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Abstract. This paper presents a study of different models for the gro-
wth curves and takeover time in a distributed EA (dEA). The calculation
of the takeover time and the dynamical growth curves is a common analy-
tical approach to measure the selection pressure of an EA. This work is
a first step to mathematically unify and describe the roles of the migra-
tion rate and the migration frequency in the selection pressure induced
by the dynamics of dEAs. In order to achieve these goals we evaluate the
appropriateness of the well-known logistic model and of a hypergraph
model for dEAs. After that, we propose a corrected hypergraph model
and two new models based in an extension of the logistic one. Our results
show that accurate models for growth curves can be defined for dEAs,
and explain analytically the migration rate and frequency effects.

1 Introduction

The increasing availability of clusters of machines has endorsed the fast develop-
ment of parallel EAs (PEAs) [1]. Most popular PEAs split the whole population
in separate subpopulations that are dealt with independently (islands). A sparse
exchange of information among the component subalgorithms leads to a whole
new class of algorithms that do not only perform faster (more steps by unit
time), but that often lead to superior numerical performance [2,3].

In the core of these parallel EAs we can find a spatially structured distribu-
ted EA (dEA) that has been implemented (usually) in parallel on a cluster of
machines interconnected by a communication network. Many interesting parallel
issues can be defined and studied in PEAs, but in this work we are interested
in the distributed algorithm model using multiple populations, that is really the
responsible of the search features. In this article we concentrate on the dynamics
of the distributed EA, in particular in developing a mathematical description
for the takeover time, i.e., the time for the best solution to completely fill up all
the subpopulations of the dEA. We first will propose and analyze several models
for the induced growth curves, and then address the calculation of the takeover
time. In this work, only tournament selection is considered. Also, since we only
focus on selection, we expect an easy extension of the results to many other EAs.

In order to design a dEA we must take several decisions. Among them, a chief
decision is to determine the migration policy: topology, migration rate (number
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of individuals that undergo migration in every exchange), migration frequency
(number of steps in every subpopulation between two successive exchanges), and
the selection/replacement of the migrants. In general, decisions on these choices
are made by experimental studies. Therefore, it would be interesting if we could
provide an analytical basis for such decisions.

Several works have studied the takeover time and growth curves for other
classes of structured EAs [4,5,6,7,8,9,10]. In general, these works are oriented to
study cellular EAs (with the important exception of the Sprave’s one [10]) and
it really exists a gap in the studies about dEAs from which something could be
gained for other researchers or applications.

In the present work we focus on the influence of migration rate and migration
frequency in the takeover time and in the growth curves. To achieve this goal
we fix the topology to a simple and, at the same time, widely used one: a static
directional ring. We also preset the policies of selection/replacement of the mi-
grants. The emigrants are selected by binary tournament while the immigrants
are included in the target population only if they are fitter than the worst-
existing solution. In our analysis we will use the binary tournament mechanism
with an elitist replacement (concretely, we use a (µ + µ)-dEA). We defer for a
future work the theoretical analysis on other topologies and selection methods.
Our contribution is to put to work the logistic model [5] and the hypergraph
models [10], since they have never been tested and compared in practice (to the
best of our knowledge). Then, we will propose three new mathematical models
for the dynamics of selection: a corrected hypergraph plus two extended logistic
models. Our aim is to improve on the accuracy (low error) of the initially tested
models and consequently compute takeover times.

This paper is organized as follows. Section 2 is an introduction containing
some preliminary background about previous works. Section 3 studies the effects
of the migration frequency in the resulting growth curves; just after that, we
extend the analysis by considering also the migration rate (Section 4). In Section
5, we analyze the predicted takeover times provided by the models. In the last
section we summarize the conclusions and give some hints on the future work.

2 Performance of the Existing Theoretical Models

A common analytical approach to study the selection pressure of an EA is to
characterize its takeover time [11], i.e., the number of generations it takes for
the best individual in the initial population to fill the entire population under
selection only. The growth curves are another important issue to analyze the
dynamics of the dEAs. These growth curves are functions that associate the
number of generations of the algorithm with the proportion of the best individual
in the whole population. In this section we describe briefly the main models found
in the literature defining the behavior of structured population EAs.

