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Abstract. This paper presents a theoretical study of the selection pres-
sure in asynchronous cellular evolutionary algorithms (cEAs). This work
is motivated by the search for a general model for asynchronous update
of the individuals in a cellular EA, and by the necessity of better ac-
curacy beyond what existing models of selection intensity can provide.
Therefore, we investigate the differences between the expected and actual
values of the selection pressure induced by several asynchronous update
policies, and formally characterize the update dynamics of each variant
of the algorithm. New models for these two issues are proposed, and are
shown to be more accurate (lower fit error) than previous ones.

1 Introduction

Cellular evolutionary algorithms (cEAs), also called diffusion or fine-grained
models, have been popularized, among others, by early work of Gorges-Schleuter
[4] and Manderick and Spiessen [6]. These models are based on a spatially dis-
tributed population in which genetic operations may only take place in a small
neighborhood of each individual. Usually, individuals are arranged on a regular
grid of dimensions d = 1, 2 or 3. Cellular EAs are a kind of decentralized EA
model. They are not just a parallel implementation of an EA; in fact, although
parallelism could be used to speed up the search, we do not address it in this
work.

Although fundamental theory is still an open research line for cEAs, they
have been empirically reported as being useful in maintaining diversity and pro-
moting slow diffusion of solutions through the grid (exploration). Part of their
behavior is due to a lower selection pressure compared to that of panmictic EAs
(here panmictic means that any one chromosome may mate with any other in
the population). The influence of the neighborhood, grid topology, and high ef-
ficiency in comparison to other EAs have all been investigated in detail in [2, 5,
7, 8], and tested on different applications such as combinatorial and numerical
optimization.

Cellular EAs can be seen as stochastic cellular automata (CAs) [11, 13] where
the cardinality of the set of states is equal to the number of points in the search
space. CAs, as well as cEAs, usually assume a synchronous or “parallel” update
policy (reproduction at a time), in which all the cells are formally updated



simultaneously. However, this is not the only option available. Indeed, several
works on asynchronous CAs have shown that sequential update policies have a
marked effect on their dynamics (see e.g. [9, 10]). Thus, it would be interesting
to investigate asynchronous cEAs and their problem solving capabilities. A first
step in that direction was made in [1], where a set of standard problems were
studied under several asynchronous update policies in a 2-d cGA environment.
The main observation was that, although asynchronous update is not always
the best choice in terms of solution quality, it is numerically faster, and the
speed of convergence can be varied by changing the updating scheme. Thus,
since convergence and diversity in EAs are related to selection, we would like
to get a better understanding of the behavior of selection in asynchronous cEAs
as compared to synchronous update and to the panmictic case. We present here
an extension of the works [2, 5, 7, 8] on selection pressure to asynchronous cEAs.
For reasons of space, we limit ourselves to the two-dimensional grid case, the
most common in practice.

The paper is organized as follows. The next section contains some background
on asynchronous cEAs. Section 3 describes the results of our experiments on se-
lection pressure in asynchronous cEAs. Section 4 analyzes the current logistic
model of selection pressure and presents an improved characterization of asyn-
chronous algorithms, leading to a new model proposal. Finally, section 5 offers
our conclusions, as well as some comments on future work.

2 Asynchronous cEAs

Updating a cell (individual) in a cellular EA means selecting two parents in
the individual’s neighborhood (including the individual itself), applying genetic
operators to them, and finally replacing the individual with the best offspring.
In a conventional synchronous cEA, all the individuals in the grid are updated
simultaneously. This step makes up a generation, and the process is repeated
until a termination condition is reached.

There exist many ways for sequentially updating the cells of a 2-d cEA . Here
we employ step-driven updates and ignore the so-called time-driven methods, in
which (real) time is explicit. Time-driven methods are more realistic for physical
simulation but are not needed in the EA case (an excellent discussion of asyn-
chronous update in CAs is available in [9]). The most general update scheme
is independent random ordering of updates in time, which consists of randomly
choosing the cell to be updated next with replacement. This corresponds to a bi-
nomial distribution for the update probability. This update policy will be called
uniform choice (UC) in the following and it is similar to the time-driven Poisson
update in the limit of large n, n being the population size.

In our study we also consider three other update methods: fixed line sweep,
fixed random sweep, and new random sweep (we employ the same terminology
as in [9]).

