
Solving the Vehicle Routing Problem by Using
Cellular Genetic Algorithms

Enrique Alba1 and Bernabé Dorronsoro2

1 Department of Computer Science, University of Málaga eat@lcc.uma.es

2 Central Computer Services, University of Málaga dorronsoro@uma.es

Abstract. Cellular Genetic Algorithms (cGAs) are a subclass of Genetic
Algorithms (GAs) in which the population diversity and exploration are
enhanced thanks to the existence of small overlapped neighborhoods.
Such a kind of structured algorithms is specially well suited for complex
problems. In this paper we propose the utilization of some cGAs with and
without including local search techniques for solving the vehicle routing
problem (VRP). A study on the behavior of these algorithms has been
performed in terms of the quality of the solutions found, execution time,
and number of function evaluations (effort). We have selected the bench-
mark of Christofides, Mingozzi and Toth for testing the proposed cGAs,
and compare them with some other heuristics in the literature. Our con-
clusions are that cGAs with an added local search operator are able of
always locating the optimum of the problem at low times and reasonable
effort for the tested instances.

1 Introduction

Transportation is a major problem domain in logistics, and so it represents a subs-
tantial task in the activities of many companies. In some market sectors, trans-
portation means a high percentage of the value added to goods. Therefore, the
utilization of computerized methods for transportation often results in significant
savings ranging from 5% to 20% in the total costs, as reported in [1]. A distin-
guished problem in the field of transportation consists in defining the optimal
routes for a fleet of vehicles to serve a set of clients. In this problem an arbitrary
set of clients must receive goods from a central depot. This general scenario pre-
sents many chances for several concrete definitions of subclasses of problems: de-
termining the optimal number of vehicles, finding the shortest routes, etc. all this
subject to many restrictions like vehicle capacity, time windows for deliveries,
etc. This variety of scenarios leads to a plethora of problem variants in practice.

The basic problem class we address in this paper is known as the Vehicle
Routing Problem (VRP) [2], which consists in delivering goods to a set of cus-
tomers with known demands through minimum-cost vehicle routes originating
and terminating at the depot, as seen in Fig. 1 –for a more detailed description
of the problem see Sect. 2.

The VRP is an important class of problem, since solving it is equivalent to
solving multiple TSP problems at once, and thus it has been studied both theo-

2

Depot DepotVRP

a) b)

Fig. 1. The Vehicle Routing Problem finds the minimum cost routes –b)– to serve a
set of customers (points) geographically distributed, from a depot –a)–

retically and in practice [3]. There is a large number of extensions to the canonical
VRP, but in this paper, we address the base problem without time windows.

There has been a steady evolution in the design of solution methodologies
in the past, both exact and approximate, for this problem. However, no known
exact method is capable of consistently solving to optimality instances involving
more than 50 customers [1]. Instead, heuristics are mostly preferred.

The contribution of this work is to define a powerful yet simple Cellular

Genetic Algorithm (cGA) [4] that is able to compete with the best known ap-
proaches in the resolution of the VRP in terms of the solution found, the exe-
cution time, and the number of evaluations made. In addition, it represents a
kind of paradigm much simpler of customization and comprehension than others
such as Tabu Search (TS) or very specialized hybrid algorithms. Local search
techniques can be quite naturally embedded into a cGA, and we test here to
which extent it can be advantageous. We test our algorithms over a selection
of the Christofides et al. [3] benchmark instances, and compare our results with
some other known heuristics.

The paper is arranged in the following manner. Section 2 gives a mathematical
formulation for the VRP. Our cGA is described in Sect. 3. Section 4 presents the
results of our algorithms, and compares them with those of some heuristics in the
literature. The conclusions and some future work lines are presented in Sect. 5.

2 Vehicle Routing Problem (VRP)

The VRP is a well known integer programming problem which falls into the cat-
egory of NP-hard problems [5]. It is defined on an undirected graph G = (V ,E)
where V = {v0, v1, . . . , vn} is a vertex set and E = {(vi, vj)/vi, vj ∈ V , i < j} is
an edge set. The depot is represented by vertex v0, and it is from where that m
identical vehicles of capacity Q must service all the cities or customers, repre-
sented by the set of n vertices {v1, . . . , vn}. We define on E a non-negative cost,
distance or travel time matrix C = (cij) between customers vi and vj . Each cus-
tomer vi has non-negative demand qi and drop time δi (time needed to unload all

