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1.  Introduction

Genetic programming is a domain-independent problem-solving approach in which computer

programs are evolved to solve, or approximately solve, problems.  Genetic programming is based

on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally

occurring genetic operations such as crossover (sexual recombination) and mutation.

John Holland's pioneering Adaptation in Natural and Artificial Systems (1975) described how

an analog of the evolutionary process can be applied to solving mathematical problems and

engineering optimization problems using what is now called the genetic algorithm (GA). The

genetic algorithm attempts to find a good (or best) solution to the problem by genetically

breeding a population of individuals over a series of generations. In the genetic algorithm, each

individual in the population represents a candidate solution to the given problem.  The genetic

algorithm (GA) transforms a population (set) of individuals, each with an associated fitness

value, into a new generation of the population using reproduction, crossover, and mutation.

Books on genetic algorithms that include those that survey the entire field, such as Goldberg

(1989), Michalewicz (1992), and Mitchell (1996) as well as others that specialize in particular

areas, such as the application of genetic algorithms to robotics (Davidor (1990), financial
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applications (Bauer 1994), image segmentation (Bhanu and Lee 1994), pattern recognition (Pal

and Wang 1996), parallelization (Stender 1993), and simulation an modeling (Stender,

Hillebrand, and Kingdon 1994), control and signal processing (Man, Tang, Kwong, and Halang

1997), and engineering design (Gen and Cheng 1997).

Edited collection of papers on genetic algorithms include Davis (1987, 1991), Chambers

(1995), Biethahn and Nissen (1995), Dasgupta and Michalewicz (1997), and Back, Fogel, and

Michalewicz (1997).

Recent work on genetic algorithms can often be found in conference proceedings, such as the

International Conference on Genetic Algorithms (Back 1997), ICEC – International Conference

on Evolutionary Computation (IEEE 1997), the annual Genetic Programming Conference (Koza

et al. 1997), Parallel Problem Solving from Nature (Voigt, Ebeling, Rechenberg, and Schwefel

1996), Artificial Evolution (Alliot et al. 1995), Genetic Algorithms in Engineering Systems:

Innovations and Applications (IEE 1995), Evolutionary Computing (Fogarty 1995), Evolutionary

Computation and its Applications (Goodman 1996), Frontiers of Evolutionary Algorithms

(Wang 1997), Simulated Evolution And Learning (Yao, Kim, and Furuhashi 1997), International

Conference on Evolvable Systems (Higuchi, Iwata, and Lui 1997), International Conference on

Artificial Neural Nets and Genetic Algorithms (Pearson, Steele, and Albrecht 1995), and the

Evolutionary Programming Conference (Angeline, Reynolds, McDonnell, and Eberhart 1997).

Genetic programming addresses one of the central goals of computer science, namely

automatic programming.  The goal of automatic programming is to create, in an automated way,

a computer program that enables a computer to solve a problem.  Paraphrasing Arthur Samuel

(1959), the goal of automatic programming concerns,

How can computers be made to do what needs to be done, without being told exactly

how to do it?

In genetic programming, the genetic algorithm operates on a population of computer programs

of varying sizes and shapes (Koza 1992).  Genetic programming starts with a primordial ooze of
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thousands or millions of randomly generated computer programs composed of the available

programmatic ingredients and then applies the principles of animal husbandry to breed a new

(and often improved) population of programs.  The breeding is done in a domain-independent

way using the Darwinian principle of survival of the fittest, an analog of the naturally-occurring

genetic operation of crossover (sexual recombination), and occasional mutation.  The crossover

operation is designed to create syntactically valid offspring programs (given closure amongst the

set of programmatic ingredients).  Genetic programming combines the expressive high-level

symbolic representations of computer programs with the near-optimal efficiency of learning of

Holland’s genetic algorithm.  A computer program that solves (or approximately solves) a given

problem often emerges from this process.  See also Koza and Rice 1992.

