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Abstract possible in a fixed amount of time. For a search space
Researchers in many fields are faced Withwith only a small number of possible solutions, all the

: . ; lutions can xamined in a reasonable amount of
computational problems in which a great number ofolutions ca be examined in a reasonable amount o

solutions are possible and finding an optimal or even %emaercr?nr?ovt/t\a/e?pumil Onbeecf(?rﬂre]g' imTrhanf[ir::aalIJS;;/ethe
sufficiently good one is difficult. A variety of search » y P

techniques have been developed for exploring sucﬁeamh space grows in size.  Traditional search

problem spaces, and a promising approach has been tﬁle Orrlstth(r:];‘cl'l rzgfnorgy(esar?gﬁeg?'gggg:ﬁh\gaslza?éh
use of algorithms based upon the principles of naturasl ;cle Ioneysol t'gn at ég?mel'n the hopes of findina the
evolution.  This tutorial will introduce the basic P Ut ime 1 P inding

principles underlying most evolutionary algorithms, asoptlmal solution. ~ The key aspect distinguishing an

. lutionary search algorithm from such traditional
well as some of the key details of the four most popula‘?vO . ) o .
methods: genetic algorithms, genetic programmingalgonthms is that it igpopulation-based Through the

evolutionary strategies, and evolutionary programmingadaptat'on of successive generations of a large number

The aim of the tutorial is to introduce the participants to°f individuals, an evolutionary algorithm performs an

the jargon and principles of the field of evolutionaryemc'em directed search.  Evolutionary sear_ch IS
computation, and to encourage the participants tgenerall_y better thgn _ran.dom sea_rch and IS not
consider the potential of applying evolutionary susceptible to the hill-climbing behaviors of gradient-
optimization techniques in their own research. based search.

2. Basic Evolutionary Computation

An important area in current research is the In an evolutionary - algorithm, - aepresentation

development and application of search techniques basésghemes chosen by the researcher to define the set of

upon the principles of natural evolution. Most readers,SOIUtlons that form the search space for the algorithm.

through the popular literature and typical Western A-n-umber of |nd|V|duaI solu'uons.are created to form an
Eltla| population  The following steps are then

educational experience, are probably aware of the bas1re eated iteratively until a solution has been found
concepts of evolution. In particular, the principle of the rﬁ)'ch satisfies ay re-definetermination  criterion
‘survival of the fittestproposed by Charles Darwin whl ISt P ' inatl erion

; : L h individual is evaluated usinditaess functiorthat
1859) has especially captured the popular ima maﬂorFaC e ;
sNe s?1a|| usepthis zs ap starting plz)irr:t in intrc?ducin S specific to the problem being solved. Based upon

- . gtheir fitness values, a number of individuals are chosen
evolutionary computation.

The theory of natural selection proposes that thd® be parents New individuals, oroffspring are

plants and animals that exist today are the result oqroduced from those parents —usingproduction

millions of years of adaptation to the demands of theoperators The fitness values of those offspring are

environment. At any given time, a number of differentdetermlned. Finally, survivors are selected from the old

organisms may co-exist and compete for the Samgopulatlon and the offspring to form the new population

resources in an ecosystem. The organisms that are m@étthe nexigeneration

capable of acquiring resources and successfull\é The mechanisms determining which and how many

procreating are the ones whose descendants will tend %rents to select, how many offspring to create, and

be numerous in the future. Organisms that are Ies\% Ig[]h(Ier;drl(\a”drlézlsn\':vgg|Zl:;2/(;\|/qenl1r:t%;ze|v|nae:t g%ﬁg{on
capable, for whatever reason, will tend to have few oF 9 P y

no descendants in the future. The former are said to bseelect|on methods have been proposed in the literature,

more fit than the latter, and the distinguishing and they vary in complexity. Typically, though, most

characteristics that caused the former to be more fit ar%electlon methods ensure that the population of each

said to beselected forover the characteristics of the geneTrsgorzr'nsatiz(ejs?gﬁﬁge'a er presents the traditional
latter. Over time, the entire population of the ecosystergeﬁ Paper p

is said toevolveto contain organisms that, on average, | or:li'fnlr?rrr]]SS' Ofan?t?c ;(Iju(;rimr?g (ljg“qa?gn 1;‘;;““%':?6%’(:
are more fit than those of previous generations of th&'9 -9 9 ' ' 9

. o [ Koza, 1992, 1994), evolutionary
opulation because they exhibit more of thosdodramming ( .
Eh;)racteristics that tend toi)romote survival. strategies (Rechenberg, 1973), and evolutionary

Evolutionary computation techniques abstract thes® irf?grr::lr:;ngetgv:ggr?l th?et aal.'ro;?:ﬁg)s. ir;l;/r:)elv;r;deltlggteﬂre
evolutionary principles into algorithms that may be usead PP

to search for optimal solutions to a problem. In a searcR]c the representation schemes, the reproduction

algorithm, a number of possible solutions to a problemOperatorS’ and the selection methods.

are available and the task is to find the best solutio3, Genetic Algorithms

1. Introduction



The most popular technique in evolutionary 4, Genetic Programming

computation research has been femetic algorithm An increasingly popular technique is thatgeetic

In the traditional genetic algorithm, the representation . .
used is dixed-length bit string Each position in the programming In a standard genetic program, the

