
Instructions for the random number
generator libraries on www.agner.org

By Agner Fog. © 2008. GNU General Public License.
Version 2.00. 2008-12-12.

Contents
1 Introduction ... 1
2 Randomc package of random number generators... 2

2.1 Generators included in the randomc library... 2
3 Randoma package of random number generators... 5

3.1 Generators included in the randoma library .. 5
3.2 Other functions included in the randoma library .. 7
3.3 Execution speed ... 8
3.4 Library versions .. 9

4 Stocc package of non-uniform generators ... 9
5 Frequently asked questions... 14

5.1 Getting started .. 14
5.2 Is the random number generator that comes with my compiler good enough?.......... 14
5.3 Which random number generator should I choose?.. 14
5.4 How do I change the code to use a different random number generator? 15
5.5 Choosing a seed... 16
5.6 C++ version or binary library? ... 16
5.7 Multi-threading .. 17
5.8 Calling from other programming languages .. 17
5.9 Position-independent code.. 18
5.10 IRandom or IRandomX? ... 18
5.11 Why is the floating point interval half-open?.. 19
5.12 Generating events with a specific probability... 20
5.13 Generating non-uniform random numbers .. 21
5.14 Monte Carlo simulation applications.. 21
5.15 Simulating evolution.. 22
5.16 Games and entertainment applications ... 22
5.17 Gambling applications... 22
5.18 Security applications ... 22
5.19 Error conditions... 23

6 Theoretical considerations... 23
6.1 Using multiple streams.. 26
6.2 Deciding the cycle length .. 27

7 File lists ... 28
8 License conditions... 29
9 No support... 30
10 Literature... 30

1 Introduction
This manual describes three packages of uniform and non-uniform random number
generators:
randoma.zip: uniform random number generators as binary libraries
randomc.zip: uniform random number generators as C++ class libraries
stocc.zip: non-uniform random number generators as C++ class libraries

The random number generators in standard function libraries are not always of the best
quality. With today's fast computers it is possible to make larger computer simulations than

 2

what has been common previously. Larger "Monte Carlo" simulations require better random
number generators. Furthermore, today's multi-kernel microprocessors require random
number generators with support for multithreading. The present random number generator
libraries are designed for the purpose of meeting these high demands. The advantages of
these packages are:

• Very good randomness
• Very long cycle length
• High resolution
• Support for multiple threads and multiple streams
• Very fast and efficient
• Allow seeds of any length
• Includes Mersenne Twister, Mother-Of-All generator, SFMT generator and

combinations of these
• Discrete uniform distribution over arbitrary interval is exact where other

implementations have rounding errors
• Continuous distributions supported: Uniform and normal
• Discrete distributions supported: Uniform, Poisson, binomial, hypergeometric and

various noncentral hypergeometric distributions
• Open source
• Support for Windows, Linux, BSD, Mac, etc.

The following three packages of random number generator libraries are available here:

• randomc.zip. A C++ class library of uniform random number generators.

• randoma.zip. The same random number generators as optimized binary code
libraries (*.lib, *.dll, *.a) to link into a software project. Includes support for
almost all x86 and x86-64 platforms, including 32-bit and 64-bit Windows, Linux,
BSD and Intel-based Mac.

• stocc.zip. Non-uniform random number generators, including the following
probability distributions: Normal, Poisson, Binomial, Hypergeometric, Fisher's
Noncentral Hypergeometric, Wallenius' Noncentral Hypergeometric, etc.

The latest versions of these packages are always available from www.agner.org/random.

2 Randomc package of random number generators

2.1 Generators included in the randomc library
The randomc.zip package is a C++ class library containing various random number
generators. Single-threaded applications need only one instance of the desired class while
multi-threaded applications need one instance for each thread.

The following classes are included

CRandomMersenne:
Header: randomc.h
Source file: mersenne.cpp
Constructor: CRandomMersenne(int seed);
This is the "Mersenne Twister", a random number generator which has become very
popular in recent years because of its long cycle length.

http://www.agner.org/random/

 3

CRandomMother:
Header: randomc.h
Source file: mother.cpp
Constructor: CRandomMother(int seed);
This is the "Mother-Of-All" generator invented by George Marsaglia. Uses less memory than
the Mersenne Twister.

CRandomSFMT0:
Header: sfmt.h
Source file: sfmt.cpp
Constructor: CRandomSFMT0(int seed);
The "SIMD-oriented Fast Mersenne Twister" (SFMT) invented by Mutsuo Saito and Makoto
Matsumoto. This is an improvement of the Mersenne Twister with better randomness and
higher speed. Designed specifically for processors with Single-Instruction-Multiple-Data
(SIMD) capabilities, such as the SSE2 and later instruction set. This instruction set is
available in almost all modern PC's and Mac computers.

CRandomSFMT1:
Header: sfmt.h
Source file: sfmt.cpp
Constructor: CRandomSFMT1(int seed);
Combines the SFMT generator (see above) and the Mother-Of-All generator to get the best
possible randomness.

See page 23 for a theoretical discussion of these random number generators.

Member functions (methods)
void RandomInit(int seed);
Initialize or re-initialize the random number generator. The value of seed can be any
integer. The same seed always gives the same sequence of random numbers. A different
seed gives a different sequence.

void RandomInitByArray(int const seeds[], int NumSeeds);
Available only in Mersenne Twister and SFMT generator.
Initialize or re-initialize the random number generator. Allows any number of seeds.
seeds[] is an array with NumSeeds seeds. A different value of any of the seeds gives a
different sequence of random numbers.

int IRandom(int min, int max);
Generates a random integer n with uniform distribution in the interval min ≤ n ≤ max.
The distribution may be slightly biased due to rounding errors if the interval length (max -
min + 1) is large and not a power of 2.
Use IRandomX instead if the highest precision is required.
Restrictions: max ≥ min and max - min + 1 < 232.
If max - min + 1 = 232, i.e. if you are using the whole range of integers, then use BRandom()
instead. You may type-cast the output of BRandom to a signed integer if needed.
Error conditions: Returns 0x80000000 if max < min.

int IRandomX(int min, int max);
Available only in Mersenne Twister and SFMT generator.
Same as IRandom. The distribution is always exact. See page 18 below for a detailed
explanation.
IRandomX takes a little extra time every time the length of the interval (max - min + 1) is
different from the last value.