Genetic programming breeds computer programs to solve problems by executing the

following three steps:
(1) Generate an initial population of random compositions of the functions and terminals of

the problem (i.e., computer programs).
(2) Iteratively perform the following substeps until the termination criterion has been

satisfied:
(A) Execute each program in the population and assign it a fitness value using the fitness

measure.
(B) Create a new population of computer programs by applying the following

operations.  The operations are applied to computer program(s) chosen from the
population with a probability based on fitness.
(i) Darwinian Reproduction: Reproduce an existing program by copying it into the

new population.
(ii) Crossover: Create two new computer programs from two existing programs by

genetically recombining randomly chosen parts of two existing programs
using the crossover operation (described below) applied at a randomly chosen
crossover point within each program.

(iii) Mutation: Create one new computer program from one existing program by
mutating a randomly chosen part of the program.

(3) The program that is identified by the method of result designation is designated as the
result for the run (e.g., the best-so-far individual).  This result may be a solution (or an
approximate solution) to the problem.

Multi-part programs consisting of a main program and one or more reusable, parameterized,

hierarchically-called subprograms (called automatically defined functions) may also be evolved

(Koza 1994a, 1994b).  An automatically defined function (ADF) is a function (i.e., subroutine,
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subprogram, DEFUN, procedure) that is dynamically evolved during a run of genetic

programming and which may be called by a calling program (or subprogram) that is concurrently

being evolved.  When automatically defined functions are being used, a program in the

population consists of a hierarchy of one (or more) reusable function-defining branches (i.e.,

automatically defined functions) along with a main result-producing branch.  Typically, the

automatically defined functions possess one or more dummy arguments (formal parameters) and

are reused with different instantiations of these dummy arguments.  During a run, genetic

programming evolves different subprograms in the function-defining branches of the overall

program, different main programs in the result-producing branch, different instantiations of the

dummy arguments of the automatically defined functions in the function-defining branches, and

different hierarchical references between the branches.

Architecture-altering operations enhance genetic programming with automatically defined

functions by providing a way to automatically determine the number of such subprograms, the

number of arguments that each subprogram possesses, and the nature of the hierarchical

references, if any, among such subprograms (Koza 1995).  These operations include branch

duplication, argument duplication, branch creation, argument creation, branch deletion, and

argument deletion. The architecture-altering operations are motivated by the naturally occurring

mechanism of gene duplication that creates new proteins (and hence new structures and new

behaviors in living things) (Ohno 1970).

Recent research on genetic programming is described in Banzhaf, Nordin, Keller, and

Francone (1997), the proceedings of the annual Genetic Programming Conferences (Koza et al.

1997), and in most of the conferences cited earlier on evolutionary computation. Edited

collection of papers on genetic programming include Kinnear (1994) and Angeline and Kinnear

(1996).

Before applying genetic programming to a problem, the user must perform five major

preparatory steps.  These five steps involve determining

(1) the set of terminals,
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(2) the set of primitive functions,

(3) the fitness measure,

(4) the parameters for controlling the run, and

(5) the method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is to identify the set of

terminals.  The terminals can be viewed as the inputs to the as-yet-undiscovered computer

program.  The set of terminals (along with the set of functions) are the ingredients from which

genetic programming attempts to construct a computer program to solve, or approximately solve,

the problem.

The second major step in preparing to use genetic programming is to identify the set of

functions that are to be used to generate the mathematical expression that attempts to fit the given

finite sample of data.  Each computer program (i.e., parse tree, mathematical expression, LISP S-

expression) is a composition of functions from the function set F and terminals from the terminal

set T.  Each of the functions in the function set should be able to accept, as its arguments, any

value and data type that may possibly be returned by any function in the function set and any

value and data type that may possibly be assumed by any terminal in the terminal set.  That is,

the function set and terminal set selected should have the closure property so that any possible

composition of functions and terminals produces a valid executable computer program.  For

example, a run of genetic programming will typically employ a protected version of division

(returning an arbitrary value such as zero when division by zero is attempted).