3

goods). Let be R1, . . . ,Rm a partition of V representing the routes of the vehi-
cles to service all the customers. The cost of a given route (Ri ={v0, v1, . . . , vk+1}),
where vj ∈ V and v0 = vk+1 = 0 (0 denotes the depot), is given by:

Cost(Ri) =

k∑

j=0

cj,j+1 +

k∑

j=0

δj , (1)

and the cost of the problem solution (S) is:

FVRP(S) =

m∑

i=1

Cost(Ri) . (2)

The VRP consists in determining a set of a maximum of m routes (i) of
minimum total cost (see (2)); (ii) starting and ending at the depot v0; and such
that (iii) each customer is visited exactly once by exactly one vehicle; (iv) the
total demand of any route does not exceed Q (

∑
vj∈Ri

qj ≤ Q); and (v) the total

duration of any route is not larger than a preset bound D (Cost(Ri) ≤ D). The
number of vehicles is either an input value or a decision variable. In this study,
the length of routes is minimized independently of the used number of vehicles.

3 Algorithms for Solving the VRP

In this section we discuss the algorithms we plan to use later in the paper to solve
the VRP. Initially we present a cGA with structured population as the basic tool
for the search. In addition, since there exists a long tradition in VRP to include
local search techniques to improve partial solutions; and, since in cGAs it is quite
direct to include such kind of procedures, we will further discuss in this section
several mechanisms to perform local optimization: 2-Opt and λ-Interchange.

3.1 Cellular Genetic Algorithms for the VRP

Genetic Algorithms (GAs) are based on an analogy with biological evolution. A
population of individuals representing tentative solutions is maintained. New in-
dividuals are produced by combining members of the population, and these repla-
ce existing individuals with some policy. Cellular GAs are a subclass of GAs in
which the population is structured in a specified topology, so that individuals
may only interact with their neighbors (see Fig. 2). These overlapped small neigh-
borhoods help in exploring the search space because the induced slow diffusion of
solutions through the population provides a kind of exploration, while exploita-
tion takes place inside each neighborhood by genetic operations. In Algorithm 1
we can see a pseudocode of our basic cGA [6].

In this cGA, the population is structured in a 2D toroidal grid, and the neigh-
borhood defined on it –line 5– always contains 5 individuals: the considered one
(position(x,y)) plus the North, East, West, and South individuals (called
NEWS, linear5, or Von Neumann). Binary tournament selection is used in the

4

Algorithm 1 Pseudocode of cGA

1: proc Steps Up(cga) //Algorithm parameters in ‘cga’
2: for s ← 1 to MAX STEPS do

3: for x ← 1 to WIDTH do

4: for y ← 1 to HEIGHT do

5: n list←Get Neighborhood(cga,position(x,y));
6: parents←Local Select(n list);
7: aux indiv←Recombination(cga.Pc,parents);
8: aux indiv←Mutation(cga.Pm,aux indiv);
9: aux indiv←Local Search(cga.Pl,aux indiv);
10: Evaluate Fitness(aux indiv);
11: Insert If Better(position(x,y),aux indiv,cga,aux pop);
12: end for

13: end for

14: cga.pop←aux pop;
15: Update Statistics(cga);
16: end for

17: end proc Steps Up;

Panmictic GA

Cellular GA

Fig. 2. Panmictic and
cellular populations

neighborhood for the first parent, while the other one is the considered individual
itself (Local Select) (line 6). Genetic operators are applied to the individuals in
lines 7 and 8 (explained in Sect. 3.1). We can add different local search techniques
to our basic cGA by simply including line 9 to the algorithm (see Sect. 3.2). Af-
ter applying these operators, we evaluate the fitness value of the new individual
(line 10), and insert it on its equivalent place in the new population –line 11–
only if its fitness value is larger than the parent’s one (elitist replacement).

After applying the above mentioned operators to the individuals we replace
the old population by the new one (line 14), and we calculate some statistics
(line 15). It can be seen how in our algorithm new individuals replace old ones en

bloc (synchronously) and not incrementally. The fitness value assigned to every
individual is computed like follows:

f(S) = FVRP(S) + λ · overcap(S) + µ · overtm(S) , (3)

feval(S) = fmax − f(S) . (4)

The objective of our algorithm is to maximize feval(S) (4) by minimizing
f(S) (3). The value fmax must be larger or equal to that of the worst feasible
solution for the problem. Function f(S) is calculated by adding the total costs
of all the routes (FVRP(S)), and penalizes the fitness value if the capacity of
any vehicle and/or the time of any route are exceeded. Functions overcap(S)
and overtm(S) return the overhead in capacity and time, respectively, of the
solution with respect to the maximum allowed value of each route. These values
returned by overcap(S) and overtm(S) are weighted by multiplying them with
the values λ and µ, respectively.