 4

uint32_t BRandom();
Gives a random 32-bit integer. May be used as 32 random bits.

double Random();
Gives a random floating point number x with uniform distribution in the interval 0 ≤ x < 1.
Resolution:
32 bits in Mersenne Twister and Mother-Of-All generator, 52 bits in SFMT generator.

Overview of member functions
Generator

Function
Mersenne Twister Mother-Of-All SFMT or

combined
Initialize with new
seed

CRandomMersenne::
RandomInit

CRandomMother::
RandomInit

CRandomSFMT::
RandomInit

Initialize by array CRandomMersenne::
RandomInitByArray

 CRandomSFMT::
RandomInitByArray

Integer random CRandomMersenne::
IRandom

CRandomMother::
IRandom

CRandomSFMT::
IRandom

Integer random,
exact

CRandomMersenne::
IRandomX

 CRandomSFMT::
IRandomX

Random bits CRandomMersenne::
BRandom

CRandomMother::
BRandom

CRandomSFMT::
BRandom

Floating point
32 bits resolution

CRandomMersenne::
Random

CRandomMother::
Random

Floating point
52 bits resolution

 CRandomSFMT::
Random

Floating point
63 bits resolution

 (only in randoma
library)

Compiler requirements
Class C++ compiler Compiler support for

64-bit integers
Compiler support for
SSE2 and intrinsic

functions
CRandomMersenne x - -
CRandomMother x x -
CRandomSFMT x x x

You may use the libraries in the randoma.zip package (see page 5) if your compiler
doesn't meet these requirements.

Hardware requirements
CRandomMersenne and CRandomMother will work on any microprocessor for which a
suitable compiler is available.

CRandomSFMT works only on Intel or AMD computers with the SSE2 or later instruction set.
Use the randoma.zip library instead if it is not certain that the computer supports SSE2.

Randomness qualities
Class Cycle length Passes tests for

randomness
Bifurcation /

diffusion
Resolution of

continuous uniform
distribution

CRandomMersenne 219937-1 most low 32 bits
CRandomMother ≈ 2158 all high 32 bits
CRandomSFMT ≥ 211213-1 all if Mother high 52 or 63 bits

 5

included

See page 23 for a more detailed discussion of the randomness of these generators.

Execution time
The execution times vary a lot depending on the compiler and the optimization possibilities.
The execution times are usually a little longer than for the randoma library versions listed
on page 8.

3 Randoma package of random number generators

3.1 Generators included in the randoma library
The randoma.zip package is a binary code library containing carefully optimized versions
of the same random number generators as the randomc.zip package. Several different
versions are included for compatibility with different compilers and operating systems. The
appropriate version of the library is linked into the code project that uses it. Single-threaded
and multi-threaded C and C++ versions are included.

The header file randoma.h defines all functions and classes in the randoma library
package. This header file must be used when calling these function from a C or C++
program.

Single threaded C or C++ functions, static linking (*.lib, *.a)
Generator

Function
Mersenne Twister Mother-Of-All SFMT or

combined
Initialize MersenneRandomInit MotherRandomInit SFMTgenRandomInit
Initialize by array MersenneRandom-

InitByArray
 SFMTgenRandom-

InitByArray
Integer random MersenneIRandom MotherIRandom SFMTgenIRandom
Integer random,
exact

MersenneIRandomX SFMTgenIRandomX

Random bits MersenneBRandom MotherBRandom SFMTgenBRandom
Floating point
32 bits resolution

MersenneRandom MotherRandom

Floating point
52 bits resolution

 SFMTgenRandom

Floating point
63 bits resolution

 SFMTgenRandomL

The single-threaded versions are simple functions that need no class object. This makes the
programming simpler. The necessary storage is provided internally in the library.
Example:

#include <time.h> // Define time()
#include <stdio.h> // Define printf()
#include "randoma.h" // Define library functions
int main() {
 int seed = time(0); // Use time as random seed
 double r; // Declare variable
 MersenneRandomInit(seed); // Must initialize first
 r = MersenneRandom(); // Get a random number
 printf("\n%f", r); // Print the random number
 return 0; // Finished

 6

}

Single threaded C or C++ functions, dynamic linking (*.dll)
Generator

Function Mersenne Twister Mother-Of-All SFMT or combined
Initialize MersenneRandomInitD MotherRandomInitD SFMTgenRandomInitD

Initialize by array MersenneRandom-
InitByArrayD

 SFMTgenRandom-
InitByArrayD

Integer random MersenneIRandomD MotherIRandomD SFMTgenIRandomD
Integer random,
exact

MersenneIRandomXD SFMTgenIRandomXD

Random bits MersenneBRandomD MotherBRandomD SFMTgenBRandomD
Floating point
32 bits resolution

MersenneRandomD MotherRandomD

Floating point
52 bits resolution

 SFMTgenRandomD

Floating point
63 bits resolution

The dynamic linking versions are intended mainly for calling from other programming
languages such as Pascal, Fortran, C#, Basic, managed C++.NET, etc. where static linking
may be difficult or impossible. These functions use the stdcall calling conventions rather
than the cdecl calling convention.

Multi-threaded C++ functions, static linking (*.lib, *.a)
Generator

Function

Mersenne
Twister

Mother-Of-All SFMT SFMT
combined

with
Mother-Of-All

Initialize with
new seed

CRandomMersenneA
::RandomInit

CRandomMotherA::
RandomInit

CRandomSFMTA0::
RandomInit

CRandomSFMTA1::
RandomInit

Initialize by array CRandomMersenneA
::Random-
InitByArray

 CRandomSFMTA0::
Random-

InitByArray

CRandomSFMTA1::
Random-

InitByArray
Integer random CRandomMersenneA

::IRandom
CRandomMotherA::

IRandom
CRandomSFMTA0::

IRandom
CRandomSFMTA1::

IRandom
Integer random,
exact

CRandomMersenneA
::IRandomX

 CRandomSFMTA0::
IRandomX

CRandomSFMTA1::
IRandomX

Random bits CRandomMersenneA
::BRandom

CRandomMotherA::
BRandom

CRandomSFMTA0::
BRandom

CRandomSFMTA1::
BRandom

Floating point
32 bits resolution

CRandomMersenneA
::Random

CRandomMotherA::
Random

Floating point
52 bits resolution

 CRandomSFMTA0::
Random

CRandomSFMTA1::
Random

Floating point
63 bits resolution

 CRandomSFMTA0::
RandomL

CRandomSFMTA1::
RandomL

The multi-threaded C++ versions need one instance (object) of the class for each thread.
The object must be declared locally inside the thread. Only one object is needed in single-
threaded applications. Example:

#include <time.h> // Define time()
#include <stdio.h> // Define printf()
#include "randoma.h" // Define library classes
int main() {
 int seed = time(0); // Use time as random seed

 7

 CRandomMersenneA RanObject(seed); // Declare generator object
 double r = RanObject.Random(); // Get a random number
 printf("\n%f", r); // Print the random number
 return 0; // Finished
}

Multi-threaded C functions, static linking (*.lib, *.a)
Generator

Function
Mersenne Twister Mother-Of-All SFMT or

combined
Initialize MersRandomInit MotRandomInit SFMTRandomInit
Initialize by array MersRandom-

InitByArray
 SFMTRandom-

InitByArray
Integer random MersIRandom MotIRandom SFMTIRandom
Integer random,
exact

MersIRandomX SFMTIRandomX

Random bits MersBRandom MotBRandom SFMTBRandom
Floating point
32 bits resolution

MersRandom MotRandom

Floating point
52 bits resolution

 SFMTRandom

Floating point
63 bits resolution

 SFMTRandomL

A multi-threaded application in C language cannot encapsulate the random number
generator in a class as you can in C++. Therefore, you must explicitly define a buffer in
each thread for containing the internal variables of the generator. The necessary size of the
buffer is defined in randoma.h as MERS_BUFFERSIZE, MOTHER_BUFFERSIZE and
SFMT_BUFFERSIZE respectively. The buffer must be passed to all the library functions. The
size of the buffer is passed to the initialization function. Example:

#include <time.h> // Define time()
#include <stdio.h> // Define printf()
#include "randoma.h" // Define library functions
int main() {
 int seed = time(0); // Use time as random seed
 double r; // Declare variable
 // Declare buffer of necessary size:
 char MersenneBuffer[MERS_BUFFERSIZE];
 // Must initialize random number generator first:
 MersRandomInit(MersenneBuffer, sizeof(MersenneBuffer), seed);
 r = MersRandom(MersenneBuffer); // Get a random number
 printf("\n%f", r); // Print the random number
 return 0; // Finished
}

3.2 Other functions included in the randoma library

ReadTSC
C++ prototype
extern "C" uint64_t ReadTSC (void);

Description
This function returns the value of the internal clock counter in the microprocessor. Does not
work on the old 80386 and 80486 processors. A 32-bit value is returned if the compiler
doesn't support 64-bit integers.

 8

The length of a clock cycle is the reciprocal of the CPU clock frequency. For example, on a
2 GHz computer the length of a clock cycle is 0.5 ns (nanosecond). The value may vary
since many microprocessors can change their clock frequency depending on the workload.

To count how many clock cycles a piece of code takes, call ReadTSC before and after the
code to measure and calculate the difference. See www.agner.org/optimize/asmlib.zip for
details.

ReadTSC() is useful for generating a seed for a random number generator because it has
a very high resolution. Example:

#include <time.h> // Define time()
#include <stdio.h> // Define printf()
#include "randoma.h" // Define library functions
int main() {
 int seed = (int)ReadTSC(); // Use CPU clock as random seed
 CRandomMersenneA RanObject(seed); // Declare generator object
 double r = RanObject.Random(); // Get a random number
 printf("\n%f", r); // Print the random number
 return 0; // Finished
}

InstructionSet
C++ prototype
int InstructionSet(void);

Description
This function detects which instruction set is supported by the microprocessor it is running
on. It is used internally in the randoma library for selecting the optimal version of each
function. See www.agner.org/optimize/asmlib.zip for details.

3.3 Execution speed
Random number
generator

32 random bits
BRandom()

Random integer
IRandom(min,max)

Random floating
point number
Random()

Mersenne Twister 15 17 15
Mother-Of-All 17 23 21
SFMT 14 22 16
SFMT combined with
Mother-Of-All

26 38 27

The execution times are given in core clock cycles measured on an Intel Core 2 processor
running a single thread. The length of a clock cycle is the reciprocal of the clock frequency,
e.g. 0.5 ns on a 2 GHz processor.

All the execution times are so small that they can be regarded as insignificant in most
cases. Small differences in hardware, compilers, code environment, etc. can cause much
bigger differences in execution time. For example, a single cache miss can add more than a
hundred clock cycles to the time.

http://www.agner.org/optimize/asmlib.zip
http://www.agner.org/optimize/asmlib.zip

 9

3.4 Library versions
The randoma library has many versions for compatibility with different platforms and
compilers. Use the tables below to select the right version for a particular application.

Library version selection guide: Windows

Compiler/language File format 32 bit 64 bit
MS C++ unmanaged,
Intel, Gnu

COFF randomacof32.lib randomacof64.lib

Borland C++, Digital
Mars, Watcom

OMF randomaomf32.lib

MS C++.net, C#, VB DLL randomad32.dll randomad64.dll
Borland Delphi DLL randomad32.dll randomad64.dll
Other languages DLL randomad32.dll randomad64.dll

Library version selection guide: Linux and BSD (x86 and x86-64)

Compiler/language File
format

32 bit
executable

32 bit
shared object

64 bit

Gnu, Intel C++ ELF randomaelf32.a randomaelf32p.a randomaelf64.a

Library version selection guide: Mac (Intel based)

Compiler/language File
format

32 bit
executable

32 bit
shared object

64 bit

Gnu, Intel C++ MachO randomamac32.a randomamac32p.a randomamac64.a

Explanation of the column headings:
Compiler/language: The compiler and programming language used. Different compilers may
use different object file formats.

File format: It is necessary to select a library in the right object file format, or a dynamic link
library if static linking is not possible.

32 bit / 64 bit: Use the appropriate version when compiling for 32-bit mode or 64-bit mode.

32 bit executable: Use this version when making an executable binary file.

32 bit shared object: Use this version when position-independent code is needed. Position-
independent code is needed when building a shared object for 32-bit mode in Linux, BSD
and Mac. The position-independent version is slightly slower.

4 Stocc package of non-uniform generators
The stocc.zip package is a C++ class library defining various non-uniform random
number generators with various distributions. The non-uniform generators can be based on
any of the uniform generators in the randomc and randoma packages, which are used as a
C++ base class.