The evolutionary process is driven by the fitness measure.  Each individual computer program

in the population is executed and then evaluated, using the fitness measure, to determine how

well it performs in the particular problem environment.  The nature of the fitness measure varies

with the problem.  For many problems, fitness is naturally measured by the discrepancy between

the result produced by an individual candidate program and the desired result.  The closer this

error is to zero, the better the program.  In a problem of optimal control, the fitness of a computer

program may be the amount of time (or fuel, or money, etc.) it takes to bring the system to a
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desired target state.  The smaller the amount, the better.  If one is trying to recognize patterns or

classify objects into categories, the fitness of a particular program may be measured by accuracy

or correlation.  For electronic circuit design problems, the fitness measure may involve how

closely the circuit’s performance (say, in the frequency or time domain) satisfies user-specified

design requirements.   If one is trying to evolve a good randomizer, the fitness might be

measured by means of entropy, satisfaction of the gap test, satisfaction of the run test, or some

combination of these factors.  For some problems, it may be appropriate to use a multiobjective

fitness measure incorporating a combination of factors such as correctness, parsimony (smallness

of the evolved program), efficiency (of execution), power consumption (for an electrical circuit),

or manufacturing cost (for an electrical circuit).

The primary parameters for controlling a run of genetic programming are the population size,

M, and the maximum number of generations to be run, G.

Each run of genetic programming requires specification of a termination criterion for

deciding when to terminate a run and a method of result designation.  One frequently used

method of result designation for a run is to designate the best individual obtained in any

generation of the population during the run (i.e., the best-so-far individual) as the result of the

run.

In genetic programming, populations of thousands or millions of computer programs are

genetically bred for dozens, hundreds, or thousands of generations.  This breeding is done using

the Darwinian principle of survival and reproduction of the fittest along with a genetic crossover

operation appropriate for mating computer programs.  A computer program that solves (or

approximately solves) a given problem often emerges from this combination of Darwinian

natural selection and genetic operations.

Genetic programming starts with an initial population (generation 0) of randomly generated

computer programs composed of the given primitive functions and terminals.  Typically, the size

of each program is limited, for practical reasons, to a certain maximum number of points (i.e.

total number of functions and terminals) or a maximum depth (of the program tree).  The
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creation of this initial random population is, in effect, a blind random parallel search of the

search space of the problem represented as computer programs.

Typically, each computer program in the population is run over a number of different fitness

cases so that its fitness is measured as a sum or an average over a variety of representative

different situations.  These fitness cases sometimes represent a sampling of different values of an

independent variable or a sampling of different initial conditions of a system.  For example, the

fitness of an individual computer program in the population may be measured in terms of the

sum of the absolute value of the differences between the output produced by the program and the

correct answer to the problem (i.e., the Minkowski distance)  or the square root of the sum of the

squares (i.e., Euclidean distance).  These sums are taken over a sampling of different inputs

(fitness cases) to the program.  The fitness cases may be chosen at random or may be chosen in

some structured way (e.g., at regular intervals or over a regular grid).  It is also common for

fitness cases to represent initial conditions of a system (as in a control problem).  In economic

forecasting problems, the fitness cases may be the daily closing price of some financial

instrument.

The computer programs in generation 0 of a run of genetic programming will almost always

have exceedingly poor fitness.  Nonetheless, some individuals in the population will turn out to

be somewhat more fit than others.  These differences in performance are then exploited.

The Darwinian principle of reproduction and survival of the fittest and the genetic operation

of crossover are used to create a new offspring population of individual computer programs from

the current population of programs.

The reproduction operation involves selecting a computer program from the current

population of programs based on fitness (i.e., the better the fitness, the more likely the individual

is to be selected) and allowing it to survive by copying it into the new population.

The crossover operation creates new offspring computer programs from two parental

programs selected based on fitness.  The parental programs in genetic programming are typically

of different sizes and shapes.  The offspring programs are composed of subexpressions (subtrees,
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subprograms, subroutines, building blocks) from their parents.  These offspring programs are

typically of different sizes and shapes than their parents.

For example, consider the following computer program (presented here as a LISP S-

expression):

(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as

0.234 Z + X – 0.789.

This program takes two inputs (X and Z) and produces a floating point output.

Also, consider a second program:

(* (* Z Y) (+ Y (* 0.314 Z))).