Representation of Individuals. In a GA, individuals represent candidate so-
lutions. A candidate solution to an instance of the VRP must specify the number
of vehicles required, the allocation of the demands to all these vehicles, and also

5

the delivery order of each route. We adopted a representation consisting of a per-
mutation of integers. Each permutation will contain both customers and route
splitters (delimiting different routes), so we will use a permutation of numbers
[0 . . . n− 1] with length n = c+ k for representing a solution for the VRP with c
customers and a maximum of k + 1 possible routes. Customers are represented
with numbers [0 . . . c − 1], while route splitters belong to the range [c . . . n − 1].

4 - 5 - 2 - 10 - 0 - 3 - 1 - 12 - 7 - 8 - 9 - 11 - 6{ { { {

Route 1 Route 2 Route 3 Route 4

Fig. 3. Individual representing a solution

Each route is composed by the customers in the individual between two route
splitters. For example, in Fig. 3 we plot an individual representing a possible
solution for a VRP instance with 10 customers using 4 vehicles at most. Values
[0, . . . , 9] represent the customers while [10, . . . , 12] are the route splitters. Route

1 begins at the depot, visits customers 4–5–2 (in that order), and returns to the
depot. Route 2 goes from the depot to customers 0–3–1 and returns. The vehicle
of Route 3 starts at the depot and visits customers 7–8–9. Finally, in Route

4, only customer 6 is visited. This representation allows empty routes by simply
placing two route splitters together without clients between them.

Genetic Operators. Two genetic operators are applied to all the individuals
with preset probabilities along the evolution. These two operators are recombi-

nation and mutation. The recombination operator we use is an edge recombi-
nation operator (ERX) [7], that builds an offspring by preserving edges from
both parents. The mutation operator used in the algorithm consists in applying
Insertion, Swap or Inversion operations to each gene with equal probability (see
Fig. 4). The Insertion [8] operator selects a customer and inserts it in another
randomly selected place. Swap [9] consists in randomly selecting two customers
and exchanging them. Finally, Inversion [10] reverses the visiting order of the
customers between two randomly selected cut points. In all the three operators
changes might occur in an intra or inter-route way.

1 2 3 5 6 7 84

1 2 3 5 6 7 84

1 2 4 6 7 83 5

1 2 4 6 7 85 3

1 2 7 83 4 5 6

1 2 7 86 5 4 3

InversionSwapInsertion

Parent

Offspring

Fig. 4. The three different mutations used

6

3.2 Local Search

It is very clear after all the existing literature on VRP that local search is almost
mandatory to achieve results of high quality [11] [12]. This is why we envision
from the beginning the application of two of the most successful techniques in the
past years. Then we will not only consider canonical cGAs for VRP, but also will
add a local post-optimization step by applying 2-Opt [13] and/or λ-Interchan-
ge [14] local optimization methods to every individual after each generation.

The 2-Opt simple local search method works inside each route. It randomly
selects two non-adjacent edges (i.e. (a, b) and (c, d)) of a single route, delete
them, thus breaking the tour into two parts, and then reconnects those parts in
the other possible way (i.e. (a, c) and (b, d)).

The λ-Interchange local optimization method we use is based on the inter-
change of all the possible combinations for up to λ customers between sets of
routes. Hence, this method results in customers either being shifted from one
route to another, or being exchanged between routes. The mechanism can be
described as follows. A solution to the problem is represented by a set of routes
S = {R1 . . . Rp . . . Rq . . . Rk}, where Ri is the set of customers serviced in route
i. New neighboring solutions can be obtained by applying λ-Interchange between
a pair of routes Rp and Rq by replacing each subset of customers S1 ⊆ Rp of
size |S1| ≤ λ with any other one S2 ⊆ Rq of size |S2| ≤ λ. This way, we get two
new routes R′

p = (Rp −S1)
⋃

S2 and R′
q = (Rq −S2)

⋃
S1, which are part of the

new solution S′ = {R1 . . . R′
p . . . R′

q . . . Rk}.

4 Experimentation

In this section we describe the experiments applying these ideas to a set of prob-
lems taken from the well-known OR library [15]. Our algorithms have been imple-
mented in Java on a 2.4 GHzPC (Linux OS). They have been tested with instances
C1, C2, C3, C6, C7, C8, C12, and C14 [3] (not enough room for the whole benchmark).

