Comparison of Different Implementations of

Parallelization of Genetic Algorithms

Marat Zhaksilikov
Department of Computer Science
University of Nevada
Reno, NV 89557

zhaks@cs.unr.edu

Abstract

Developed by John Holland at the University of
Michigan genetic algorithms are a heuristic search
technique that can help to provide satisfactory results
for hard optimization problems. But even using ge-
netic algorithms the computations can require a pretty
large amount of time. Since genetic algorithms are
an abstraction of natural selection they are very easy
to parallelize. There are different ways to parallelize
genetic algorithms and each of them raise different is-
sues. In this paper we try to compare the performance
of a few different parallel implementations of genetic
algorithms.

keywords: Genetic Algorithms, Parallel Process-
ing

1 Introduction.

Genetic algorithms (GAs) are an effective search
method that simulates the process of natural selection.
The purpose of GAs is to provide satisfactory results
for optimization problems that are hard to solve us-
ing exhaustive techniques. The simple GA consists of
following steps. First, it is necessary to encode the
parameter set of the problem into a string representa-
tion, called a chromosome. Chromosomes are usually
binary strings. Then an initial population of chromo-
somes is randomly generated. The next step is selec-
tion, which is the process of choosing parent chromo-
somes for recombination. Usually this is done in some
way to provide the opportunity for “better” chromo-
somes to be parents. What chromosome is better or
worse is determined by a fitness function that is an
objective function for the given problem. A crossover
operator allows for the exchange of substrings between
parent chromosomes in order to produce the children.

Frederick C. Harris, Jr.
Department of Computer Science
University of Nevada

Reno, NV 89557
fredh@cs.unr.edu

Next mutation takes place. This is a random change
of a bit position in a child chromosome. The last step
is the evaluation of the child chromosome to deter-
mine the fitness of this individual. This sequence of
events defines one iteration of genetic algorithm. Af-
ter a certain number of iterations the algorithm can
be stopped and the member of final population with
the best fitness value will be the solution returned by
the algorithm.

All of the presented operators can be implemented
in different ways. For example selection can be com-
pletely random. In this work one of the popular meth-
ods of selection, called biased roulette wheel selection,
was used. The roulette wheel is divided into a num-
ber of sectors equal to the size of population. The
sector size is proportional to the fitness of the corre-
sponding individual so that better chromosomes have
a better chance of being chosen. In order to imple-
ment two parent recombination, one point crossover
was used. In this case the random number generator
produces a number k corresponding to one bit posi-
tion, and then parents exchange substrings [0; k — 1].
To provide the opportunity for more complete explo-
ration of the search space the mutation operator was
used. This takes place during recombination step and,
like in nature, the probability of mutation is low.

In Section 2 the different approaches for GA paral-
lelization and related issues are described. Section 3
contains the description of implemented parallel GAs
and describes the results of performance comparison.
Conclusions and future work are presented in Sec-
tion 4.

2 Parallel GAs.

Because the natural selection is a parallel process,
GAs as a model of natural selection are very suitable

for parallelization. [4] gives a classification of different
approaches to GA parallelization.

2.1 Global Parallelization.

The first way to parallelize a GA is with global par-
allelization. In this model the genetic operators are
applied to the single population in parallel. There are
different approaches to implement this model. The
first way is to parallelize just the evaluation process. In
the case of a shared memory multiprocessor machine,
each processor reads the assigned individuals, evalu-
ates them, and stores results in the shared memory.
In this method it is necessary to provide a synchro-
nization barrier between generations. In a distributed
memory environment, to simplify the implementation
of algorithm, a master processor is used to store popu-
lation and to apply the genetic operators. The master
is also responsible for sending a subset of individuals
to the slave processors for evaluation and collecting
the results. We can see that performance of this ap-
proach strongly depends on communication overhead
and performance of the parallel architecture used. Al-
most linear speedup can be achieved when computa-
tion time is much longer than communication time.

The second way to implement the global paralleliza-
tion is to apply genetic operators in parallel. Be-
cause the genetic operators are very simple and the
time spent in communication can be much longer then
the time doing computations. It is possible for this
method to take longer than the sequential.

2.2 Coarse Grained Parallelization.

The next way to parallelize GAs is a coarse grained
parallelization. In this case the population is divided
into a few subpopulations. Each subpopulation is as-
signed to a different processor and kept relatively iso-
lated. To provide the way for information exchange
the migration operator is used. There are two ways
of migration implementation: island model and step-
ping stone model. The first model allows migration
from one subpopulation to any other subpopulation,
the second model restricts migration only to neighbor-
ing subpopulations.