One crossover point is randomly and independently chosen in each parent.  Suppose that the

crossover points are the * in the first parent and the + in the second parent.  These two crossover

fragments correspond to the underlined sub-programs (sub-lists) in the two parental computer

programs.

The two offspring resulting from crossover are as follows:

(+ (+ Y (* 0.314 Z)) (- X 0.789))

(* (* Z Y) (* 0.234 Z)).

Thus, crossover creates new computer programs using parts of existing parental programs.

Because entire sub-trees are swapped, the crossover operation always produces syntactically and

semantically valid programs as offspring regardless of the choice of the two crossover points.

Because programs are selected to participate in the crossover operation with a probability based
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on fitness, crossover allocates future trials to regions of the search space whose programs

contains parts from promising programs.

The mutation operation creates an offspring computer program from one parental programs

selected based on fitness.  One crossover point is randomly and independently chosen and the

subtree occurring at that point is deleted.  Then, a new subtree is grown at that point using the

same growth procedure as was originally used to create the initial random population.

After the genetic operations are performed on the current population, the population of

offspring (i.e., the new generation) replaces the old population (i.e., the old generation).  Each

individual in the new population of programs is then measured for fitness, and the process is

repeated over many generations.

The hierarchical character of the computer programs that are produced is an important feature

of genetic programming.  The results of genetic programming are inherently hierarchical.  In

many cases the results produced by genetic programming are default hierarchies, prioritized

hierarchies of tasks, or hierarchies in which one behavior subsumes or suppresses another.

The dynamic variability of the computer programs that are developed along the way to a

solution is also an important feature of genetic programming.  It is often difficult and unnatural

to try to specify or restrict the size and shape of the eventual solution in advance.  Moreover,

advance specification or restriction of the size and shape of the solution to a problem narrows the

window by which the system views the world and might well preclude finding the solution to the

problem at all.

Another important feature of genetic programming is the absence or relatively minor role of

preprocessing of inputs and postprocessing of outputs.  The inputs, intermediate results, and

outputs are typically expressed directly in terms of the natural terminology of the problem

domain.  The programs produced by genetic programming consist of functions that are natural

for the problem domain.  The postprocessing of the output of a program, if any, is done by a

wrapper (output interface).
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Finally, another important feature of genetic programming is that the structures undergoing

adaptation in genetic programming are active.  They are not passive encodings (i.e.,

chromosomes) of the solution to the problem.  Instead, given a computer on which to run, the

structures in genetic programming are active structures that are capable of being executed in their

current form.

Automated programming requires some hierarchical mechanism to exploit, by reuse and

parameterization, the regularities, symmetries, homogeneities, similarities, patterns, and

modularities inherent in problem environments.  Subroutines do this in ordinary computer

programs.

Automatically defined functions can be implemented within the context of genetic

programming by establishing a constrained syntactic structure for the individual programs in the

population.  Each multi-part program in the population contains one (or more) function-defining

branches and one (or more) main result-producing branches.  The result-producing branch

usually has the ability to call one or more of the automatically defined functions.  A function-

defining branch may have the ability to refer hierarchically to other already-defined

automatically defined functions.

Genetic programming evolves a population of programs, each consisting of an automatically

defined function in the function-defining branch and a result-producing branch.  The structures of

both the function-defining branches and the result-producing branch are determined by the

combined effect, over many generations, of the selective pressure exerted by the fitness measure

and by the effects of the operations of Darwinian fitness-based reproduction and crossover.  The

function defined by the function-defining branch is available for use by the result-producing

branch.  Whether or not the defined function will be actually called is not predetermined, but

instead, determined by the evolutionary process.

Since each individual program in the population of this example consists of function-defining

branch(es) and result-producing branch(es), the initial random generation must be created so that

every individual program in the population has this particular constrained syntactic structure.
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Since a constrained syntactic structure is involved, crossover must be performed so as to preserve

this syntactic structure in all offspring.

Genetic programming with automatically defined functions has been shown to be capable of

solving numerous problems (Koza 1994a).  More importantly, the evidence so far indicates that,

for many problems, genetic programming requires less computational effort (i.e., fewer fitness

evaluations to yield a solution with, say, a 99% probability) with automatically defined functions

than without them (provided the difficulty of the problem is above a certain relatively low break-

even point).