S . representation used is a variable-sized tree of functions
string is assumed to represent a particular feature of alhd values. Each leaf in the tree is a label from an
individual, and the value . stored in that pos't'o.navailable set of value labels. Each internal node in the
represents how t'hat feature is expressed in the .SOIUt'Oﬂ"ee is label from an available set of function labels.
Usually, the string is evalgated as a co'llectlon OfThe entire tree corresponds to a single function that may
structural features of a solution that have little or no .~ .4 Typically, the tree is evaluated in a left-
interactions” (Angeline, 1996, p. 4). The analogy MY ost depth-first manne}. A leaf is evaluated as the

EZcﬂrag\;A;edlrri:(g:)e/steontgegﬁs el:titbyl Olt?]%'f aIIS osr?rir;'tirgsu'corresponding value. A function is_ evaILIJated. using as
independent of other genes }Srgumentst the res_ult of the evaluatl_on of its ch|Id_ren.

) ' Genetic algorithms and genetic programming are
similar in most other respects, except that the

a) LhpQph)| c)|1 Ljofph| reproduction operators are tailored to a tree
' = representation. The most commonly used operator is

|1 |0 |1 |0 ]0 |1 | |1 |0 |1 |0 |0 |0 | subtree crossovein which an entire subtree is swapped
b) : d) between two parents (see Figure 3). In a standard

X genetic program, all values and functions are assumed
Crossover Point to return the same type, although functions may vary in
the number of arguments they take. Tlissure
principle (Koza, 1994) allows any subtree to be
considered structurally on par with any other subtree,
and ensures that operators such as sub-tree crossover

will always produce legal offspring.
GEPEPPRE]>yf PR P EE]
Figure 2: Bit-Flipping Mutation of Parent a ' !
to form Offspring b / \ / \
- . - +
The main reproduction operator usedbisstring

crossovey in which two strings are used as parents and / \ / \ / \
2 3 2 1 4

new individuals are formed by swapping a sub-sequence,
between the two strings (see Figure 1). Another popular @ ©
operator idit-flipping mutation in which a single bit in =
the string is flipped to form a new offspring string (see X X
Figure 2). A variety of other operators have also been / \ / \
developed, but are used less frequently (&gersion
in which a subsequence in the bit string is reversed). A ° * ° '
primary distinction that may be made between the / \

1 4

Figure 1: Bit-String Crossover of Parents a & b
to form Offspring c & d

various operators is whether or not they introduce any
new information into the population. Crossover, for @
example, does not while mutation does. All operators ®

are also constrained to manipulate the string in a
manner consistent with the structural interpretation of
genes. For example, two genes at the same location on

two strings may be swapped between parents, but né&., Evolutionary Strategies

combined based on their values. In evolutionary strategies, the representation used

Trgo_liti_onally, individuals are s_elected fo be parentsis a fixed-length real-valued vector. As with the bit-
probabilistically based upon their fitness values, and theStrings of genetic algorithms, each position in the vector

offspring that are created replace the parents_. I:ocforresponds to a feature of the individual. However,

fhe features are considered to be behavioral rather than

genera:ed which replace the parents in the NeXiructural. “Consequently, arbitrary  non-linear
generation. interactions between features during evaluation are

Figure 3: Subtree Crossover of Parents a & b
to form Offspring ¢ & d



expected which forces a more holistic approach to A typical selection method is to select all the
evolving solutions” (Angeline, 1996, p. 4). individuals in the population to be the N parents, to
The main reproduction operator in evolutionarymutate each parent to form N offspring, and to
strategies isGaussian mutatignin which a random probabilistically select, based upon fitness, N survivors
value from a Gaussian distribution is added to eacfrom the total 2N individuals to form the next
element of an individual's vector to create a newgeneration.
offspring (see Figure 4). Another operator that is used i§
intermediate recombinatigin which the vectors of two - Current Issues
parents are averaged together, element by element, to In current research, the line distinguishing these
form a new offspring (see Figure 5). The effects ofdifferent approaches has started to blur. Researchers in
these operators reflect the behavioral as opposed ®&ach technique have begun to examine more complex
structural interpretation of the representation sinceepresentation schemes and to apply a variety of
knowledge of the values of vector elements is used teelection methods. Many genetic algorithm researchers
derive new vector elements. are examining the use variable-length representations
and analyzing how such representations grow in size
over the course of evolution (Wu & Lindsay, 1996).
Many genetic algorithms now use selection methods,
such aslitist recombinationin which parents compete
with their offspring for survival into the next generation
(Thierens, 1997). Some genetic programming
researchers have begun to examine the effects of
) L3072 “epresentation.  The. benells of suoh strongly typec
éC)|1'0|0'4|0'5|1'4|0'5|1'2| genetic programming are only beginning to be explored
b) 10.80.5[1.0[1.1j0.2}1.2) (Haynes et al., 1996).

Figure 5: Intermediate Recombination of Parents a & bReferences
to form Offspring c

a) [1-30-4]1.80.20.011.0=> 1;1.20.7]1.60.20.111.2

Figure 4: Gaussian Mutation of Parent a
to form Offspring b
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used. For real-valued vector representations,

evolutionary programming is very similar to

evolutionary strategies without recombination.