2.1 The Logistic Model

Let us begin by discussing the work of Sarma and De Jong (1997) for cellular
EAs. In that work, they performed a detailed empirical analysis of the effects
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of the neighborhood size and shape for several local selection algorithms. They
proposed a simple quantitative model for cellular EAs based in the logistic fami-
ly of curves already known to work for panmictic EAs [11]. In summary, the
proposed equation is (1):

P (t) =
1

1 +
(

1
P (0) − 1

)
e−at

. (1)

where a is a growth coefficient and P (t) is the proportion of the best individual
in the population at time step t. This model threw accurate results for syn-
chronous updates of square shaped cellular EAs. Recently, for the asynchronous
case, improved models has been proposed in [9] not following a logistic growth.
Anyway, using a logistic curve represents an interesting precedent that however
should be validated for dEAs. In brief, we will do so in this article.

2.2 The Hypergraph Model

Sprave (1999) has proposed a unified description for any non-panmictic popu-
lation structured EA, that could even end in an accurate model for panmictic
populations (since they can be considered as fully connected structured popu-
lations). He modelled the population structure by means of hypergraphs. A hy-
pergraph is an extension of a canonical graph. The basic idea of a hypergraph is
the generalization of edges from pairs of vertices to arbitrary subsets of vertices.

He developed a method to estimate growth curves and takeover times. This
method is based on the calculation of the diameter of the actual population
structure and on the probability distribution induced by the selection operator.
In fact, Chakraborty et al. (1997) previously calculated the success probabilities
for the most common selection operators (pselect), what represents an interesting
complement for putting hypergraphs to work in practice. A complete description
of the hypergraph model can be found in [10].

2.3 Other Models

Although the logistic model is relatively well known, and hypergraphs could play
an important role in the field, they are not the only existing models that can
inspire or influence the present study. Gorges-Schleuter (1999) also accomplished
a theoretical study about takeover times for a cellular ES algorithm. In her
analysis, she studied the propagation of information over time through the entire
population. She finally obtained a linear model for a ring population structure
and a quadratic model for a torus population structure.

In a different work, Rudolph (2000) carried out a theoretical study on the
takeover time in populations with array and ring topologies. He derived lower bo-
unds for arbitrary connected neighborhood structures, lower and upper bounds
for array-like structures, and an exact closed form expression for a ring topology.

Later, Cantú-Paz (2000) studied the takeover time in dEAs where the mi-
gration occurs in every iteration, which is the lower bound of the migration
frequency value. He generalized the panmictic model presented in [11] by adding
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a policy-dependent term. That term represents the effects of the policy used to
select migrants and the individuals that they replace at the receiving island.

Giacobini et al. (2003) studied the takeover time in cellular EAs that use
asynchronous cell update policies. The authors presented quantitative models
for the takeover time in asynchronous cellular EAs with a ring topology.

In the present work, we focus on the described models: logistic and hypergra-
phs. The first one (logistic) is based on biological processes and it is well known
in the case of cellular EAs, the other type of structured EAs. The second model
(hypergraphs) posses a unique unified-like feature for all non-panmictic algo-
rithms. We do not use the results of the other works directly since either they
are linked to specialized algorithms or have a different focus (selection policy).

3 Effects of the Migration Frequency

In this section we analyze the effects of the migration frequency over the gro-
wth of the best individual in dEAs. In this aim we begin by performing an
experimental set of tests for several migration frequencies. First, we describe the
parameters used in these experiments, and later we analyze the obtained results.

3.1 Parameters

We have performed several experiments with different values of migration fre-
quencies: 1, 2, 4, 8, 16, 32, and 64 generations. In general, researchers use fre-
quencies in this range. Notice that a low frequency value (e.g., 1) means high
coupling, while a high value (e.g., 64) means loose coupling (large gap). The rest
of parameters are kept constant. In the experiments, we use a (µ + µ)-dEA with
8 islands (512 individuals per island), binary tournament selection, a static ring
topology, and a preset moderate migration rate (8 individuals chosen by binary
tournament are exchanged at each migration step). For all tests, we use ran-
domly generated populations with individual fitness between 0 and 1023. Then
we introduce a single best individual (fitness = 1024) in a randomly selected is-
land. In hypergraphs we have used an expected level of accuracy of ε = 2.5·10−4.
For the actual curves we have performed 100 independent runs.