Also, genetic programming usually yields solutions with smaller average overall size with

automatically defined functions than without them (provided, again, that the problem is not too

simple).  That is, both learning efficiency and parsimony appear to be properties of genetic

programming with automatically defined functions.

Moreover, there is evidence that genetic programming with automatically defined functions is

scalable.  For several problems for which a progression of scaled-up versions was studied, the

computational effort increases as a function of problem size at a slower rate with automatically

defined functions than without them.  Also, the average size of solutions similarly increases as a

function of problem size at a slower rate with automatically defined functions than without them.

This observed scalability results from the profitable reuse of hierarchically-callable,

parameterized subprograms within the overall program.

When single-part programs are involved, genetic programming automatically determines the

size and shape of the solution (i.e., the size and shape of the program tree) as well as the

sequence of work-performing primitive functions that can solve the problem.  However, when

multi-part programs and automatically defined functions are being used, the question arises as to

how to determine the architecture of the programs that are being evolved.  The architecture of a

multi-part program consists of the number of function-defining branches (automatically defined

functions) and the number of arguments (if any) possessed by each function-defining branch.

The architecture may be specified by the user, may be evolved using evolutionary selection of
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the architecture (Koza 1994a), or may be evolved using architecture-altering operations (Koza

1995).

2. The Threshold of Practicality

Genetic programming has been used to produce results that are competitive with human

performance on certain non-trivial problems.  In fields as diverse as cellular automata, space

satellite control, molecular biology, and design of electrical circuits, genetic programming has

evolved a computer program whose results were, under some reasonable interpretation,

competitive with human performance on the specific problem.  For example, genetic

programming with automatically defined functions has evolved a rule for the majority

classification task for one-dimensional two-state cellular automata with an accuracy that exceeds

that of the original human-written Gacs-Kurdyumov-Levin (GKL) rule, all other known

subsequent human-written rules, and all other known rules produced by automated approaches

for this problem (Andre, Bennett, and Koza 1996).  Another example involves the near-

minimum-time control of a spacecraft’s attitude maneuvers using genetic programming (Howley

1996).  A third example involves the discovery by genetic programming of a computer program

to classify a given protein segment as being a transmembrane domain without using biochemical

knowledge concerning hydrophobicity (Koza 1994a; Koza and Andre 1996a).  A fourth example

illustrated how automated methods may prove to be useful in discovering biologically

meaningful information hidden in the rapidly growing databases of DNA sequences and protein

sequences.  Genetic programming successfully evolved motifs for detecting the D-E-A-D box

family of proteins and for detecting the manganese superoxide dismutase family that detected the

two families either as well as, or slightly better than, the comparable human-written motifs found

in the database created by an international committee of experts on molecular biology (Koza and

Andre 1996b).  A fifth example is recent work on facility layouts (Garces-Perez, Schoenefeld,

and Wainwright  1996).

An additional group of examples is provided by work in which genetic programming has been

used to evolve both the topology and numerical component values for electrical circuits,
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including lowpass filters, crossover (woofer and tweeter) filters, asymmetric bandpass filters,

amplifiers, computational circuits, a time-optimal controller circuit, a temperature-sensing

circuit, and a voltage reference circuit (Koza, Bennett, Andre, Keane, and Dunlap 1997).

3. Operations on Complex Data Structures

Ordinary computer programs use numerous well-known techniques for handling vectors of data,

arrays, and more complex data structures.  One important area for work on technique extensions

for genetic programming involves developing workable and efficient ways to handle vectors,

arrays, trees, graphs, and more complex data structures.  Such new techniques would have

immediate application to a number of problems in such fields as computer vision, biological

sequence analysis, economic time series analysis, and pattern recognition where a solution to the

problem involves analyzing the character of an entire data structure.  Recent work in this area

includes that of Langdon (1996) in handling more complex data structures such as stacks,

queues, rings, and lists, the work of Teller (1996) in understanding images represented by large

arrays of pixels, and the work of Handley (1996) in applying statistical computing zones and

iteration to biological sequence data and other problems.

