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Abstract.  Evolutionary optimization has been proposed as
a method to generate machine learning through automated
discovery.  Specific genetic operations (e.g. crossover and
inversion) have been proposed to mutate the structure that
encodes expressed behavior.  The efficiency of these opera-
tions is evaluated in a series of experiments aimed at solving
linear systems of equations.  The results indicate that these
genetic operators do not compare favorably with more simple
random mutation.
_____________________________________________________________________________

1  Introduction

The common view of evolutionary processes is a successive
selection of the best of a sequence of variants produced by
random mutation.  Holland (1975) has proposed this process
to be equivalent to an enumeration of all possible coding
structures.  To be successful, adaptive plans require the use
of specific sophisticated genetic operators, such as crossover
and inversion.  However, in several evolutionary simulations
(Fogel 1964;  Fogel et al. 1966;  Atmar 1976:  Fogel and
Fogel 1986;  Fogel 1988) rapid convergence toward optimal
behavior was observed, even when using the slightest of mu-
tations.  Further, simulating crossover explicitly has resulted
in poor overall performance in a variety of studies
(Grefenstette et al. 1985;  Fogel and Fogel 1986; Fogel 1988).
It is of interest to quantify the benefits, if any, of using cross-
over and inversion as opposed to simple random mutation in
a variety of environments.

2  Background

Some of the first simulations of evolutionary processes were
conducted by Fogel (1962, 1964; and Fogel et al. 1966) where

the task of predicting any stationary or nonstationary envi-
ronment with respect to an arbitrary payoff function was
chosen.  Iterative mutation and selection was used to evolve
a logic most suitable for resolving the problem at hand.  The
behavior of each “organism” was portrayed by a finite state
machine, a general representation that does not constrain the
stimulus/response transduction to be linear, passive, or with-
out hysteresis.

This evolutionary programming was conducted as follows:
original finite state machines were measured in their ability
to predict each next event in their experience with respect to
whatever payoff function had been prescribed.  Progeny were
then created through random mutation of these “parent”
machines.  Their predictive ability was scored in a similar
manner to their parents.  Those finite state machines judged
to be superior survived to become the new parents.  An ac-
tual prediction was made when the predictive fit score dem-
onstrated that a sufficient level of credibility has been
achieved.  The surviving machines generated the prediction,
indicated the logic of this prediction and became the pro-
genitors for the next sequence of progeny.  The sequence of
predictor machines demonstrated phyletic learning, the in-
ductive generation of hypothesis concerning the relevant
regularities found within the experienced environment in light
of the give payoff function.

Rather than place primary importance on behavior, oth-
ers (e.g. Holland 1975;  DeJong 1975;  Fourman 1985) em-
phasize the mutational operations which are performed on
the given coding structures, specifically mimicking the op-
erations on natural chromosomes (e.g. crossover and inver-
sion).  Simple mutation, randomly altering a single compo-
nent of a chosen coding structure, is also incorporated but
only to assure that all possible values have some probability
of being included.  The effectiveness of these genetic opera-
tors as compared to simple random mutation in linear sys-
tems of varying degrees of interactivity is quantified here.
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3  Methods and Materials

Several experiments were conducted to explore these hy-
potheses concerning the importance of specific genetic op-
erators.  These experiments required solving systems of lin-
ear equations by evolutionary optimization.  Consider a sys-
tem of linear equations of n dimensions:

   b i = aij(xj)Σ
j = 1

n

, i = 1, . . ., n .

Let the vector xj represent the coding structure of n “gene”
products, the vector bi represent n phenotypic behavioral re-
sponses, and the coefficients aij represent the respective con-
tribution of each xi component to each bi response.  Any such
system will be pleiotropic (single genes expressing them-
selves through multiple effects) unless aij = 0 for all i = j.

A fitness function measures the quality of the evolved
behavioral responses aijxj, to the required response vector bi.
Unless the matrix aij is singular, there exists an ideal behav-
ioral response (aijxideal).  The fitness criterion is:

   E = EiΣ
i = 1

n

,

where

   
Ei = aij – biΣ

j = 1

n

, i = 1, . . ., n.

E, the total amount of behavioral error will equal zero when
xj = xideal.

For the purposes of this comparison, the adaptive process
is simulated with an arbitrary coefficient matrix aij of rank
10 and a randomly chosen desired response vector bi.  An
initial population of 150 vectors xj (genotypes) is taken at
random with components distributed normally with zero
mean and a standard deviation of 30.  These vectors are ran-
domly assigned to be one of three types.  The first is subject
to mutation only by random alteration of each of its compo-
nents by a standard normally distributed random variable
(i.e. zero mean and unit variance).  The second is mutated by
crossover (80% chance per offspring) and inversion (50%
chance per offspring) operators, double mutations being al-
lowed.  The third is mutated by crossover, inversion and also
given a 1% chance per offspring of random mutation by al-
tering components by a standard normal random variable.
This mutation rate is typical in the experiments conducted
by DeJong (1975); Fourman (1985); and Davis (1985).

Each vector is assigned a fitness score according to the
above fitness function and is then mutated yielding offspring
vectors.  Rather than simply selecting the best 150 vectors to
serve as new parents, each vector is given a probability of
survival based on the ratio of its error score relative to other

scores in the population of trial vectors.  During the course
of one generation, each genotype (trial vector) must directly
compete with ten other genotypes.  The probability of at-
taining a “win” is equal to the opponent’s fitness score di-
vided by the sum of both vector’s fitness scores.  For ex-
ample, should a vector with a fitness score of 8.0 compete
against a vector having a fitness score of 10.0, the probabil-
ity of the first vector obtaining a victory is 10/18 or 0.556.
Once competition has been completed, the 150 genotypic
vectors with the most “wins” become the basis set of the
next generation.  If the crossover and inversion operators
were to provide an advantage over simple random mutation
alone, it would be expected that those vectors which undergo
such operations would quickly dominate the population.