The following classes are included

StochasticLib1:
Header: stocc.h

 10

Source file: stoc1.cpp
Constructor: StochasticLib1(int seed);
Base class: Any of the classes in randomc.h or randoma.h. Set STOC_BASE to the
desired base class.
Defines generators for the following distributions: Bernoulli, Binomial, Hypergeometric,
multivariate Hypergeometric, Multinomial, Normal, Poisson, and a shuffling function.

StochasticLib2:
Header: stocc.h
Source file: stoc2.cpp
Constructor: StochasticLib2(int seed);
Base class: StochasticLib1.
Defines alternative generators for the following distributions: Binomial, Hypergeometric,
Poisson.
The implementations in StochasticLib2 are faster than StochasticLib1 if the
parameters are constant but slower if the parameters are changing.

StochasticLib3:
Header: stocc.h
Source files: stoc3.cpp, fnchyppr.cpp, wnchyppr.cpp, erfres.cpp
Constructor: StochasticLib3(int seed);
Base class: StochasticLib1 (or StochasticLib2).
Defines various noncentral hypergeometric distributions. These distributions are useful for
simulating biased sampling and genetic models of evolution.

Member functions (methods) in StochasticLib1:

int StochasticLib1::Bernoulli(double p);
Bernoulli distribution with probability parameter p.
Returns 1 with probability p, or 0 with probability 1- p.
Error conditions:
Gives error message if p < 0 or p > 1.

int32_t Binomial (int32_t n, double p);
Binomial distribution with parameters n and p.
This is the distribution of the number of red balls you get when drawing n balls with
replacement from an urn where p is the fraction of red balls in the urn. Definition:

xnx pp
x
n

xf −−







=)1()(

Error conditions:
Gives error message if n < 0 or p < 0 or p > 1.

int32_t StochasticLib1::Hypergeometric(int32_t n, int32_t m,
int32_t N);
Hypergeometric distribution with parameters n, m, N. (Note the order of the parameters).
This is the distribution of the number of red balls you get when drawing n balls without
replacement from an urn where the urn contains N balls, where m balls are red and N-m
balls are white. Definition:


















−
−










=

n
N

xn
mN

x
m

xf)(

Error conditions:

 11

Gives error message if any parameter is negative or n > N or m > N.

void StochasticLib1::MultiHypergeometric(int32_t * destination,
int32_t * source, int32_t n, int colors);
Multivariate hypergeometric distribution. This is the distribution you get when drawing n
balls from an urn without replacement, where there can be any number of colors. This is the
same as the hypergeometric distribution when colors = 2. The number of balls of each
color is returned in destination, which must be an array with colors places. source
contains the number of balls of each color in the urn. source must be an array with
colors places.
Error conditions:
Gives an error message if any parameter is negative or if the sum of the values in source
is less than n. The behavior is unpredictable if source or destination has less than colors
places.

void StochasticLib1::Multinomial(int32_t * destination, int32_t *
source, int32_t n, int colors);
void StochasticLib1::Multinomial(int32_t * destination, double *
source, int32_t n, int colors);
Multivariate binomial distribution. This is the distribution you get when drawing n balls
from an urn with replacement, where there can be any number of colors. This is the same
as the binomial distribution when colors = 2. The number of balls of each color is returned
in destination, which must be an array with colors places. source contains the
number or fraction of balls of each color in the urn. source must be a double or int array
with colors places.
The sum of the values in source does not have to be 1, but it must be positive. The
probability that a ball has color i is source[i] divided by the sum of all values in source.
Error conditions:
Gives an error message if any parameter is negative or if the sum of the values in source is
zero. The behavior is unpredictable if source or destination has less than colors
places.

double StochasticLib1::Normal(double m, double s);
Normal distribution with mean m and standard deviation s. This distribution simulates the
sum of many random factors. Definition:

2

2

2
)(

2
1)(s

mx

e
s

xf
−−

=
π

Error conditions: None.

double StochasticLib1::double NormalTrunc(double m, double s,
double limit);
Truncated normal distribution with mean m and standard deviation s. This is the normal
distribution with the tails cut off at m ± limit. Values outside the interval (m-limit) ≤ x ≤
(m+limit) are rejected.
Error conditions: Gives error message if limit < s.

int32_t StochasticLib1::Poisson(double L);
Poisson distribution with mean L.
This is the distribution of the number of events in a given time span or a given geographical
area when these events are randomly scattered in time or space. Definition:

 12

Le
x
Lxxf −=

!
)(

Error conditions: Gives error message if L < 0 or L > 2·109.

void StochasticLib1::Shuffle(int * list, int min, int n);
Shuffling a list. This function makes a list of the n numbers from min to min+n-1 in
random order. The result is returned in list, which must be an array with n elements.
The array index goes from 0 to n-1. If you want to shuffle something else than integers then
use the integers in list as an index into a table of the items you want to shuffle.
Error conditions: none. The behavior is unpredictable if the size of the array list is less
than n.

Member functions (methods) in StochasticLib2:
int32_t StochasticLib2::Hypergeometric(int32_t n, int32_t m,
int32_t N);

int32_t StochasticLib2::Binomial(int32_t n, double p);

int32_t StochasticLib2::Poisson(double L);

This is an alternative implementation of the similar functions in StochasticLib1.
StochasticLib2 is faster than StochasticLib1 if the functions are called many times
with the same parameters, but slower than StochasticLib1 if the parameters are
changed. See the file sampmet.pdf for a description of the sampling methods.

Member functions (methods) in StochasticLib3:

void StochasticLib3::SetAccuracy(double accur);
Set the desired accuracy of the subsequent function calls. The default value is 10-8.

int32_t StochasticLib3::FishersNCHyp (int32_t n, int32_t m, int32_t
N, double odds);
The Fisher's noncentral hypergeometric distribution is the distribution of two binomial
variates conditional upon their constant sum. See the file distrib.pdf for a definition.
Execution may be slow and inexact when N is high and odds is far from 1.
Error conditions:
Gives error message if any parameter is negative or n > N or m > N.

int32_t StochasticLib3::WalleniusNCHyp (int32_t n, int32_t m,
int32_t N, double odds);
The Wallenius noncentral hypergeometric distribution is similar to the hypergeometric
distribution, but with bias. The bias can be seen as an odds ratio. odds > 1 will favor the red
balls, and odds < 1 will favor the white balls. When odds = 1 we have the hypergeometric
distribution.
Error conditions:
Gives error message if any parameter is negative or n > N or m > N.

void StochasticLib3::MultiFishersNCHyp (int32_t * destination,
int32_t * source, double * weights, int32_t n, int colors);
The multivariate Fisher's noncentral hypergeometric distribution is the distribution of
multiple binomial variates conditional upon their constant sum. See the file distrib.pdf
for a definition. This function may be inexact, but uses an approximation with an accuracy
that is better than 1% in most cases. The precision can be tuned at the expense of higher
calculation times.