4. Evolution of Mental Models

Complex adaptive systems usually possess a mechanism for modeling their environment.  A

mental model of the environment enables a system to contemplate the effects of future actions

and to choose an action that best fulfills its goal.  Brave (1996b) has developed a special form of

memory that is capable of creating relations among objects and then using these relations to

guide the decisions of a system.

5. Automatically Defined Functions, Automatically Defined Macros, and Modules

Computer programs gain leverage in solving complex problems by means of reusable and

parameterizable subprograms.  Automated machine learning can become scalable (and truly

useful) only if there are techniques for creating large and complex problem-solving programs

from smaller building blocks. Spector (1996) has developed the notion of automatically defined



14

macros (ADMs) for use in evolving control structures.  Rosca (1995) has analyzed the workings

of hierarchical arrangements of subprograms in genetic programming.  Angeline (1994) has

studied modules that are made available to all programs in the population through a genetic

library.

Automatically defined functions and architecture-altering operations for creating useful

electrical subcircuits (Koza, Andre, Bennett, and Keane 1996).

6. Cellular Encoding

Gruau (1994) described an innovative technique, called cellular encoding or developmental

genetic programming in which genetic programming is used to concurrently evolve the

architecture of a neural network, along with the weights, thresholds, and biases of the individual

neurons in the neural network.  In this technique, each individual program tree in the population

is a specification for developing a complete neural network from a starting point consisting of a

very simple embryonic neural network containing a single neuron.  Genetic programming is

applied to populations of these network-constructing program trees in order to evolve a neural

network to solve various problems.

Brave (1996a) has extended and applied this technique to the evolution of finite automata.

7. Automatic Programming of Multi-Agent Systems

The cooperative behavior of multiple independent agents can potentially be harnessed to solve a

wide variety of practical problems.  However, programming of multi-agent systems is

particularly vexatious.  Bennett’s recent work (1996) in evolving the number of independent

agents while concurrently evolving the specific behaviors of each agent and the recent work by

Luke and Spector (1996) in evolving teamwork are opening this area to the application of genetic

programming.  See also Iba (1997).



                                                                                                         15

8. Autoparallelization of Algorithms

The problem of mapping a given sequential algorithm onto a parallel machine is usually more

difficult than writing a parallel algorithm from scratch.  The recent work of Walsh and Ryan

(1996) is advancing the autoparallelization of algorithms using genetic programming.

9. Co-Evolution

In nature, individuals do not evolve in a vacuum.  Instead, there is co-evolution that involves

interactions between agents and other agents as well as between agents and their physical

environment (Angeline and Pollack 1994, Pollack and Blair 1996).

10. Complex Adaptive Systems

Genetic programming has proven useful in evolving complex systems, such as Lindenmayer

systems (Jacob 1996) and cellular automata (Andre, Bennett, and Koza 1996) and can be

expected to continue to be useful in this area.

11. Evolution of Structure

One of the most vexatious aspects of automated machine learning from the earliest times has

been the requirement that the human user predetermine the size and shape of the ultimate

solution to his problem (Samuel 1959).  There can be expected to be continuing research on ways

by which the size and shape of the solution can be made part of the answer provided by the

automated machine learning technique, rather than part of the question supplied by the human

user.  For example, architecture-altering operations (Koza 1995) enable genetic programming to

introduce (or delete) function-defining branches, to adjust the number of arguments of each

function-defining branch, and to alter the hierarchical references among function-defining

branches.  Brave (1995) showed that recursion could be implemented within genetic

programming.  It is also possible to evolve iterations using genetic programming (Koza and

Andre 1996b).
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12. Foundations of Genetic Programming

Genetic programming inherits many of the mathematical and theoretical underpinnings from

John Holland’s pioneering work (1975) in the field, including the near-optimality of Darwinian

search.  However, the genetic algorithm is a dynamical system of extremely high dimensionality.