The first three instances contain data for 50, 75, and 100 customers res-
pectively, with capacity restrictions on vehicles but not on the distance. Datasets
C6, C7 and C8 are like C1, C2 and C3, respectively, with the additional restrictions
of maximal route distance and the existence of a drop time. An additional feature
of C12 with respect to the three first ones is that the 100 customers to visit are
geographically clustered. The last instance included, C14 is really the C12 instan-
ce with the restrictions of maximal route distance and the addition of drop times.

We have used four different algorithms, all of them extracted from the meta-
heuristic sheet of a cGA described in Sect. 3. The difference among them is just
the local search method used. The first algorithm studied does not use any local
search method (cGA). The second one uses the 2-Opt method (cGA2o). The two
last studied algorithms use 2-Opt plus a λ-Interchange (with a maximum of 20
search steps), and return the best individual found with any of the two methods
on each local search step. These algorithms differ in the value of λ used. One of
them implements λ = 1 (cGA2o1i), and the other one utilizes λ = 2 (cGA2o2i).

7

For each individual, the recombination probability is set to 0.65 in all of our al-
gorithms. The mutation probability for an individual is 0.85, and its alleles are mu-
tated with probability 1/L, being L the length of the chromosome. The local
search (if used) is applied to all individuals (probability 1.0). Population size
is 100 individuals in any case, and we perform 30 independent runs to get reliable
statistical results. For the evaluation of the fitness value, we have used values
107, 103 and 103 for parameters fmax, λ and µ, respectively.

Next, in Sect. 4.1, we present the results obtained with our proposed algo-
rithms, while in Sect. 4.2 we compare our results with the existing literature.

4.1 Performance of the Proposed Algorithms

Let us now proceed to analyze the results. The proposed algorithms can easily be
compared by consulting tables 1, 2 and 3, containing the best solution found (to-
tal route distance), and the average execution time and number of evaluations
needed, respectively. The optimum values are bolded for the reader’s commodity.

Our conclusions are quite stable and relatively clear. The results worked out
by the canonical cGA (Table 1) are far from the best known results for the tested
instances. However, just by including a local improvement with 2-Opt (cGA2o
algorithm) the total cost of the solutions found in all the instances is greatly
reduced with respect to cGA, although no optimal solution is still found. It is by
adding the λ-Interchange local optimization that we achieve really interesting
results, since we can solve all the instances to the optimum. Table 1 shows that
cGA2o1i finds the best known solution for all the instances, having a similar
behavior as for cGA2o2i (being this last only slightly less accurate for C3).

If we analyze average execution times (see Table 2, figures in seconds), then we
can appreciate a clear increment as the complexity of the algorithms is enlarging:
this sounds common sense. Therefore, the simpler the algorithm the smaller the
execution time. In most cases times are quite affordable and reasonable.

Finally, Table 3 shows the average number of function evaluations made by
the algorithm during the search. The effort for cGA and cGA2o is difficult to
evaluate since it is an effort to lead the algorithm to a local optimum (most runs
reach the maximum number of allowed evaluations without finding a solution).
On the other hand, the numerical effort of cGA2o1i and cGA2o2i are quite si-
milar and meaningful, indicating that cGA2o1i is preferable over cGA2o2i since
it performs a search of similar accuracy in a smaller time.

As a final conclusion, we can point out cGA2o1i as being the more accurate
algorithm showing very reasonable times and effort to locate the optimum. The
other algorithms are either too explorative (inaccurate) or unnecessarily complex.

4.2 Comparison Against Other Techniques

In this section we compare our algorithms against the best so far techniques
reported in the literature, as any rigorous work should do. We have selected
some classic algorithms, like savings [16], sweep [17], 1-petal or 2-petal [18], and

8

Table 1. Best solution found

cGA cGA2o cGA2o1i cGA2o2i

C1 548.83 533.09 524.61 524.61

C2 907.53 874.41 835.26 835.26

C3 937.36 838.70 826.14 827.39
C6 568.83 558.99 555.43 555.43

C7 1030.23 973.48 909.68 909.68

C8 1053.82 903.66 865.94 865.94

C12 986.62 891.32 819.56 819.56

C14 1007.92 904.43 866.37 866.37

Table 2. Average time (in seconds)

cGA cGA2o cGA2o1i cGA2o2i RT Prins BB

C1 3.53 ± 0.11 11.28 ± 0.63 42.38 ± 1.82 48.63 ± 1.98 11 < 1 120
C2 4.81 ± 0.11 23.45 ± 0.71 252.54 ± 16.26 289.06 ± 11.32 68 184 860
C3 7.86 ± 0.25 60.47 ± 2.27 516.74 ± 30.58 569.14 ± 29.76 900 497 1674
C6 3.54 ± 0.08 9.85 ± 0.31 47.68 ± 2.24 55.92 ± 6.92 — 106 140
C7 4.80 ± 0.08 20.02 ± 0.70 268.11 ± 12.95 312.08 ± 137.59 — 315 630
C8 7.93 ± 0.31 49.75 ± 2.10 628.16 ± 191.95 659.81 ± 28.02 — 664 303