The analysis of the literature shows that perfor-
mance of a coarse grained parallel GA is controlled
by migration related issues. [4] underlines following
migration parameters: topology (defines the connec-
tion between subpopulations), migration rate (number
of individuals to migrate),migration interval (how of-
ten migration takes place). Usually these parameters
are tuned to get better performance. For example, [7]

reports that if migration rate is too high, the popula-
tion converges too fast and rarely produces a satisfac-
tory result. But the absence of migration also leads
to poor results. The topology issue is usually related
to the connectivity of a network. Different papers re-
port good results using both short and long diameter
topologies [2, 3, 5]. In case of higher connectivity good
solutions can spread faster across the network, but
sparsely connected topology results in more isolated
solutions that can be recombined later to form poten-
tially better results. The number of migrants should
be enough to provide the information exchange, but
the large migration rate can probably be a waste of
communication resources.

2.3 Fine Grained Parallelization.

In case of fine grained parallelization, the popula-
tion is divided into large number of small subpopula-
tions. The migration is provided by overlapping the
subpopulations. The literature shows that the per-
formance of fine grained parallel GAs depend on sub-
population size and interconnection topology. [9] and
[10] show that performance usually degrades with an
increase in the subpopulation size; while [1] and [8]
show that a topology with a medium diameter usually
provides better results.

2.4 Hybrid approaches.

Hybrid approaches combine features of different
parallelization methods. For example the population
may be divided as in case of coarse grained paralleliza-
tion, and the migration operator may be used to ex-
change individuals, but evaluation of individuals may
be handled in parallel.

3 Implementation and Performance
Analysis.

Communication overhead is the biggest problem
that restricts the possible speedup using multiple pro-
cessors. Therefore, the goal is to construct algorithms
where the increase of communication overhead with
the increase in the number of processors is negligible
when compared to the gain of computation speedup.
This is all done while keeping the output of the parallel
algorithm the same as for sequential version.

To compare the communication overhead, it is nec-
essary to decrease the computation time as much
as possible. For this purpose very simple selection,

crossover, mutation and evaluation functions were
used. The genetic operators used were described in
the previous section. The chosen evaluation function
is 2. Besides the decrease of computation time, it is
a very easy to prognosticate the desirable result using
this function.

These algorithms were implemented using Parallel
Virtual Machine software [6] on a network of DEC
stations. This is a distributed memory architecture
and, as it was pointed out above, the easiest way to
parallelize GA using this kind of architecture is to use
a master/slave topology.

3.1 Global Parallelization.

In this sub-section we would like to address the
question about different ways to implement the global
parallelization of GAs. The question raised earlier
was: Do you get better performance by applying ge-
netic operators in parallel? To answer this question, it
is necessary to compare the communication overhead
of different implementations: 1) just evaluation in par-
allel (Algorithm 1); 2) application of genetic operators
in parallel (Algorithm 2).

In the Algorithm 1 selection, crossover, and muta-
tion are performed sequentially on the master proces-
sor, while slave processors evaluate individuals in par-
allel. The sequential algorithm performs evaluation
for each new child during each iteration. When eval-
uation is done in parallel the master processor sends
a portion of the children to each slave processor. The
master processor the collects the results, the fitness of
the individuals, and computes the global statistics.

Next Algorithm 2 was implemented. During the
sequential algorithm, the generation step consists of
PopulationSize/2 iterations. Each time two individ-
uals are picked up and mated to produce two chil-
dren, then fitness levels of the children are calcu-
lated. In the case of Algorithm 2 the master processor
broadcasts the entire population to all slaves and each
slave performs the described above sequence of steps
PopulationSize/2 * [Number_O f_Processors] times.
Then the master processor collects the new popula-
tion and calculates the global statistics. The necessary
points are: 1) We can eliminate the broadcast of the
first population by performing the population initial-
ization on each slave processor using the same random
seed number; 2) It is necessary to provide each slave
processor with different random seed number to ensure
that slaves will pick different individuals for mating?.

1This can be eliminated by sending to each slave processor
different part of the global population.

It can be noticed that communication overhead in-
creases using Algorithm 2 because of the necessity to
send the entire population back and forth. In the case
of using the Algorithm 1, the slave processors return
just the fitnesses of the individuals. So, the question is
if the gain of doing selection, crossover, and mutation
in parallel outperforms the increasing communication
overhead.

In order to answer this question, it is necessary to
compare the performance of the sequential GA and
the different implementations of parallel GAs. The
sequential algorithm found the optimal solution each
time using a population size of 240. As can be ex-
pected, the performance of Algorithm 1 is the same
because the basic genetic operators are applied sequen-
tially. But Algorithm 2 showed worse performance, as
shown on Table 1. Theoretically both implementa-
tions should have the same performance, because the
Schema Theorem tells that the probability that the
number of particular schemata increases or decreases
in the next generation depends only on characteristics
of this schemata and not on the sequence of picking
individuals. But in practice, the selection of individu-
als strongly depends on the random number generator
used and the implementation of the selection opera-
tor. It was observed that even using different random
seed numbers the slaves often produced the same in-
dividuals. As a result, the search space was explored
insufficiently and population sometimes converged to
suboptimal results. It seems that performance of Al-
gorithm 2 can be increased by sending different sub-
populations to each slave.