– In fixed line sweep (LS), the simplest method, the n grid cells are updated
sequentially (1, 2 . . . n), line by line of the 2-d grid.



– In the fixed random sweep update (FRS), the next cell to be updated is
chosen with uniform probability without replacement; this will produce a
certain update sequence (cj

1, c
k
2 , . . . , cm

n ), where cp
q means that cell number p

is updated at time q and (j, k, . . . , m) is a permutation of the n cells. The
same permutation is then used for all update cycles.

– The new random sweep method (NRS) works like FRS, except that a new
random cell permutation is chosen anew for each sweep through the array.

A time step is defined as updating n times sequentially, which corresponds
to updating all the n cells in the grid for LS, FRS and NRS, and possibly less
than n different cells in the uniform choice method, since some cells might be
updated more than once. It should be noted that, with the exception of fixed
line sweep, the other asynchronous updating policies are stochastic, representing
an additional source of non-determinism besides that of the genetic operators.

3 Takeover Times

In order to study the induced selection pressure by itself (without introducing the
perturbing effect of recombination or mutation operators) a standard technique
is to let selection be the only active operator, and then monitor the growth rate
of the best individual in the initial population [3]. The takeover time is the time
it takes for the single best individual to conquer the whole population. A shorter
takeover time thus means a higher selection pressure. It has been shown that
when we move from a panmictic population to a spatially structured one of the
same size with synchronous updating of the cells, the global selection pressure
induced on the entire population is qualitatively similar but weaker (Sarma and
De Jong [7]).

Three standard selection algorithms were used in [7], namely fitness propor-
tionate, linear ranking, and binary tournament. The cellular EA structure was
a two-dimensional toroidal grid of size 32 × 32 with three different neighbor-
hood shapes with 5, 9 and 13 neighbors respectively, which are the most com-
mon in practice. In the spatially distributed case it was observed that, for all
three mentioned neighborhoods, the global selection pressure induced by fitness-
proportionate selection was smaller than the pressures induced by linear rank-
ing and binary tournament, with binary tournament being roughly equivalent to
ranking as the neighborhood size increases, as it can be inferred from well-known
existing theoretical considerations on selection pressure.

Sarma and De Jong [8] performed a more detailed empirical analysis of the ef-
fects of the neighborhood’s size and shape on the local selection algorithms. They
were able to show that propagation times are closely related to the neighborhood
size, with larger neighborhoods giving rise to stronger selection pressures.

In the following, we report results (for three different neighborhoods) on the
selection pressure for three selection methods in the case of asynchronous up-
date. The neighborhoods used are Von Neumann (5 neighbors along the NWSE
directions and the center cell, also called Linear 5), Moore (9 neighbors, includ-
ing the central cell and its eight nearest neighbors, also called Compact 9), and



Compact 13 (like Moore, with four neighbors added along the N,W,S, and E
directions -like a diamond-).

For the sake of comparison, we also include the curves corresponding to the
panmictic case and to the synchronously updated grid. Since the results with
the asynchronous Fixed Random Sweep are very similar to those using the New
Random Sweep policy, only the latter curves are reported. Each of these results
is the average of 100 independent runs.
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Fig. 1. Takeover times with rank selection. Linear 5 neighborhood (a); Compact 9
neighborhood (b); Compact 13 neighborhood (c). Mean values over 100 runs. The
vertical axis represents the proportion of population consisting of best individual as a
function of the time step.

Figure 1 shows the mean growth curves of a cEA using rank selection in a
Linear 5, Compact 9 and Compact 13 neighborhood, respectively. Figure 2 de-
picts graphs of mean growth curves for a cEA using binary tournament selection
respectively in the Linear 5, Compact 9 and Compact 13 neighborhood. The
mean takeover times results for a cEA using a roulette wheel selection respec-
tively in a Linear 5, Compact 9, and Compact 13 neighborhood are reported in
Figure 3.
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Fig. 2. Takeover times with binary tournament selection. Linear 5 neighborhood (a);
Compact 9 neighborhood (b); Compact 13 neighborhood (c). Mean values over 100
runs. The vertical axis represents the proportion of population consisting of copies of
the best individual as a function of the time step.