In order to compare the accuracy of the models we proceeded to calculate the
mean square error (2) between the actual values and the theoretically predicted
ones (where k is the number of points of the predicted curve). The MSE gives
the error for an experiment. But we also define a metric that summarizes the
error for all experiments, thus allowing to perform a quantitative comparison
between the different models easily. We studied several statistical values (mean,
median, standard deviation, etc.) but finally we decided to use the ‖ · ‖1 (3) that
represents the area below the MSE curve (E is the number of experiments).

MSE(model) =
1
k

k∑
i=1

(modeli − experimentali)2 . (2)
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‖model‖1 =
E∑

i=1

|MSE(model)| . (3)

3.2 Analysis of the Results

Now, we analyze the curves that have been obtained in the experiments. Figure 1
contains the lines of the actual takeover time for different migration frequencies.
This figure shows that, for low frequency values, the dEA resembles the panmictic
case [11]. This is common sense, since there exists high interaction among the
subalgorithms. However, for higher frequency values (uncoupled search), the
observed behavior is different: the subpopulations in the islands having the best
solution converge quickly, and then the global convergence of the algorithm stops
progressing (flat lines) until a migration of the best individual happens to take
place. The observed effect is that of a stairs-like curve. The time span of each
step in such a curve is governed by the migration frequency. The higher the
migration frequency value, the largest the span of the step.

Fig. 1. Actual growth curves for several migration frequencies (100 independent runs)

Once we have understood the basic regularities behind, our goal is to find a
mathematical model that allows an accurate fitting to all these curves. We begin
this task by trying to use the mentioned logistic and hypergraph models. Let us
first address the logistic case:

P (t) =
1

1 + a · e−b·t . (4)

To strictly adhere to the original work of Sarma and De Jong for cellular
EAs, the a parameter should be defined as a constant value (a = 1

P (0) − 1).
We call this model LOG1, and we plot its accuracy in Fig. 2a. We can quickly
arrive to the conclusion that for low values of migration frequency (panmictic-
like scenario), the error is small, what means good news for a logistic fitting.
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However, as the interaction among the islands decreases, it turns to be very
inaccurate. One could think that trying a fitting with the a parameter fixed is
provoking such an inaccuracy, and this is why we propose a new variant of the
logistic model called LOG2 (see Fig. 2b). In this case, we consider a and b as
free variables (in the previous model LOG1 a was a constant parameter). LOG2
allows a fitting with a smaller error than LOG1, but it still seems harmful since
the actual steps are ignored both in LOG1 and LOG2.

Then, a clear conclusion is that the basic logistic model, even when enhanced,
cannot be used for distributed EAs, as the existing literature also claim for most
non canonical cellular EAs [6,7,8,9].

(a) (b)
Fig. 2. Comparison between actual/predicted values with LOG1 (a) and LOG2 (b)

Therefore, we now turn to consider the hypergraph approach. In fact we
present two variants of hypergraphs: the one in which pselect (5) accounts only
for the probability of selection (HYP1), and the one where this probability (6)
accounts both for selection and for replacement (HYP2). We introduce such
distinction since in the seminal work [12] this second choice (combining selection
and replacement within a probability) is said to be more exact.

pselect1(i, N) = 2 · i

N
−

(
i

N

)2

. (5)

pselect2(i, N) =
i

N
+

(
1 − i

N

)
pselect1(i, N) . (6)

where N is the population size and i denotes the total number of best individuals
in the population.

When the hypergraph model is put to work, we can notice a clear impro-
vement over the logistic models, obtaining an almost perfect curve fitting. As
expected, HYP1 (Fig. 3a) generates a slightly worse fit than the HYP2 (Fig.
3b), because HYP1 is not accounting for the replacement effects.