C12 7.40 ± 0.49 53.21 ± 2.34 485.58 ± 82.60 536.42 ± 26.96 350 7 433
C14 7.87 ± 0.24 47.63 ± 2.01 583.54 ± 65.22 651.54 ± 32.26 — 591 284

Table 3. Average number of evaluations

cGA cGA2o cGA2o1i cGA2o2i

C1 100100.0 ± 0.0 213310.10 ± 1770.36 71725.73 ± 2257.59 72370.60 ± 2741.85
C2 120100.0 ± 0.0 373167.20 ± 4875.20 171668.90 ± 7818.45 170747.50 ± 5825.33
C3 150100.0 ± 0.0 481971.10 ± 6458.94 210094.10 ± 9350.17 208350.70 ± 8665.93
C6 100100.0 ± 0.0 211402.10 ± 1649.12 75029.00 ± 2729.36 75023.80 ± 2442.21
C7 120100.0 ± 0.0 365590.50 ± 3716.58 170737.40 ± 6055.16 171175.10 ± 5889.34
C8 150100.0 ± 0.0 475392.50 ± 6469.34 227187.80 ± 9307.24 223854.50 ± 9126.49

C12 150100.0 ± 0.0 488714.20 ± 8261.53 193967.70 ± 8113.52 193482.90 ± 6525.01
C14 150100.0 ± 0.0 486746.80 ± 7819.13 222168.50 ± 7604.63 221596.50 ± 9429.92

some newer ones like tabu search TS, other GAs, and also ant systems. These
three last techniques are known to perform very well on the VRP.

The TS algorithm included is that of Rochat and Taillard [11] (RT), the ge-
netic algorithms are those of Prins [19], and Berger and Barkaoui [12] (BB), and,
the two ant algorithms included are very recent works proposed by Bullnheimer
et al. [20] (AS) and SavingsAnts, by Doerner et al. [21] (SA).

As shown in Table 4, RT, Prins, and cGA2o1i outperform the other algorithms,
finding the best known solution for all the studied instances. Hence, the two men-
tioned ant algorithms perform with a lower accuracy than existing TS and GAs.

We must however point out a clear distinction: we are just hybridizing two
canonical algorithms whose definitions are simple and extremely easy for cus-
tomization on these and other similar problems. The same cannot be said for
other highly specialized algorithms, that require a great customization effort
from the researchers. Simplicity and clarity (and even potential extensibility)
are a clear contribution of our algorithms with respect to the others.

In Table 2 we compare all the algorithms for which execution times have been
reported. Times of RT are calculated by the authors on a Silicon Graphics Indigo
–100 MHz– (no run-times were provided for C6, C7, C8 and C14), the genetic

9

algorithm of Prins is implemented in Delphi on a 500 MHz PC under Windows 95,
and BB is implemented in C++ on a 400 MHz Pentium processor. The algorithm
of Prins is the globally faster for instances C1, C3 and C12, while RT is the fastest
one just in the case of C2. The best times for instances C8 and C14 are hold by
BB, and finally, our cGA2o1i is faster than the others for instances C6 and C7.

Table 4. Our best cGA vs. other heuristics and best known solutions

Savings Sweep 1-Petal 2-Petal RT AS SA Prins BB cGA2o1i

C1 578.56 531.90 531.90 524.61 524.61 524.61 524.61 524.61 524.61 524.61

C2 888.04 884.20 885.02 854.09 835.26 844.31 838.60 835.26 835.26 835.26

C3 878.70 846.34 836.34 830.40 826.14 832.32 838.38 826.14 827.39 826.14

C6 616.66 560.08 560.08 560.08 555.43 560.24 555.43 555.43 555.43 555.43

C7 974.79 965.51 968.89 922.75 909.68 916.21 913.01 909.68 909.68 909.68

C8 968.73 883.56 877.80 877.29 865.94 866.74 870.10 865.94 868.32 865.94

C12 824.42 919.51 824.77 824.77 819.56 819.56 819.56 819.56 819.56 819.56

C14 868.50 911.81 894.77 885.87 866.37 867.07 866.37 866.37 866.37 866.37

5 Conclusions and Further Work

This paper presents different algorithms based in cGAs for solving the vehicle
routing problem. The used cellular GA technique maintains population diversity
for more time with respect to panmictic (single population) GAs due to the use of
small overlapped neighborhoods. This feature frequently prevents the algorithm
from getting stuck in local optima.