 13

Error conditions:
Gives an error message if any parameter is negative or if the total number of balls with
nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less
than colors places.

void StochasticLib3::MultiWalleniusNCHyp (int32_t * destination,
int32_t * source, double * weights, int32_t n, int colors);
Multivariate Wallenius noncentral hypergeometric distribution. This is the distribution
you get when drawing colored balls from un urn without replacement, with bias. See the file
distrib.pdf for a definition. weights is an array with colors places containing the
weight or odds for each color. The probability of drawing a particular ball is proportional to
its weight. This function may be inexact, but uses an approximation with an accuracy that is
better than 1% in almost all cases.
Error conditions:
Gives an error message if any parameter is negative or if the total number of balls with
nonzero weight is less than n. The behavior is unpredictable if any of the arrays has less
than colors places.

void StochasticLib3::MultiComplWalleniusNCHyp (int32_t *
destination, int32_t * source, double * weights, int32_t n, int
colors);
Multivariate complementary Wallenius noncentral hypergeometric distribution. This is
the distribution of the balls that remain in the urn when drawing N-n colored balls from un
urn without replacement, with bias. (N is the sum of source). See the file distrib.pdf for
a definition.

Other functions
void FatalError(const char *ErrorText);
Header: randomc.h
Source file: userintf.cpp
Used internally to generate error messages. There is no portable way of writing error
messages. Systems with a graphical user interface (e.g. Windows) need a pop-up message
box, while console mode programs and other line oriented systems need output to the
standard error output. Therefore, you may have to modify the function FatalError in the
file userintf.cpp to fit your system. This function is called by the library functions in case
of illegal parameter values or other fatal errors. Experience shows that these error
messages are very useful when debugging a program that uses the non-uniform random
number generators. You may even enhance the FatalError function to output additional
debug information about the state of your program.

void EndOfProgram(void);
Header: randomc.h
Source file: userintf.cpp
Program exit used in the program examples. Windows-like environments may require that
the program waits for the user to press a key before exiting, in order to prevent the output
screen image from disappearing. Therefore, you may have to modify the function
EndOfProgram in userintf.cpp to fit your system if you experience this problem.

 14

5 Frequently asked questions

5.1 Getting started
The best way to get started is to try some of the example programs included in
randomc.zip.

Try to compile the file ex-ran.cpp with your C++ compiler and run it. The example
program runs in console mode. It will output a list of random integer numbers, a list of
random floating point numbers, and a list of random 32-bit numbers in hexadecimal
representation.

You may modify the example file to make it do what you want. Use the class member
function IRandom(min,max) to get a random integer in the interval from min to max.

Use the class member function Random() to get a floating point number in the interval from
0 to 1.

Use the class member function BRandom() to get random bits.

The package stocc.zip includes the following examples for generating non-uniform
distributions:

ex-cards.cpp: Shuffle a deck of cards.

ex-lotto.cpp: Picks six random numbers in the interval from 1 to 36 so that no number
occurs more than once.

ex-stoc.cpp: Generates random numbers with various different distributions: Uniform,
normal distribution, Poisson, Binomial and Hypergeometric.

5.2 Is the random number generator that comes with my compiler good
enough?

Historically, the random number generators in standard function libraries have a very bad
reputation. Many function libraries have been improved in recent years, but it is still
recommended to check the quality of a random number generator before using it for
demanding applications.

Almost any random number generator is good enough for small entertainment applications.
You need only be concerned if you are making large and demanding applications.

You need to check the documentation for the random number generator in your standard
function library. If there is little or no documentation then it is probably not very good.

Few standard libraries have multi-threaded random number generators. You need to check
this as well as various features of randomness to decide if a particular random number
generator is good enough for your application.

5.3 Which random number generator should I choose?
All the random number generators in the present packages are very good. In most cases it
doesn't matter which one you choose.

If portability is important then choose the Mersenne Twister. This generator has become
very popular in recent years due to its long cycle length and high dimensions of

 15

equidistribution. It is available in many different function libraries from different sources and
in many different programming languages. The C++ code in randomc.zip can be
compiled with almost any C++ compiler. Disadvantages: Fails a few of the most stringent
tests for randomness. Poor bifurcation or diffusion, as explained in paragraph 6 page 23
below. Uses more memory than the other generators.

If memory use is important then use the Mother-Of-All generator. It uses less memory than
the other generators. It has passed stringent tests for randomness. Disadvantages: Shorter
cycle length. Lower dimensions of equidistribution.

If speed is important then use the SFMT generator alone. This is the fastest of the
generators in the package and it performs better than the Mersenne Twister on some
criteria of randomness. Disadvantages: Portability to other platforms is limited. Fails a few of
the most stringent tests for randomness.

If high resolution is important then use the SFMT generator alone or combined with the
Mother-Of-All generator. The code provides floating point random numbers with a resolution
of 52 bits where the other generators have only 32 bits. The library version in
randoma.zip also provides 63 bits resolution in a long double. Note that Microsoft
compilers don't support long double precision.

If it is important to get the best possible randomness then use the SFMT generator
combined with the Mother-Of-All generator. This is recommended for the largest multi-
threaded Monte Carlo simulations and Monte Carlo integrations.

You may combine any two random number generators. The file rancombi.cpp shows an
example of how to combine the Mersenne Twister and the Mother-Of-All generator.

See page 23 for a theoretical discussion of the difference between the different generators.

5.4 How do I change the code to use a different random number generator?
For uniform random number generators: See the example file ex-ran.cpp. This file makes
an object of the class CRandomMersenne and includes the source file mersenne.cpp to
make a Mersenne Twister random number generator. Use a different class name to get a
different random number generator. The class names are listed below.