4  Experimental Findings

Linear systems of equations provide a convenient mecha-
nism for examining the effects of these operators in domains
of varying degrees of interactivity.  Five sets of trials were
conducted.  Each varied the degree of interactivity of the aij

matrix by setting the probability of an off-diagonal entry
being non-zero to 0.0, 0.25, 0.5, 0.75, and 1.0, respectively.
When this probability is zero, the domain is minimally pleio-
tropic; each independent “gene product” contributes only to
the fitness of its respective component.  When the probabil-
ity is 1.0, the domain is fully pleiotropic.  That is, each “gene
product” contributes to the total behavioral error summed
over all behavioral responses.  Each experiment consisted
of 100 randomly chosen systems.  In each system, evolution
was halted after 5000 offspring had been evaluated.  The
results are presented in Table 1.

Advantage quickly accrued to those genotypes which were
altered by random mutation alone.  The observed number of
trials in which simple random mutation dominated the popu-
lation is significantly greater than would be expected under
a null hypothesis of the behavior of the evolutionary pro-
cess being independent of the utilized mutation operation (P
<  0.0001, using nonparametric chi-square test).  Further,
insufficient evidence exists to suggest that the degree of
interactivity of the linear system of equations is associated
with the degree to which those genotypes undergoing ran-
dom mutation alone will overtake the population (P > 0.12).

In light of these results, a second experiment was con-
ducted to investigate the difference in efficiency between
systems using crossover and those not using crossover with
varying rates of mutation.  Again, a system of ten linear equa-
tions was used.  The matrix aij was chosen by setting the
entries to random integers between 0 and 9.  The bi vector
was chosen so as to make all of the components of xideal = 1.
Initially, the population was composed of 100 vectors, with
each component normally distributed with zero mean and a



standard deviation of 30.  After 10,000 offspring, the size of
the population was limited to 75 vectors.  All other condi-
tions were retained.

In the first set of ten trials, each parent vector was mu-
tated by crossover (80% chance/parent) and by a standard
normal random variable to any component (1% chance/par-
ent).  The second set of ten trials retained all of the previous
conditions, except the chance of a simple random mutation
was increased to 100%.  The third set of ten trials did not
utilize crossover; each parent was mutated only by simple
random mutation.  Ten thousand offspring were generated in
each trial.  As seen in Table 2, no advantage was realized by
optimization using crossover.

5  Conclusions

The experimental evidence suggests the claim that sophisti-
cated genetic operators are required to ensure successful ad-
aptation is in error.  In any positively entropic system, muta-
bility is guaranteed.  There will be errors in informational
transcription.  Competition is likewise guaranteed in any fi-

nite arena. Selection is the consequence of competition.  Evo-
lution toward optimality becomes inevitable, even when us-
ing only very small mutations.  But more to the point, a se-
quence of variants produced by mutation and competition is
not equivalent to an enumeration of structures.  Only a small
portion of the state space is searched under the search tech-
niques described here.

Successful adaptive procedures must retain a sufficient
link between parent and offspring to ensure that advances
are maintained.  Evolution succeeds not by random sampling,
which is doomed to failure, but by incorporating through
successive stages those behaviors which are appropriate.  The
crossover and inversion operators do not always maintain
this behavioral link, no more than do other macromutations.
A large shuffling of information takes place each genera-
tion.  In pleiotropic systems with information structures of
large size, the use of such mutation operations forces the
evolution to approach a random search, where the behavior
of each offspring becomes only minimally related to the be-
havior of the parent.  The experimental results generated here
are similar to those obtained by Reed et al. (1967) where
“under conditions simulating polygenic control of quantita-
tive characters, crossing [did] not enhance the speed of se-



lective adaptation.”
Further, the crossover and inversion operations common

to “genetic algorithms” provided no significant benefit, irre-
spective of the degree of interactivity of the “gene products”
involved in the linear systems of equations.  Rather, random
mutation consistently generated more efficient searches.  If
a specific algorithm were to show promise over a general
algorithm, it would be expected to do so under special cir-
cumstances.  Intuitively, here that special circumstance would
occur when the degree of interactivity is zero.  While spe-
cific circumstances (other than linear equations) may well
exist for which crossover and inversion operations are espe-
cially appropriate, those conditions cannot be the hallmark
of a broadly useful algorithm.

“Genetic algorithms,” which rely on crossover and inver-
sion, have been almost universally described by their stu-
dents (e.g., Holland 1975;  Bethke 1981) as being funda-
mentally different than “evolutionary programming tech-
niques, which rely on random mutation and hill-climbing”
(Grefenstette 1986). That claim is in error.  As long as selec-
tion occurs between individual values mapped into an error
scoring algorithm, optimization will occur automatically as
a hill climbing technique.  Indeed, all optimization techniques
either climb hills (maximizing appropriateness) or descend
to the bottom of troughs (minimizing functional error), de-
pendent upon the observer’s choice of perspective.  “Genetic
algorithms” are based on specific mechanistic natural ge-
netical systems.  Rather than being fundamentally different
from random mutation, as claimed, crossover and inversion
are merely a subset of all random mutations.  As in all sub-
sets, their applicability will be strongly problem dependent,
if advantageous at all.
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Errata added here:

(1) The third equation on page 112 has been corrected
to properly place the absolute valuesymbols. The error
in the original was pointed out by J.D. Schaffer (pers.
comm. 1991) with thanks.

(2) Note that the notation for the matrix and its entries
aij and the vector and its entries bi is somewhat equivo-
cal. For consistency to the original publication, no
change has been made here. The use of the term should
be clear in context.
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