First, an initial and simple approach to a cGA for solving the VRP has been
proposed. It has been shown that adding a local search step to that simple ap-
proach is enough to get a really powerful algorithm. The local search step is
made up of simple methods like 2-Opt or λ-Interchange. With them we have got
the best known results for all the proposed instances, specially with cGA2o1i.

The algorithms proposed are compared against a TS algorithm able to find
the best known results for all the instances of the CMT benchmark (proposed
by Rochat and Taillard), to a genetic algorithm proposed by Prins, to a hybrid
genetic algorithm (Berger et al.), and also to two ant algorithms, as well as
against other ad hoc heuristics. It has been proved that cGA2o1i is faster than
the algorithms compared to it in this paper for many instances.

In addition, the cGAs studied in this paper have the advantage of their sim-
plicity and accuracy with respect to the existing techniques. Our algorithms
are just a first approach, susceptible of improvement. Hence, as a future work,
one can think about testing some other local search techniques, like using just
λ-Interchange alone without 2-Opt. Another possible future work may be trying
to better tune the cGA parameters, and test the algorithms on larger benchmarks.

10

Acknowledgements

This work has been funded by MCYT and FEDER under contract TIC2002-
04498-C05-02 (the TRACER project) http://tracer.lcc.uma.es.

References

1. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Math-
ematics and Applications. SIAM, Philadelphia (2001)

2. Dantzing, G., Ramster, R.: The truck dispatching problem. Management Science
6 (1959) 80–91

3. Christofides, N., Mingozzi, A., Toth, P.: The Vehicle Routing Problem. In: Com-
binatorial Optimization. John Wiley (1979) 315–338

4. Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithm. In Schaffer,
J., ed.: 3rd ICGA, Morgan-Kaufmann (1989) 428–433

5. Lenstra, J., Kan, A.R.: Complexity of vehicle routing and scheduling problems.
Networks 11 (1981) 221–227

6. Whitley, D.: Cellular genetic algorithms. In Forrest, S., ed.: Proceedings of the
5th ICGA, Morgan-Kaufmann, CA (1993) 658

7. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling
salesman: The genetic edge recombination operator. In Schaffer, J., ed.: 3rd ICGA,
Morgan-Kaufmann (1989) 133–140

8. Fogel, D.: An evolutionary approach to the traveling salesman problem. Biological
Cybernetics 60 (1988) 139–144

9. Banzhaf, W.: The “molecular” traveling salesman. Biological Cybernetics 64

(1990) 7–14
10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI (1975)
11. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local

search for vehicle routing. J. of Heuristics 1 (1995) 147–167
12. Berger, J., Barkaoui, M.: A hybrid genetic algorithm for the capacitated vehicle

routing problem. In Cantú-Paz, E., ed.: GECCO03. LNCS 2723, Illinois, Chicago,
USA, Springer-Verlag (2003) 646–656

13. Croes, G.: A method for solving traveling salesman problems. Operations Research
6 (1958) 791–812

14. Osman, I.: Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problems. Annals of Operations Research 41 (1993) 421–451

15. Beasley, J.: OR-library: Distributing test problems by electronic mail. J. of the
Operational Research Society 11 (1990) 1069–1072

16. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research 12 (1964) 568–581

17. Wren, A., Holliday, A.: Computer scheduling of vehicles from one or more depots
to a number of delivery points. Operational Research Quarterly 23 (1972) 333–344

18. Ryan, D., Hjorring, C., Glover, F.: Extensions of the petal method for vehicle
routing. J. of the Operational Research Society 44 (1993) 289–296

19. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research (2003) In Press, Corrected Proof.

20. Bullnheimer, B., Hartl, R., Strauss, C.: An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research 89 (1999) 319–328

21. Reimann, M., Doerner, K., Hartl, R.: D-ants: Savings based ants divide and con-
quer the vehicle routing problem. Computers & Operations Res. 31 (2004) 563–591