For non-uniform random number generators: Edit the file stocc.h and change the line
#define STOC_BASE CRandomMersenne
Change the name of the random number generator class to the desired base class, for
example:
#define STOC_BASE CRandomSFMT0
For the sake of simplicity, I have chosen not to use C++ templates for choosing the base
class.

To make a Mother-Of-All generator, change the class name to CRandomMother and
include the source file mother.cpp.

To make a SFMT generator, change the class name to CRandomSFMT0 and include the
header file sfmt.h and the source file sfmt.cpp. Compile with the SSE2 instruction set
enabled (option -msse2 required on 32-bit Gnu compiler).

To make a SFMT generator combined with the Mother-Of-All generator, change the class
name to CRandomSFMT1 and include the header file sfmt.h and the source file sfmt.cpp.
Compile with the SSE2 instruction set enabled (option -msse2 required on 32-bit Gnu
compiler).

 16

To use the binary library version of one of the random number generators, use the class
name CRandomMersenneA, CRandomMotherA, CRandomSFMTA0 or CRandomSFMTA1
and include the header file randoma.h from randoma.zip. Link in the appropriate version
of the library according to the table on page 9.

5.5 Choosing a seed
The seed is a start value that is needed for the random number generators. If you run a
program again with the same seed then you will get exactly the same sequence of random
numbers. If you use a different seed then you will get a different sequence of random
numbers.

If you want the sequence to be different every time then you may use the time as seed. The
example ex-ran.cpp uses the time in seconds as seed.

You can get better resolution by using the function ReadTSC which is provided in the binary
libraries in randoma.zip. See the example on page 8. The ReadTSC function has a
resolution of less than a nanosecond. If the ReadTSC function is called inside a task that is
started by user input, e.g. by the user clicking a button, then you have a very good seed
because it is extremely unlikely that two different users can press a button at the same time
within less than a nanosecond.

In the case of Monte Carlo simulation or Monte Carlo integration applications it is desirable
to have reproducible results as explained below in section 5.14 page 21. Let the user input
the seed, for example 1 in the first simulation, 2 in the second simulation. etc.

It may be useful to have multiple sources of randomness for the seed, for example in
security applications. The RandomInitByArray function allows multiple seeds. Useful
sources of random seeds are various time functions, thread ID, user ID, various hardware
parameters such as IP number, MAC address, hard disk ID, etc. and all sorts of sound and
video.

Multi-threaded applications must have a different seed for each thread as explained below
in section 5.7 page 17.

5.6 C++ version or binary library?
The C++ class library in randoc.zip and the binary library in randoma.zip provide the
same random number generators. It is mainly a matter of convenience which one you
choose. The main differences are:

• The binary library is faster than the C++ library in most cases, but not all. However,
both libraries are so fast that they contribute little to the total execution time in most
applications.

• The binary library works only on x86 platforms (including Windows, Linux, BSD and
Intel-based Mac computers). The C++ implementations of the Mersenne Twister and
the Mother-Of-All generator work on any platform for which a suitable C++ compiler
is available.

• The C++ implementation of the SFMT generator works only on computers with the
SSE2 or later instruction set. The binary library includes support for old computers
without SSE2. The appropriate version of the code is selected automatically in the
binary library so that the programmer doesn't have to care about compatibility.

 17

• The C++ implementation is only for applications coded in the C++ language. The
binary library also works with C and several other programming languages.

• The binary library allows a simple C-style function call interface without class objects
for single-thread applications.

• The binary library implementation of the SFMT generator can provide long double
random numbers with a very high resolution of 63 bits.

• The non-uniform generators in stocc.zip can use either the C++ or the binary
library as base.

5.7 Multi-threading
Very time-consuming applications can often take advantage of computers with multiple
microprocessor cores by dividing the work between the microprocessor cores. This requires
that it is logically possible to divide the job into independent sub-jobs that can run in parallel
threads. There should be no communication between the threads. The number of threads
should preferably not be higher than the number of microprocessor cores.

Use any of the random number generator classes in randomc.zip or randoma.zip and
make one object of the class in each thread.

The threads must use different seeds to make sure that each thread has a unique sequence
of random numbers. It is convenient to use the RandomInitByArray function with two
seeds where one of the seeds is the same for all the threads and the second seed is the
thread number.

If the code is written in C rather than C++ then use the binary library and make a local buffer
in each thread for the internal variables of the random number generator as shown in the
example on page 7.

The non-uniform random number generators in stocc.zip do not work with the C-style
functions because they need a C++ base class.

5.8 Calling from other programming languages
The randoma library is designed for calling from C and C++. It is possible to call the library
from other languages if the compiler supports binary library calls.

Some compiled languages such as Fortran may allow static linking of libraries. Other
languages such as Delphi Pascal, C#, Visual Basic and managed C++.NET work better with
dynamic link libraries (DLL). Use the DLL version under Windows if the compiler doesn't
support static linking or if the static link library is incompatible.

A DLL uses the stdcall calling convention by default. The stdcall versions of the
functions in randoma.zip have a D suffix on the name.

Linking with Java is particularly difficult. It is necessary to use the Java Native Interface
(JNI).

It is preferred to use the single-thread functions when calling from other languages than C
or C++. If you consider using multiple threads for the sake of speed then you should be
aware that the program will probably run faster if coded in C++.

 18

If you nevertheless decide to make a multi-threaded program in a language other than C or
C++ then you have to use the multi-threaded C functions mentioned on page 7 with a local
array as buffer. Note that arrays are represented differently in different programming
languages. You need to transfer the raw C-style array to the function rather than an array
descriptor. See the manual for the specific compiler for how to link with C-style arrays.

5.9 Position-independent code
Shared objects (*.so) in 32-bit Linux, BSD and Mac require position-independent code.
Special position-independent versions of asmlib are available for building shared objects.
Use the position-independent libraries randomaelf32p.a or randomamac32p.a
according to the list on page 9. Position-independent code is not an issue in 64-bit systems
and in Windows.

5.10 IRandom or IRandomX?
The functions IRandom and IRandomX both give a random integer with uniform distribution
in the interval from min to max, inclusive. IRandom is a little faster and a little less accurate
than IRandomX.

The slight error in IRandom can be explained as follows. We have a random number
generator that makes a random integer X in the interval [0,B-1] so that there are B possible
values for X. In our case we have a 32-bit output, so that B = 232. We want to convert this to
an integer Y in the interval [min,max] so that we have L = max-min+1 different possible
values of Y. The simplest way of conversion is





+=

B
XLY min

If B is divisible by L then there will be B/L different values of X for each value of Y. If B is not
divisible by L then there will be (B mod L) values in excess so that some of the Y values will

have 





L
B

 corresponding X values and some Y values have 1+





L
B

 corresponding X values.