These results largely confirm the findings of Sarma and De Jong as far as
synchronous and panmictic cEAs are concerned. Indeed, binary tournament and
ranking induce very similar global selection pressure, while proportional selection
exhibits less pressure. Moreover, for a given selection policy, larger neighborhoods
induce a stronger selection intensity.

What is new in this paper (our contribution) is the behavior of the asyn-
chronous models. Generally speaking, it can be observed that the asynchronous
models give an emergent selection pressure that is between the panmictic up-
per bound and the synchronous lower bound. All graphs show that the global
selection intensity grows going from uniform choice update to line sweep, with
new random sweep and fixed random sweep in between, although an analysis
of the variances should be conducted to quantitatively confirm the trend. This
suggests that, by choosing the appropriate asynchronous update policy, one is
able to control the selection pressure without using ad hoc numerical parameters.
This opens new possibilities for dynamical EAs in which the selection pressure
is under the control of the modeler even during the run (work in progress).
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Fig. 3. Takeover times with fitness proportional selection. Linear 5 neighborhood (a);
Compact 9 neighborhood (b); Compact 13 neighborhood (c). Mean values over 100
runs. The vertical axis represents the proportion of population consisting of copies of
the best individual as a function of the time step. Note the change of scale on the
horizontal axis to avoid cutting off the curves in figure (a).

The impression is confirmed by Table 1, where mean takeover times of all the
update methods for each selection mechanism and each of the three considered
neighborhoods are reported with their standard deviations.

4 Modelling Individual Growth

In this section, quantitative models for the individual growth (and thus for the
different global selection pressures induced in the population) are presented using
asynchronous update. We first give some statistical results valid for all finite 2-
d cEAs discrete lattices. Next, we offer a quantitative analysis of the takeover
time, and finally we hint at some possible improvements in the existing logistic
model.



LINEAR 5 Synchro LS FRS NRS UC Panmictic

Roulette 52 (3.7) 34 (2.8) 37 (3.0) 37 (3.0) 44 (3.7) 12 (1.0)

Tournament 42 (2.7) 21 (1.9) 26 (2.0) 28 (1.9) 33 (3.7) 10 (0.7)

Ranking 39 (2.1) 18 (1.6) 24 (1.5) 24 (1.7) 30 (3.2) 10 (0.8)

COMPACT 9 Synchro LS FRS NRS UC Panmictic

Roulette 38 (2.6) 23 (2.5) 26 (1.8) 26 (2.2) 29 (4.2) 12 (1.0)

Tournament 31 (1.8) 15 (1.4) 19 (1.4) 19 (1.5) 23 (2.9) 10 (0.7)

Ranking 30 (1.7) 13 (1.4) 18 (1.3) 18 (1.4) 22 (2.7) 10 (0.8)

COMPACT 13 Synchro LS FRS NRS UC Panmictic

Roulette 31 (1.7) 18 (1.9) 20 (1.9) 20 (1.8) 23 (3.3) 12 (1.0)

Tournament 25 (1.4) 12 (1.2) 15 (1.0) 15 (1.2) 18 (2.9) 10 (0.7)

Ranking 25 (1.2) 11 (1.1) 14 (1.1) 15 (1.0) 18 (2.5) 10 (0.8)

Table 1. Mean takeover time for the three selection mechanisms (vertically) and the
five update methods (horizontally). Upper part: Linear 5 neighborhood. Middle: Com-
pact 9 neighborhood. Lower part: Compact 13 neighborhood. The last column refers
to the classical panmictic case. Standard deviations in parentheses.

4.1 Statistical Results on Information Propagation

Schönfish and de Roos [9] derived the expected value E(Z) and the variance
V (Z) of the number of single steps between an update of a cell x and the next
update of a cell y 6= x in the neighborhood of x, U(x), in order to compare
the different asynchronous CA updating methods. These results can also be
applied to asynchronous cEAs, where the local transition function f0 does not
deterministically determine the next state of the cell, but describes a probabilistic
rule for such an update [11, 13]. This rule is generally determined by the different
selection, crossover and mutation mechanisms used in the EA. In our study of
the takeover times induced by different update methods the local function f0

only depends on the selection mechanism used.