To end this section we introduce a more accurate extension of the logistic
model (N is the number of islands in the dEA):
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(a) (b)
Fig. 3. Comparison between actual/predicted values with HYP1 (a) and HYP2 (b)

P (t) =
i=N∑
i=1

1/N

1 + a · e−b·(t−freq·i) . (7)

This expression is an extension of the logistic model based in the idea that
each island converges according to a logistic model, and that the entire popula-
tion grows up as a sum of the growth of each component island. If the subpopu-
lations are in turn structured in some way this assumption could not hold, but
much must be said on this special subject (e.g., on distributed cellular EAs [3]),
and thus it is left for a future work. To find the takeover time, we simply iterate
the model until it reaches 1. We should notice that since it is an extension of
the logistic approach, two variants could be also defined as we did before with
LOG1 and LOG2. The first (SUM1) in which a is constant (a = 1

P (0)/N − 1),
and the second (SUM2) where a and b are adjustable parameters.

(a) (b)
Fig. 4. Comparison between actual/predicted values with SUM1 (a) and SUM2 (b)

In figure 4 we plot the behavior of such a model. For low values of the
migration frequency, SUM1 shows a less accurate behavior with respect to SUM2,
but they two are equally or more precise than any other existing model, in
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particular with respect to the basic logistic and hypergraph variants. For the
rest of migration frequencies, the SUMx models outperform the rest.

We conclude this section with a summary of the results. We have fitted the
actual growth curves of a dEA with six different theoretical models. In Fig. 5
we graph together the mean square error and the ‖ · ‖1 of that error for all the
models under different migration frequencies. We can notice that in the case of
low values of the migration frequency, most of models obtain a large error (with
the exceptions of LOG2 and SUM2 models). In general, the second variant of
each model is always better than the first one. The LOGx models show a stable
behavior for all frequencies, but, while LOG1 is always very inaccurate (it is the
worst model), the LOG2 performs well, and it is only worse than SUM2 model.
The SUMx and HYPx models reduce their errors as the migration frequency
enlarges, although the SUMx models are always more accurate than the HYPx
ones.

Fig. 5. Error (MSE) and ‖ · ‖1 between actual and predicted values for all the models

4 Effects of the Migration Rate

In the previous section, we analyzed the effects of the migration frequency over
the growth curves of a dEA. However, the number of individuals undergoing
migration was fixed at a given value (rate = 8). Now, in this section we answer
a common sense question: are the results somehow biased by the utilization of a
concrete migration rate? To extend the previous study we now also analyze the
effects of the migration rate. As we made for the migration policy, we begin by
inspecting the induced behavior by different values of the migration rate.

As done before, we first compute the proportion of the best individual in a
dEA when utilizing these values of the migration rate: 1, 2, 4, 8, 16, 32, and 64.
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Fig. 6. Actual growth curves for several migration rates (100 independent runs)

The rest of the parameters are similar to the presented in Subsection 3.1. We
proceed to perform a comparative study with the models discussed before.

In Fig. 6 we plot the way in which the migration rate influences the gro-
wth curve (frequency = 1). From this figure we can infer that the value of the
migration rate determines the slope of the curve. The reason is that, when the
migration rate value is high, the probability of migrating the best individual
increases, and then the target island converges faster than if the migration rate
were smaller.

Let us now proceed with the fitting of these curves with all the considered
mathematical models. In Fig. 7 (left) we show the error for any combined value
of the migration frequency and migration rate. To interpret the graph you must
notice that the first seven points of a line correspond to the error incurred by the
associated predictive model for the seven different values of the migration rate
at the same frequency, and that there exists seven groups of such points, one for
each migration frequency from 1 to 64 (from left to right in the horizontal axis).