In other words, some Y values have higher probability than others.

The Y values that have higher probability are evenly spread over the interval from min to
max so that the mean will still be close to (min+max)/2.

Most random number generator packages have this inaccuracy. It doesn't help to generate
an integer random number from a floating point random number. The floating point number
still has B possible values so that the problem is the same. The error can be reduced by
using a high resolution (high value of B) but there is still a theoretical error.

If B is much bigger than L then the difference in probability between the Y values will be
small. If L is a power of 2 then B is divisible by L and there will be no error.

The IRandomX function eliminates the inaccuracy by rejecting the excess (B mod L) values
of X. If X happens to have one of the excess values then it is rejected and a new value of X
is generated. This method makes it certain that all values of Y have exactly the same
probability.

The difference between IRandom and IRandomX is illustrated in the example program
testirandomx.cpp. This test program compares the results for IRandom and IRandomX
in the worst case where the value of L is 3/4 of B. The result in this case shows that every
third Y value has a frequency that is double the frequency of the other Y values when
IRandom is used. All Y values have the same frequency when IRandomX is used.

 19

The IRandomX function needs extra time to calculate (B mod L) every time L is changed.

In conclusion, it is recommended to use IRandomX when L is very large and not a power of
2 and you need high precision.

If L is less than around 1000 then the error is so small that it doesn't show even in large
statistical tests. In this case it is acceptable to use IRandom.

5.11 Why is the floating point interval half-open?
The Random function generates random floating point numbers Y in the interval 0 ≤ Y < 1.
This has to do with quantification. There is a finite number of possible Y values and we want
these values to be equally spaced. The spacing is always a negative power of 2, for
example 2-32, because of the binary representation. If the spacing between possible Y
values is 2-b then there are 2b possible values in the interval 0 ≤ Y < 1, but 2b+1 possible
values in the interval 0 ≤ Y ≤ 1. The floating point value Y is generated from a b-bit integer X
in the interval 0 ≤ X < 2b by calculating Y = X / 2b. It would be difficult to generate 2b+1
different Y values from 2b different X values.

However, the choice of a half-open interval for X is not only a matter of making the
generation simple. It is also desirable for certain reasons. Assume that we want to generate
an event with a specific probability p, for example p = 0.5. In the C++ code we can write:

CRandomMersenne RanGen(time(0));
double Y = RanGen.Random();
double p = 0.5;
if (Y < p) {
 // This will happen with probability p
}

The above code generates an event with probability p because the fraction of possible Y
values less than p is equal to p. If Y had 2b+1 possible values in the interval 0 ≤ Y ≤ 1 then
the probability of Y < p would be approximately p - 2-b-1, and the probability of Y ≤ p would be
approximately p + 2-b-1. In other words, it is impossible to generate an event with exactly the
probability p if we use the closed interval 0 ≤ Y ≤ 1, but easy if we use the half-open interval
0 ≤ Y < 1. Generating events with specific probabilities is perhaps the most important
application of random number generators. Therefore it is desirable to have the half-open
interval 0 ≤ Y < 1.

On the other hand, the mean of Y is not exactly ½ as we would like the mean of a uniform
distribution to be, but ½ - 2-b-1. If we have a symmetric interval, i.e. 0 ≤ Y ≤ 1 or 0 < Y < 1
then the mean will be exactly ½.

So, as long as the random number is quantified we cannot have exactness in both the
generation of events with specific probabilities and exactness in the mean at the same time.

Fortunately, the error is very small. With a resolution of b = 32 bits the error in the mean will
be so small that we cannot detect it in a statistical test with a realistic sample size. In other
words, the error is theoretical only and has no practical significance. And we can reduce the
error further by choosing a higher resolution. The present packages offer random numbers
with resolutions as high as 52 or 63 bits.

The difference between the probabilities of Y < p and Y ≤ p may look confusing to a
mathematician because math books usually assume infinite precision so that the two
probabilities are the same. Theoretical math books rarely make this kind of distinctions and
it may be quite arbitrary whether a book specifies open or closed intervals for uniform
random numbers. Half-open intervals for random numbers are more likely to be seen in

 20

computer books than in math books. You should not be concerned about a math book
specifying e.g. a closed interval when in fact you have a half-open interval.

It is possible to manipulate the generators to get different output intervals, but this should be
done only if there is a very specific reason to do so. Examples:

CRandomSFMTA1 RanGen(time(0));
double r1, r2, r3, r4, r5;

// Random number in interval 0 <= r1 < 1
r1 = RanGen.Random();

// Random number in interval 0 < r2 <= 1
r2 = 1.0 - RanGen.Random();

// Random number in interval 0 < r3 < 1
do {
 r3 = RanGen.Random();
} while (r3 == 0); // Reject r3 if 0

// Random number in interval 0 <= r4 <= 1
// (round from long double to double)
r4 = (double)RanGen.RandomL();

// Random number in interval a <= r5 < b
const double a = 5., b = 8.;
r5 = a + (b-a)*RanGen.Random();

In the r4 example we are rounding from long double to double so that values very
close to 1 will be rounded to 1. This is not necessary for the sake of precision, but it may be
useful if you want to make sure that the exact values 0 and 1 can actually both occur
(though very rarely). Note that the long double function RandomL is available only in the
binary library SFMT generator and that Microsoft compilers don't support long double
precision.

5.12 Generating events with a specific probability
There are various ways to generate an event with a specific probability. If you want to
generate an event with probability p, where p is a floating point number, then use for
example:

CRandomMersenne RanGen(time(0));
double p = 0.5;
if (RanGen.Random() < p) {
 // This will happen with probability p
}

There are faster ways if the probability is a rational number. For example, to generate an
event with probability P/Q where P and Q are positive integers:

CRandomMersenne RanGen(time(0));
const int P = 7, Q = 20;
if (RanGen.IRandom(1,Q) <= P) {
 // This will happen with probability P/Q
}

This method is exact if you use IRandomX.