Synchro LS FRS NRS UC

E(Z) 1 1
2

1
2

1
12

(
7 + 1

n

)
1

V(Z) 0 1
2

(
1
n
−√n + 1

2
n
)

1
12

(n− 2) 1
12

(
23
12

n− 13
6
− 13

12n

)
n-1

Table 2. Values of the expected value E(Z) and of the variance V (Z) of the number
of time steps between an update of a cell x and the next update of a cell y 6= x in the
neighborhood U(x) for a cEA on a square grid. For Asynchronous Line Sweep, which
depends from the chosen neighborhood, the Linear 5 neighborhood result is shown.



Schönfish and de Roos used the number of cell updates in their statistics. In
order to be able to extend their results to the synchronous cEA, their statistics
need to be translated using the number of time steps between an update of a
cell x and the next update of a cell y 6= x in the neighborhood U(x) of x. In fact,
for synchronous cEAs it is not possible to count the single cells updating, but a
generational synchronous step can be compared to a time step of an asynchronous
cEA. Table 2 contains the values of E(Z) and V (Z) for the four asynchronous and
the synchronous updating policies. If in a cEA we keep the selection mechanism
fixed and we vary the updating method, the results of Table 2 explain the ranking
of the observed takeover times; notice that some experimental values are slightly
different while theoretically they should be identical on the average. This is the
case for Line Sweep and Fixed Random Sweep, as well as for Uniform Choice
and Synchronous. However, these results do not explain the actual shapes of the
selection pressure curves. We are currently working on the analytical study of
the curves and some preliminary results are reported in the next two sections.

4.2 Fitting the Selection Pressure Curves

Sarma and De Jong [7] proposed a simple quantitative model for the study of
the selection pressure curves for cEAs. They assumed that the diffusion of the
best individual in the artificial evolution of a structured population would follow
a logistic curve. Let us analyze their result, shown in Equation 1.

Pb(t) =
1

1 +
(

1
Pb(0)

− 1
)

e−αt
(1)

This equation, where Pb(t) represents the proportion of the best individual in
the population at time t, was proposed for synchronous cEAs, and therefore we
wondered whether it holds for asynchronous ones. Consequently, we proceeded
to analyze the error (mean squared error) between an actual average selection
pressure and the theoretically predicted values, for all the update methods con-
sidered in this work. The steps were (1) to compute the theoretical value of α,
(2) to generate the predicted curve by using one point of the average observed
performance curve, and (3) to compare it against the whole set of points of this
observed curve.

To derive the α parameter we selected a mid point (with Pb(t) around 0.5)
from the experimental curves. Then, we generated the corresponding curve, and
computed the squared error. Table 3 shows our measurements.

This table also shows that, although the fitting is satisfactory, it is not that
good, since there exists a gap between the fitted curves and the experimental
points. This claim is confirmed by Figure 4, in which the panmictic case is
particularly good, while the other fittings could clearly be improved. This lead
us to think that there could exist a better fitting for cellular EAs than the logistic
one, whose main advantage is its similitude to the theoretical results existing for
panmictic algorithms [3].



LINEAR 5 Synchro LS FRS NRS UC Panmictic

Roulette 0.00406 0.00358 0.00372 0.00427 0.00358 0.00069

Tournament 0.00309 0.00270 0.00281 0.00274 0.00248 0.01053

Ranking 0.00366 0.00282 0.00257 0.00234 0.00290 0.00181

COMPACT 9 Synchro LS FRS NRS UC Panmictic

Roulette 0.00349 0.00376 0.00284 0.00280 0.00332 0.00069

Tournament 0.00287 0.00194 0.00193 0.00178 0.00202 0.01053

Ranking 0.00311 0.00190 0.00197 0.00184 0.00209 0.00181

COMPACT 13 Synchro LS FRS NRS UC Panmictic

Roulette 0.00339 0.00328 0.00199 0.00242 0.00281 0.00069

Tournament 0.00231 0.00148 0.00142 0.00149 0.00145 0.01053

Ranking 0.00225 0.00166 0.00153 0.00150 0.00122 0.00181

Table 3. Mean squared error between predicted and actual logistic fittings for Linear
5, Compact 9, and Compact 13 neighborhoods for all the update modes.
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Fig. 4. Fitting of the experimental takeover time curves (full) with the logistic model
(dashed) for the various update modes. Results refer to fitness proportional selection
with Linear 5 neighborhood.