We can see in Fig. 7 some behavioral patterns of the models with respect
to the final MSE error they exhibit. First, we observe that the logistic beha-
vior is very similar to the showed previously (Fig. 5), i.e., both variants are
very stable; LOG1 obtains always larger errors while LOG2 is very accurate for
all configurations. Second, the hypergraph model obtains low error for larger
frequency values, while their inaccuracy is more evident for smaller values of mi-
gration frequency (high coupling). The proposed SUMx model also is somewhat
sensitive to low frequency values, but it is quite stable and accurate for larger
values of migration frequency. Both, the HYPx and the SUMx models seem to
perform a cycle: reduction/enlargement (respectively) of error as the migration
rate enlarges (for any given frequency). The ‖ · ‖1 summarizes quantitatively the
MSE results in a single value per model. We observe that the LOG1 model is
the most inaccurate one. Also, LOG2 obtains very accurate results and only is
worse than the SUM2 model. Although the HYPx models are very accurate for
lager frequency values, they show high errors for smaller values, thus making its
‖ · ‖1 value larger than the rest. Clearly, SUM2 obtains the lowest overall error.
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Rate=1

Rate=2

Rate=8

Rate=16

Rate=32

Rate=64

Rate=4

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 7. Error (MSE) and ‖ · ‖1 between actual and predicted growth curve for all the
values of migration rate and frequency

5 Takeover Time Analysis

In the previous sections we have studied the effects of the migration frequency
and rate over the takeover growth curves. Now, we analyze the effect of these
parameters over the takeover times themselves. Figure 8 contains the value of the
actual takeover time for different migration frequencies and rates. We can notice
that the takeover value increases for higher frequencies and smaller rates. Howe-
ver, the rate effect over the takeover time is smoother than the frequency one.

takeover time
frequency

1 2 4 8 16 32 64

rate

1 51 57 72 72 123 234 457
2 46 49 59 64 120 232 456
4 38 44 52 63 119 231 455
8 34 36 42 62 118 230 454
16 28 32 37 61 117 229 453
32 23 27 36 60 116 228 452
64 20 23 36 60 116 228 452

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 8. Actual takeover time values for all configurations (100 independent runs)

Once we have observed the effect of the migration rate and frequency over
the takeover time, we analyze the predicted values provided by the models.
Figure 9 shows the error of the predicted takeover time with all the models. We
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can notice that the predictions of the models are very sensitive to low values of
migration frequency. However, as such values are increased, the behavior of the
models is more stable. The logistic models obtain worse predictions as we enlarge
the migration frequency value, and for lager values, they are no longer useful.
HYPx and SUMx are quite stable (with small oscillations) and very accurate
for lager values of migration. Figure 9 (right) shows the MSE of the takeover
time prediction. Specially interesting is the case of LOG2 model, that obtains a
very accurate fitting of the growth curves but is quite inaccurate to predict the
takeover time. With the exception of the LOG2 model, there is not any significant
difference in the MSE value among the models, although the first variants of the
models (LOG1, HYP1, and SUM1) obtain a slightly better takeover time value
than its corresponding second one.

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 9. Error between actual and predicted values of takeover time

We conclude this section by showing a closed equation for the takeover time
calculation for the new models presented in this paper: SUMx models. This
formula (8) is derived from the growth curve equation (7) of these models:

Takeovertime = freq · (N − 1) − 1
b

· Ln

(
ε · N

a · (1 − ε · (N − 1))

)
. (8)

where freq is the migration frequency, N is the number of islands and ε is the
the expected level of accuracy (a small value near zero).

6 Conclusions

In this paper we have performed an analysis of the growth curves and takeover
regimes of distributed evolutionary algorithms. We compared the well-known
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logistic model, a hypergraph model and a newly proposed model consisting in a
sum of logistic definition of the component takeover regimes. A second variant
of each model has been also proposed for the shake of accuracy. In this article we
have shown how the models appropriately captured the effects of both migration
frequency and migration rate.

Although every model has its own advantages, either simplicity (LOGx),
extensibility (HYPx), or accuracy (SUMx), SUM2 is the model that better fitting
obtained, while its predicted takeover time was of a similar accuracy with respect
to the rest. However, much needs still to be said on them, since subtle factors
could provoke deviations from the predicted behavior, like it may occur for the
takeover regime near to the moment in which one subpopulation is completely
filled with the optimum solution.

As a future work we plan to check the results presented in this paper on
additional topologies and selection methods. Dealing with bounding cases of
widely spread algorithms is hopefully the right way to improve on our knowledge
of the algorithms that most researchers are using in practice.
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