
An Introduction to Evolutionary Computation

Talib S. Hussain

Department of Computing and Information Science
Queen’s University, Kingston, Ont. K7L 3N6

hussain@qucis.queensu.ca

Abstract
Researchers in many fields are faced with
computational problems in which a great number of
solutions are possible and finding an optimal or even a
sufficiently good one is difficult. A variety of search
techniques have been developed for exploring such
problem spaces, and a promising approach has been the
use of algorithms based upon the principles of natural
evolution. This tutorial will introduce the basic
principles underlying most evolutionary algorithms, as
well as some of the key details of the four most popular
methods: genetic algorithms, genetic programming,
evolutionary strategies, and evolutionary programming.
The aim of the tutorial is to introduce the participants to
the jargon and principles of the field of evolutionary
computation, and to encourage the participants to
consider the potential of applying evolutionary
optimization techniques in their own research.

1. Introduction
An important area in current research is the

development and application of search techniques based
upon the principles of natural evolution. Most readers,
through the popular literature and typical Western
educational experience, are probably aware of the basic
concepts of evolution. In particular, the principle of the
‘survival of the fittest’ proposed by Charles Darwin
(1859) has especially captured the popular imagination.
We shall use this as a starting point in introducing
evolutionary computation.

The theory of natural selection proposes that the
plants and animals that exist today are the result of
millions of years of adaptation to the demands of the
environment. At any given time, a number of different
organisms may co-exist and compete for the same
resources in an ecosystem. The organisms that are most
capable of acquiring resources and successfully
procreating are the ones whose descendants will tend to
be numerous in the future. Organisms that are less
capable, for whatever reason, will tend to have few or
no descendants in the future. The former are said to be
more fit than the latter, and the distinguishing
characteristics that caused the former to be more fit are
said to be selected for over the characteristics of the
latter. Over time, the entire population of the ecosystem
is said to evolve to contain organisms that, on average,
are more fit than those of previous generations of the
population because they exhibit more of those
characteristics that tend to promote survival.

Evolutionary computation techniques abstract these
evolutionary principles into algorithms that may be used
to search for optimal solutions to a problem. In a search
algorithm, a number of possible solutions to a problem
are available and the task is to find the best solution

possible in a fixed amount of time. For a search space
with only a small number of possible solutions, all the
solutions can be examined in a reasonable amount of
time and the optimal one found. This exhaustive
search, however, quickly becomes impractical as the
search space grows in size. Traditional search
algorithms randomly sample (e.g., random walk) or
heuristically sample (e.g., gradient descent) the search
space one solution at a time in the hopes of finding the
optimal solution. The key aspect distinguishing an
evolutionary search algorithm from such traditional
algorithms is that it is population-based. Through the
adaptation of successive generations of a large number
of individuals, an evolutionary algorithm performs an
efficient directed search. Evolutionary search is
generally better than random search and is not
susceptible to the hill-climbing behaviors of gradient-
based search.

2. Basic Evolutionary Computation
In an evolutionary algorithm, a representation

scheme is chosen by the researcher to define the set of
solutions that form the search space for the algorithm.
A number of individual solutions are created to form an
initial population. The following steps are then
repeated iteratively until a solution has been found
which satisfies a pre-defined termination criterion.
Each individual is evaluated using a fitness function that
is specific to the problem being solved. Based upon
their fitness values, a number of individuals are chosen
to be parents. New individuals, or offspring, are
produced from those parents using reproduction
operators. The fitness values of those offspring are
determined. Finally, survivors are selected from the old
population and the offspring to form the new population
of the next generation.

The mechanisms determining which and how many
parents to select, how many offspring to create, and
which individuals will survive into the next generation
together represent a selection method. Many different
selection methods have been proposed in the literature,
and they vary in complexity. Typically, though, most
selection methods ensure that the population of each
generation is the same size.

The remainder of the paper presents the traditional
definitions of the four most common evolutionary
algorithms: genetic algorithms (Holland, 1975), genetic
programming (Koza, 1992, 1994), evolutionary
strategies (Rechenberg, 1973), and evolutionary
programming (Fogel et al., 1966). The traditional
differences between the approaches involve the nature
of the representation schemes, the reproduction
operators, and the selection methods.