No of . .
Processors Algorithm 1 Algorithm 2
8 1046529 1045916
20 1046529 1045098

Table 1: Output of Algorithms 1 and 2. The correct
answer is 1046529.

The next step is to compare the dependence of ex-
ecution time from the number of processors for dif-
ferent population sizes?. Because the evaluation step
is so simple, the increase of evaluation time is mostly
defined by communication overhead. So the speed of
execution time increase with increasing of processor
number is defined by increasing of the communication
time. It was noticed that communication factor for
Algorithm 2 is much larger than that for Algorithm 1.

2The population size defines the amount of data to be sent.
Also the different chromosome length can be used for this
purpose

When the number of processors is increasing the cal-
culation part of the execution time should decrease.
Therefore, if the difference in execution time decreases
with increasing of processor number, then the commu-
nication overhead stays the same or increases slowly
for increased amount of data to be evaluated. This
feature is very important when we have to exchange a
large amount of data between processors. Algorithm 1
showed a good performance with respect to the prop-
erty described above, but in case of Algorithm 2 the
communication overhead increases very fast. Also it
is interesting to observe the dependence of execution
time on the size of population. Even in the case of a
very simple evaluation function, the difference in exe-
cution time between the sequential algorithm and Al-
gorithm 1 remains the same with increasing popula-
tion size. This means that an increase in communica-
tion overhead is compensated for by a decrease in the
computational overhead. But in case of Algorithm 2
the communication overhead increases very fast and is
not compensated for by lower computational time.

The situation just described with a short evalua-
tion time is very unusual. In most cases the evaluation
step requires a lot of execution time. In this case, the
parallelization of the evaluation step can be very help-
ful. When we used Algorithm 1 for solving a robotics
problem, speedup proved to be almost linear up to 20
processors.

3.2 Coarse Grained Parallelization.

When compared to the Global Parallelization
Coarse Grained Parallelization seems to be more at-
tractive. The division of the population into a number
of subpopulations assigned to different processors re-
sults in decreasing the computation time, while the
communication between processors is minimized.

Three different approaches to Coarse Grained Par-
allelization were implemented. The first approach (Al-
gorithm 3) looks close enough to Algorithm 2, but in
this case after a certain number of iterations the mas-
ter processor collects only a few of the best individuals
from each slave processor, sorts them and then broad-
casts the bests from the bests to all of the slave pro-
cessors. These individuals replace the worst individu-
als of each slave processor [7]. The second approach
(Algorithm 4) allows migration only between neigh-
boring slave processors that are connected in a chain.
The advantage when compared to Algorithm 3 is that
the communication time does not increase with the
increasing of the number of processors®. The last ap-

3The possible increase of communication time can be result

Algorithm 3 Algorithm 4 Algorithm 5

No of
Processors Migration interval

Migration interval Migration interval

25 10 5 25 10 5 25 10 5

2 1046301.8| 1046529 | 1046301.8| 1046301.8| 1046301.8| 1046301.8| 1046529 | 1046529 | 1046529
8 1046301.8| 1046529 | 1046301.8| 1046301.8| 1046301.8| 1046301.8| 1042905.9| 1042905.9| 1042905.9)
12 1046074.6| 1046529 | 1046074.6| 1046074.6| 1046529 |1046074.6| 1046529 | 1046529 | 1046529
20 1044714.6| 1046529 |1044714.6 | 1044714.6| 1044714.6| 1044714.6| 1046529 | 1046529 | 1046529

Table 2: Output of Algorithms 3, 4, and 5. The correct
answer is 1046529.

proach (Algorithm 5) is a variant of the Algorithm 4,
but in this case the individuals are assigned to each
slave processor not randomly but according to the cor-
responding point in the search space. The search space
is divided into a number of subspaces corresponding to
the number of the slave processors, and each slave pro-
cessor explores it’s particular subspace. This makes it
possible to decrease of the chromosome length. Migra-
tion is provided by overlapping of subspaces.