We have shown in this section that the logistic fitting should be improved for
decentralized algorithms. In the next section some steps toward a more accurate
model are described.

4.3 An Improved Model

It is well known since the work of Verhulst [12], that the assumption of logistic
growth is true for biological populations within bounded resources. It is easy to
see that this behavior also holds for the best individual growth in the artificial
evolution of a finite panmictic population [3]. In fact, if we consider a population
of size n, the number N(t) of copies of the best individual in the population at
time step t is given by the following recurrence:

{
N(0) = 1
N(t) = N(t− 1) + psN(t− 1)(n−N(t− 1)) (2)

where ps is the probability that the best individual is chosen. This recurrence
can be easily transformed into one that describes a logistic population growth
in discrete time:

{
N(0) = 1
N(t) = N(t− 1) + (psn)N(t− 1)

(
1− 1

nN(t− 1)
) (3)

Such a recurrence can be expressed in analytical form by the logistic equation:

N(t) =
n

1 +
(

n
N(0) − 1

)
e−αt

(4)

where the growth coefficient α depends on the probability ps and the population
size n. This happens to be the approach taken in [8] for synchronous cEAs.

As suggested by Gorges-Schleuter in [5], in the artificial evolution of locally
interacting, spatially structured populations, the assumption of a logistic growth
doesn’t hold anymore. In fact, in the case of a ring or a torus structure we have
respectively a linear and a quadratic growth. We complete here her analysis
which holds for unrestricted growth, extending it to bounded synchronously
updated spatial populations.

For a structured population, let us consider the limiting case, which repre-
sents an upper bound on growth rate, in which the selection mechanism is deter-
ministic, and a cell always chooses its best neighbor for updating. If we consider
a population of size n with a ring structure (like that of 1-d cellular automata
in which the two cells on the borders are linked) and a neighborhood radius of
k (i.e. a neighborhood of a cell contains 2k + 1 cells), the following recurrence
describes the growth of the number of copies of the best individual:

{
N(0) = 1
N(t) = N(t− 1) + 2k

(5)

This recurrence can be described by the closed equation N(t) = N(0) + 2kt,
that clearly shows the linear character of the growth rate.



In the case of a population of size n disposed on a toroidal grid of size
√

n×√n
(assuming

√
n odd) and the Linear 5 neighborhood structure, the number of

copies of the best individual can be described by the following recurrence:





N(0) = 1
N(t) = N(t− 1) + 4t , for 0 ≤ t ≤

√
n−1
2

N(t) = N(t− 1) + 4(
√

n− t) , for t ≥
√

n−1
2

(6)

This growth is described by a convex quadratic equation followed by a con-
cave one, as the two closed forms of the recurrence clearly show:

{
N(t) = 2t2 + 2t + 1 , for 0 ≤ t ≤

√
n−1
2

N(t) = −2t2 + 2(2
√

n− 1)t + 2
√

n− n , for t ≥
√

n−1
2

(7)

Thus, a more accurate fitting should take into account the non-exponential
growth followed by saturation (crowding effect).

5 Conclusions

In this work we have presented different update policies to deal with cellular
EAs in a search for a more efficient algorithm with respect to its canonical form.
We have investigated the induced selection pressure of such policies with respect
to the widespread synchronous update and panmictic algorithms. Our results
indicate that these two algorithms represent the smaller and higher (respec-
tively) bounds to selection intensity, and that the asynchronous update methods
represent intermediate values of pressure (which can even be ranked for such
methods).

We have studied the existing proposals dealing with a logistic fitting that,
although very similar to that existing for panmictic EAs and globally valid, are
susceptible to further improvement for cellular EAs. We provide such an im-
proved model of the best individual growth and additionally characterize the
expected time between the update of two individuals residing in the same neigh-
borhood for all the update methods considered in the paper.

Our aim in this paper has been to advance in the study of selection pressure
in cellular EAs. Future work will consider more suitable functions for fitting the
experimental curves (maybe a quadratic one). We will consider as well further
extensions of the results to other aspects influencing the selection pressure of
cellular EAs, such as the relationship existing between the neighborhood and
the grid topology. Also, extensions to dimensions larger than two are being con-
sidered, as well as the application of cellular EAs to several hard problems. Our
global aim is to obtain a body of knowledge of these algorithms, especially with
regard to the numerical efficiency of the search.
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