3. Genetic Algorithms

The most popular technique in evolutionary
computation research has been the genetic algorithm.
In the traditional genetic algorithm, the representation
used is a fixed-length bit string. Each position in the
string is assumed to represent a particular feature of an
individual, and the value stored in that position
represents how that feature is expressed in the solution.
Usually, the string is “evaluated as a collection of
structural features of a solution that have little or no
interactions” (Angeline, 1996, p. 4). The analogy may
be drawn directly to genes in biological organisms.
Each gene represents an entity that is structurally
independent of other genes.

Figure 1: Bit-String Crossover of Parents a & b
 to form Offspring c & d

Figure 2: Bit-Flipping Mutation of Parent a
 to form Offspring b

The main reproduction operator used is bit-string
crossover, in which two strings are used as parents and
new individuals are formed by swapping a sub-sequence
between the two strings (see Figure 1). Another popular
operator is bit-flipping mutation, in which a single bit in
the string is flipped to form a new offspring string (see
Figure 2). A variety of other operators have also been
developed, but are used less frequently (e.g., inversion,
in which a subsequence in the bit string is reversed). A
primary distinction that may be made between the
various operators is whether or not they introduce any
new information into the population. Crossover, for
example, does not while mutation does. All operators
are also constrained to manipulate the string in a
manner consistent with the structural interpretation of
genes. For example, two genes at the same location on
two strings may be swapped between parents, but not
combined based on their values.

Traditionally, individuals are selected to be parents
probabilistically based upon their fitness values, and the
offspring that are created replace the parents. For
example, if N parents are selected, then N offspring are
generated which replace the parents in the next
generation.

4. Genetic Programming
An increasingly popular technique is that of genetic

programming. In a standard genetic program, the
representation used is a variable-sized tree of functions
and values. Each leaf in the tree is a label from an
available set of value labels. Each internal node in the
tree is label from an available set of function labels.
The entire tree corresponds to a single function that may
be evaluated. Typically, the tree is evaluated in a left-
most depth-first manner. A leaf is evaluated as the
corresponding value. A function is evaluated using as
arguments the result of the evaluation of its children.

Genetic algorithms and genetic programming are
similar in most other respects, except that the
reproduction operators are tailored to a tree
representation. The most commonly used operator is
subtree crossover, in which an entire subtree is swapped
between two parents (see Figure 3). In a standard
genetic program, all values and functions are assumed
to return the same type, although functions may vary in
the number of arguments they take. This closure
principle (Koza, 1994) allows any subtree to be
considered structurally on par with any other subtree,
and ensures that operators such as sub-tree crossover
will always produce legal offspring.

×

5

++

1−

23

(a)

(b)

+

41

−

23

+

41

×

5 1

(c)

(d)

Figure 3: Subtree Crossover of Parents a & b
 to form Offspring c & d

5. Evolutionary Strategies
In evolutionary strategies, the representation used

is a fixed-length real-valued vector. As with the bit-
strings of genetic algorithms, each position in the vector
corresponds to a feature of the individual. However,
the features are considered to be behavioral rather than
structural. “Consequently, arbitrary non-linear
interactions between features during evaluation are

1 1 0 1 0 0

1 0 1 0 0 1

1 1 0 1 0 1

1 0 1 0 0 0

Crossover Point

a)

b)

c)

d)

1 0 1 0 0 1 1 0 1 0 1 1a) b)

expected which forces a more holistic approach to
evolving solutions” (Angeline, 1996, p. 4).

The main reproduction operator in evolutionary
strategies is Gaussian mutation, in which a random
value from a Gaussian distribution is added to each
element of an individual’s vector to create a new
offspring (see Figure 4). Another operator that is used is
intermediate recombination, in which the vectors of two
parents are averaged together, element by element, to
form a new offspring (see Figure 5). The effects of
these operators reflect the behavioral as opposed to
structural interpretation of the representation since
knowledge of the values of vector elements is used to
derive new vector elements.