In order to evaluate the performance of different
implementations of Coarse Grained Parallelization a
number of experements were carried out. Table 2
shows the dependency of the solution returned by al-
gorithms from the number of processors for different
intervals of migration. As can be seen, Algorithm 3 has
the strongest dependency on the interval of migration.
The frequency of migration above and below a cer-
tain level results in performance degradation. More-
over, the performance get worse with increasing num-
ber of processors probably because we are decreasing
the number of individuals in a subpopulation. How-
ever, the right chosen interval of migration leads to the
maximal performance for all considered number of pro-
cessors. Algorithm 4 performs exactly the same way
for migration intervals below and above a certain level,
but in this case even when the best migration interval
is chosen Algorithm 4 depends on number of proces-
sors. Our opinion is that the brodcasting of the best of
the best individuals provides more information about
the right direction of the search than the exchange of
locally best individuals. Considering Algorithm 5, a
strong performance degradation can be noticed when
the number of processors equals 8. This degradation
can be explained by the fact that the length of chromo-
some used in this experiment equals 10. In this case
the search space is divided evenly between all slave
processors without overlapping, eliminating the migra-
tion step. For all other considered numbers of proces-
sors and intervals of migration the algorithm finds the
optimal solution. We think that reduced chromosome

of the synchronization problem, but this is the common problem
for both algorithms.

length makes easy the exploration of the search space.

While experimenting with the dependency of the
execution time on the number of processors for dif-
ferent intervals of migration it was observed that the
implemented algorithms showed a shorter execution
time for all considered numbers of processors and in-
tervals of migration even for the very simple evaluation
function. This is the biggest advantage when compar-
ing to Global Parallelization. Moreover in case of the
Algorithms 4 and 5 the increasing problem of synchro-
nization is compensated for by the decreasing of the
evaluation time with increasing of the number of pro-
This is also true for Algorithm 3 until the
number of processors reaches a certain value. After
this threshold, the necessity to collect data from the
increased number of processors makes the execution
time longer.

CES8Ors.

4 Conclusions and Future Work.

The comparison of different implementations of
global parallelization of genetic algorithm shows that
in case of usage very simple crossover, selection, and
mutation operators, the application of genetic opera-
tors in parallel decreases the performance. The com-
munication overhead increases much faster as the num-
ber of processors increases or the amount of data to be
processed increases. But in case of more complicated
genetic operators it may be helpful.

As was proposed, the use of Coarse Grained Par-
allelization looks more attractive for the purpose of
decreasing the execution time. It is necessary to ex-
periment with parameters of the algorithm to increase
the performance. The right values of these parameters
result in the same performance as for the sequential al-
gorithm. Algorithm 5 can be very useful for a large
number of processors, but in case of relatively small
number of processors it just makes it more compli-
cated to implement the particular problem.

In the future, it will be interesting to compare the
performance of the various algorithms discussed for
different types of problems. We also will continue
the experiments with different parameters of Coarse
Grained Parallelization.

References

[1] J. Anderson, E. and M.C. Ferris. A genetic algo-
rithm for assembly line balancing problem. Tech-
nical Report Technical Report TR 926, Computer

Science Department, University of Wisconsin-

Madison, 1990.

R. Bianchini and C. M. Brown. Parallel genetic
algorithms on distributed-memory architectures.
Technical Report 436, Computer Science Depart-
ment, University of Rochester, 1992.

R. Bianchini and C. M. Brown. Parallel genetic
algorithms on distributed-memory architectures.
In S. Atkins and A. S. Wagner, editors, Trans-
puter Research and Applications 6, pages 67-82.
Amsterdam: 10S Press, 1993.

E. Cantu-Paz. A summary of research on paral-
lel genetic genetic algorithms. Technical Report
IIIiGAL Report No. 95007, The Illinois Genetic
Algorithm Laboratory, University of Illinois at
Urbana-Champaign, 1995.

E. Cantu-Paz and M. Majia-Olvera. Expere-
mental results in distributed genetic algorithms.
In International Symposium on Applied Corpo-
rate Computing, pages 99-108. Monterey, Mexico,
1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine. MIT Press, Cambridge, MA,
1994.

J. Hines, J.T. Thorpe, K.B. Winiecki, Jr., and
F.C. Harris, Jr. Solving quadratic assignement
problems with parallel genetic algorithms. In
S. Louis, editor, Proc. of the ISCA Int. Conf. on
Intelligent Systems, pages 11-16, San Francisco,
CA, June 1995. ISCA.

M. Schewehm. Implementation of genetic al-
gorithms on various interconnection networks.
Parallel Computing and Transputer Applications,
pages 195-203, 1993.

P. Spiessen and B. Manderick. A genetic algo-
rithm for massively parallel computers. Paral-
lel Processing in Neural Systems and Computers,
Dusseldorf, Germany, pages 31-36, 1990.

P. Spiessen and B. Manderick. A massively par-
allel genetic algorithm: Implementation and first
analysis. In Richard K. Belew and Lashon B.
Booker, editors, Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms. Mor-
gan Kauffman, San Mateo, CA, 1991.

