recurrence
describing the growth of the random variable N(u), counting the number of
copies of the best individual at update step u thus becomes:

N(0) =1,
" 1
V) = 3 PN -1) = (+259).
which can be transformed into
N(0) =1,
E[N(u)] = E[N(u—1)]+2 L p.
We can easily derive the closed form of the previous recurrence:

E[N(u)] = %pu+1.

Since a time step is defined as n update steps, where n is the population size,
the expected takeover time for an uniform choice asynchronous cEA is

mﬂzim_u

We notice that the expected takeover time for a uniform choice asynchronous
cEA is equal to the expected takeover time for a synchronous cEA.

It should be noted that the present asynchronous uniform choice update
model is very similar to what goes under the name of nonlinear voter model in
the probability literature [11].

5 Empirical Results

Since cEAs are good candidates for using selection methods that are easily ex-
tensible to small local pools, we use binary tournament and linear ranking in
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our experiments. Fitness-proportionate selection could also be used but it suf-
fers from stochastic errors in small populations, and it is more difficult to model
theoretically since it requires knowledge of the fitness distribution function. The
cEA structure has ring topology of size 1024 with neighborhood of radius 1. Only
the selection operator is active: for each cell it selects one individual in the cell
neighborhood (the cell and its two adjacent cell at its right and at its left), and
the selected individual replaces the old individual only if it has a better fitness.

5.1 Binary Tournament Selection

We have used the binary tournament selection mechanism described by Rudolph
[8]: two individuals are randomly chosen with replacement in the neighborhood
of a given cell, and the one with the better fitness is selected for the replacement
phase.

Figure 1 shows the growth curves of the best individual for the synchronous
and the four asynchronous update methods. We can see how, as the models de-
rived in the previous section predict, the mean curves for the synchronous and
the asynchronous uniform choice cases are superposed. Also the mean curves for
the two asynchronous fixed and new random sweep show a very similar beha-
vior. The graph shows that the asynchronous update methods give an emergent
selection pressure greater than that of the synchronous case, growing from the
uniform choice to the line sweep, with the fixed and new random sweep in be-
tween.

1000+

Best Individual Copies

— synchronous
uniform choice
- - new random sweep
- fixed random sweep
line sweep
T :

400 600 800 1000 1200
Time Steps

Fig. 1. Takeover times with binary tournament selection: mean values over 100 runs.
The vertical axis represents the number of copies N (k) of the best individual in each
population as a function of the time step k.

The numerical values of the mean takeover times for the five update methods,
together with their standard deviations are shown in Table 1, where it can be
seen that the fixed random sweep and new random sweep methods give results
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that are statistically indistinguishable. The same can be said for the synchronous
and the uniform choice methods.

Synchro LS FRS NRS UC
Mean Takeover Time 925.03 569.82 666.18 689.29 920.04
Standard Deviation 20.36 24.85 17.38 20.27 26.68

Table 1. Mean takeover time and standard deviation of the tournament selection for
the five update methods.

Since we use a neighborhood of radius 1, at most one individual with the best
fitness will be present in the neighborhood of a considered cell, except for the
last update when there are two of them. It turns out that the probability for an
individual having a copy of the best individual in its neighborhood to select it
is equal to p = 5/9. Using this probability in the models described in Section 3,
we calculated the theoretical growth curves. Figure 2 shows the predicted and
the experimental curves for the five update methods, and the mean square error
between them.

Looking at the curves, it is clear that the models faithfully predict the ob-
served takeover times. Moreover, the equivalence between new random sweep
and fixed random sweep, as well as that of synchronous and uniform choice are
fully confirmed. The only model presenting a slight discrepancy between theory
and experiment is the line sweep. We intend to investigate the source of this
error further.

5.2 Linear Ranking Selection

We have used a standard linear ranking selection mechanism. The three indi-
viduals in the neighborhood of a considered cell are ranked according to their
fitnesses: each individual then has probability (s —4)/s to be selected for the
replacement phase, where s is the number of cells in the neighborhood (s = 3 in
our case) and ¢ is its rank in the neighborhood.

Figure 3 shows the growth curves of the best individual for the synchronous
and the four asynchronous update methods. We can observe in the linear rank-
ing case the same behavior that emerged in the binary tournament case: the
mean curves for the synchronous and the asynchronous uniform choice cases are
superposed, and the mean curves for the two asynchronous fixed and new ran-
dom sweep show very similar behaviors. The graph shows that the asynchronous
update methods give an emergent selection pressure greater than that of syn-
chronous one, growing from the uniform choice to the line sweep, with the fixed
and new random sweep in between. The numerical values of the mean takeover
times for the five update methods, together with their standard deviations are
shown in Table 2. Again, the results show that the two random sweep methods
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Fig. 2. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of binary tournament selection for four update methods: syn-
chronous (a), asynchronous line sweep (b), asynchronous fixed random sweep (c), asyn-
chronous new random sweep (d). Asynchronous uniform choice gives the same curve
as the synchronous update, therefore it is omitted.

are statistically equivalent, which is also the case for the synchronous and uni-
form choice methods.

With this linear ranking selection method, a cell having a copy of the best
individual in its neighborhood has a probability p = 2/3 of selecting it. Using
this value in the models described in Section 3, we can calculate the theoretical
growth curves. Figure 4 shows the predicted and the experimental curves for the
five update methods, and the mean square error between them. The agreement
between theory and experiment is very good.

6 Conclusions and Future Work

We have presented quantitative models for the takeover time in cellular evolu-
tionary algorithms structured as a ring with nearest neighbor interactions only.

Synchro LS FRS NRS UC
Mean Takeover Time 768.04 387.09 519.92 541.14 766.5
Standard Deviation 17.62 19.21 14.26 14.48 25.44

Table 2. Mean takeover time and standard deviation of the linear ranking selection
for the five update methods.
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Fig. 3. Takeover times with linear ranking selection: mean values over 100 runs. The
vertical axis represents the number of copies N(k) of the best individual in each pop-
ulation as a function of the time step k.
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Fig. 4. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of linear ranking selection for four update methods: synchronous
(a), asynchronous line sweep (b), asynchronous fixed random sweep (c), asynchronous
new random sweep (d). Asynchronous uniform choice gives the same curve as the
synchronous update, therefore it is omitted.

New results have been obtained for asynchronous cell update policies. The mo-
dels are based on simple difference probabilistic equations. We have studied two



19012 M. Giacobini, M. Tomassini, and A. Tettamanzi

types of selection mechanisms that are commonly used in cEAs: binary tourna-
ment and linear ranking. With these selection methods, our results show that
there is a good agreement between theory and experiment; in particular, we
showed that asynchronous cell update methods permit to control the selection
intensity in an easy and principled way, without using ad hoc parameters.

In the future, we intend to extend this type of analysis to larger neighbor-
hoods, and to more complex topologies such as two and three-dimensional grids,
and to general graph structures. Moreover, we intend to investigate Markov chain
modeling of our system and the relationships that may exist with probabilistic
particle systems such as voter models.
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