Figure 4: Gaussian Mutation of Parent a
to form Offspring b

Figure 5: Intermediate Recombination of Parents a & b
to form Offspring c

The selection of parents to form offspring is less
constrained than it is in genetic algorithms and genetic
programming. For instance, due to the nature of the
representation, it is easy to average vectors from many
individuals to form a single offspring. In a typical
evolutionary strategy, N parents are selected uniformly
randomly (i.e., not based upon fitness), more than N
offspring are generated through the use of
recombination, and then N survivors are selected
deterministically. The survivors are chosen either from
the best N offspring (i.e., no parents survive) or from
the best N parents and offspring (Spears et al., 1993).

6. Evolutionary Programming
The representations used in evolutionary

programming are typically tailored to the problem
domain (Spears et al., 1993). One representation
commonly used is a fixed-length real-valued vector.

The primary difference between evolutionary
programming and the previous approaches is that no
exchange of material between individuals in the
population is made. Thus, only mutation operators are
used. For real-valued vector representations,
evolutionary programming is very similar to
evolutionary strategies without recombination.

A typical selection method is to select all the
individuals in the population to be the N parents, to
mutate each parent to form N offspring, and to
probabilistically select, based upon fitness, N survivors
from the total 2N individuals to form the next
generation.

7. Current Issues
In current research, the line distinguishing these

different approaches has started to blur. Researchers in
each technique have begun to examine more complex
representation schemes and to apply a variety of
selection methods. Many genetic algorithm researchers
are examining the use variable-length representations
and analyzing how such representations grow in size
over the course of evolution (Wu & Lindsay, 1996).
Many genetic algorithms now use selection methods,
such as elitist recombination, in which parents compete
with their offspring for survival into the next generation
(Thierens, 1997). Some genetic programming
researchers have begun to examine the effects of
allowing multiple types of functions and values into the
representation. The benefits of such strongly typed
genetic programming are only beginning to be explored
(Haynes et al., 1996).

References
Angeline, P.J. (1996) “Genetic programming’s continued evolution,”

Chapter 1 in K.E. Kinnear, Jr. and P.J. Angeline (Eds.), Advances
in Genetic Programming 2. Cambridge, MA: MIT Press, p. 1 -20.

Darwin, C. (1859) On the Origin of Species by Means of Natural
Selection. London: John Murray.

Fogel, L.J., Owens, A.J. & Walsh, M.J. (1966) Artificial Intelligence
through Simulated Evolution. New York: John Wiley.

Haynes, T.D., Schoenefeld, D.A. & Wainwright, R.L. (1996) “Type
inheritance in strongly typed genetic programming,” Chapter 18 in
K.E. Kinnear, Jr. and P.J. Angeline (Eds.), Advances in Genetic
Programming 2. Cambridge, MA: MIT Press. p. 359-376.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press.

Koza, J.R. (1992) Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA: MIT
Press.

Koza, J.R. (1994) Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge, MA: MIT Press.

Rechenberg, I. (1973) Evolutionsstrategie: Optimierung Technischer
Systeme nach Prinzipien der Biologischen Evolution. Stuttgart:
Frommann-Holzboog Verlag.

Spears, W.M., DeJong, K.A., Back, T., Fogel, D.B., & deGaris, H.
(1993) “An overview of evolutionary computation,” Proceedings
of the 1993 European Conference on Machine Learning.

Thierens, D. (1997) “Selection schemes, elitist recombination, and
selection intensity,” Proceedings of the Seventh International
Conference on Genetic Algorithms. San Francisco, CA: Morgan
Kauffman, p. 152-159.

Wu, A. & Lindsay, R.K. (1996) “A survey of intron research in
genetics,” In Voigt, H., Ebelin, W., Rechenberg, I., & Schwefel,
H. (Eds.), Parallel Problem Solving from Nature - PPSN IV.
Berlin: Springer-Verlag, p. 101-110.

1.20.30.01.70.81.2

0.80.51.01.10.21.2

1.00.40.51.40.51.2
a)

b)

c)

1.30.41.80.20.01.0 1.20.71.60.20.11.2a) b)