Many of the most basic questions about the operation of the algorithm and the domain of its

applicability are only partially understood.  The transition from the fixed-length character strings

of the genetic algorithm to the variable-sized Turing-complete program trees (Teller 1994) and

even program graphs (Teller 1996) of genetic programming further compounds the difficulty of

the theoretical issues involved.  There is increasing work on the grammatical structure of genetic

programming (Whigham 1996) and the theoretical basis for genetic programming (Poli and

Langdon 1997).

13. Optimization

Recent examples of applications of genetic programming to problems of optimization include

work (Soule, Foster, and Dickinson 1996) from the University of Idaho, the site of much early

work on genetic programming techniques, and the work of Garces-Perez, Schoenefeld, and

Wainwright  (1996).

14. Evolution of Assembly Code

The innovative work by Nordin (1994) in developing a version of genetic programming in which

the programs are composed of sequence of low-level machine code offers numerous possibilities

for extending the techniques of genetic programming (especially for programs with loops) as

well as enormous savings in computer time.  These savings can then be used to increase the scale

of problems being considered.  See also Banzhaf, Nordin, Keller, and Francone (1997).

15. Techniques that Exploit Parallel Hardware

Evolutionary algorithms offer the ability of solve problems in a domain-independent way that

requires little domain-specific knowledge.  However, the price of this domain-independence and

knowledge-independence is paid in execution time.  Application of genetic programming to
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realistic problems usually requires substantial computational resources.  The long-term trend

toward ever faster microprocessors is likely to continue to make ever-increasing amounts of

computational power available at ever-decreasing cost.  However, for those using algorithms that

can beneficially exploit parallelization (such as genetic programming), parallelization is even

more important than microprocessor speed in terms of delivering large amounts of computational

power.  In genetic programming, the vast majority of computer resources are used on the fitness

evaluations.  The calculation of fitness for one individual in the population is usually

independent and decoupled from the calculation of fitness of all other individuals.  Thus, parallel

computing techniques can be applied to genetic programming (and genetic algorithms in general)

with almost 100% efficiency (Andre and Koza 1996).  In fact, the use of semi-isolated

subpopulations often accelerates the finding of a solution to a problem using genetic

programming and produces not just near-linear speed-up, but super-linear speed-up.

Parallelization of genetic programming will be of central importance to the growth of the field.

16.  Evolvable Hardware

One of the newest areas of evolutionary computation involves the use of evolvable hardware

(Sanchez and Tomassini 1996; Higuchi, Iwata, and Lui 1997).  Evolvable hardware includes

devices such as field programmable gate arrays (FPGA) and field programmable analog arrays

(FPAA).  The idea of evolvable hardware is to embody each individual of the evolving

population into hardware and thereby exploit the massive parallelism of the hardware to perform

evolution "in silicon."  These devices are reconfigurable with very short configuration times and

download times.  Thompson (1996) has pioneered the use of field-programmable gates arrays to

evolve a frequency discriminator circuit and a robot controller using the recently developed

Xilinix XC6216 chip.  Considerable growth can be anticipated in the use of evolvable hardware

to accelerate genetic programming runs and perform evolution.
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17. Future Work

The presence of some or all of the following characteristics make an area especially suitable for

the application of genetic programming:
• an area where conventional mathematical analysis does not, or cannot, provide analytic

solutions,
• an area where the interrelationships among the relevant variables are poorly understood (or

where it is suspected that the current understanding may well be wrong),
• an area where finding the size and shape of the ultimate solution to the problem is a major

part of the problem,
• an area where an approximate solution is acceptable (or is the only result that is ever likely

to be obtained),
• an area where there is a large amount of data, in computer readable form, that requires

examination, classification, and integration, or
• an area where small improvements in performance are routinely measured (or easily

measurable) and highly prized.

For example, problems in automated control are especially well suited for genetic

programming because of the inability of conventional mathematical analysis to provide analytic

solutions to many problems of practical interest, the willingness of control engineers to accept

approximate solutions, and the high value placed on small incremental improvements in

performance.

Problems in fields where large amounts of data are accumulating in machine readable form

(e.g., biological sequence data, astronomical observations, geological and petroleum data,

financial time series data, satellite observation data, weather data, news stories, marketing

databases) also constitute especially interesting areas for potential practical applications of

genetic programming.
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