If Q is a power of 2 then it is even faster to use random bits:

 21

CRandomMersenne RanGen(time(0));
const int P = 5, Q = 16;
if ((RanGen.BRandom() & (Q-1)) < P) {
 // This will happen with probability P/Q if Q is a power of 2
}

Special cases:

CRandomMersenne RanGen(time(0));
if (RanGen.BRandom() & 1) {
 // This will happen with probability 1/2
}
if ((RanGen.BRandom() & 3) == 0) {
 // This will happen with probability 1/4
}
if (RanGen.BRandom() & 3) {
 // This will happen with probability 3/4
}

5.13 Generating non-uniform random numbers
Monte Carlo simulations may require random variates with a specific probability distribution,
such as normal or Poisson distribution. The variate generators are in stocc.zip. These
variate generators convert a random number with uniform distribution to the desired
distribution, e.g. a Poisson distribution. The uniform distribution generator can be any of the
random number generators in randomc.zip or randoma.zip. This is specified in the file
stocc.h, where the line
#define STOC_BASE CRandomMersenne
defines that the class CRandomMersenne is used as base class for the variate generators
so that they will be based on the Mersenne Twister. You may change this line to specify the
desired base class as random number generator.

The program example ex-stoc.cpp makes random numbers with uniform, normal,
Poisson, binomial and hypergeometric distributions.

See the file distrib.pdf for definition of the distributions and the file sampmet.pdf for a
description of the sampling methods used.

5.14 Monte Carlo simulation applications
The name Monte Carlo is traditionally used for computer simulation of processes that
include random events. Depending on the application, you may need uniform or non-
uniform random numbers.

The value of the seed for the random number generator should be input by the user. If the
simulation shows a particularly interesting behavior then the user can repeat the simulation
with the same seed to study this behavior in more detail, or repeat with a different seed to
see if the unusual behavior disappears.

The seeds can be simple numbers such as 1, 2, 3. They don't have to be particularly
"random".

Very time-consuming simulations may be split up into multiple threads on a computer with
multiple microprocessor cores. See chapter 5.7 on page 17 above. Use
RandomInitByArray with two seeds: the seed input by the user and the thread number. A
repeated simulation will give the same results only if the seed is the same and the number
of threads is the same.

 22

Monte Carlo integration can be implemented in the same way.

5.15 Simulating evolution
The non-central hypergeometric distributions are useful for simulating Darwinian models of
evolution. This is illustrated in the example programs ex-evol1.cpp and ex-evol2.cpp.

ex-evol1.cpp simulates evolution based on competition and selective survival of
individuals with different phenotypes.

ex-evol2.cpp simulates evolution based on differential breeding where the breeding
success depends on the phenotypes of both parents.

See also www.agner.org/evolution for a complete simulation program with graphical
representation of the results.

These distributions are also available in the R-language package BiasedUrn.

5.16 Games and entertainment applications
The quality of the random number generator is not very critical for entertaining games etc.
Use the time as seed to get unpredictable randomness.

5.17 Gambling applications
Personally, I consider gambling an unethical exploitation of human psychological
weaknesses. Consequently I do not endorse the use of this software for commercial
gambling applications.

5.18 Security applications
The random number generators in the present packages are not intended for cryptographic
applications. On most random number generators it is possible to reconstruct all past and
future numbers in the random sequence from a subsequence of a certain length. This also
applies to the generators used in the present packages. On the "linear feedback shift
register" types (Mersenne Twister and SFMT generator) this is possible even without
knowing the structure of the generator.

The reconstruction of a random sequence becomes much more difficult when two or more
different random number generators of fundamentally different design are combined. Both
generators should have a cycle length too long for trying all possible combinations. You may
use the combination of the SFMT and the Mother-Of-All generator or the Mersenne Twister
and the Mother-Of-All generator.

A single 32-bit seed can be a security problem because an attacker with a powerful
computer can try all possible seeds in a reasonable amount of time. Use
RandomInitByArray with multiple seeds of different origin. See chapter 5.5 on page 16
above.

These precautions should be taken if the random number generators are used for
generating random passwords etc., but keep in mind that the present random number
generators are not constructed specifically for security applications.

http://www.agner.org/evolution
http://cran.r-project.org/web/packages/BiasedUrn/index.html

 23

5.19 Error conditions
There is no standardized and portable way of generating error messages in a function
library. I have not used structured exception handling because this could slow down the
execution of error-free programs and because of compatibility problems across diverse
platforms, compilers and programming languages.

The randomc.zip package has no specific error reporting. It is assumed that constructors
are always called so that class data are initialized properly. The IRandom and IRandomX
functions return 0x80000000 if max < min or max - min + 1 ≥ 232.

The randoma.zip package reports errors simply by provoking a divide-by-zero error. This
may happen if a random number generator is not initialized before it is used or if the
specified buffer size is insufficient. The IRandom and IRandomX functions return
0x80000000 if max and min are out of range as specified above.

The stocc.zip package reports errors by calling the FatalError function in
unserintf.cpp. This happens if any parameter is out of range. You may modify the
FatalError function to fit the user interface of your program.

6 Theoretical considerations
I will here describe the theoretical considerations behind the choice of random number
generators in the present packages. The main criteria are: good randomness as evaluated
by theoretical as well as experimental tests, long cycle length, and fast generation of
random numbers.

A random number generator is typically based on a recursion of the form:

),,,(21 knnnn XXXfX −−−= L

where the transition function f calculates each new value Xn from the k preceding values.
The transition function f can use either integer (Euclidian) algebra modulo some value m, or
finite field algebra.

The generators based on integer algebra use addition and/or multiplication. For example, a
simple linear congruential generator has the form:

mbaXX nn mod)(1 += −

The modulo operation is easy to implement if m=2b, where b is the number of bits in a
computer word. To take a value modulo 2b is simply to ignore the carry and use only the
lower b bits of the result.

In some cases, a better randomness can be obtained by making m a prime. However, this
implies a rounding error which most theorists have ignored. Assume, for example, that we
have chosen m = 231-1, which is a prime. We want to convert Xn to a floating-point uniform
random number Un = Xn/m in the interval [0,1). The representation of floating-point numbers
(IEEE 754 standard) is quantified so that the maximum number of equidistant points in the
interval [0,1) is a power of 2 (224, 253 or 264, depending on the precision). To get equidistant
values of Un, we will need to space the values by 2-31. There are only 231-1 possible values
of Xn, so one of the values in the interval [0,1) will be missing and the distribution will not be
perfectly uniform. For this reason, I have chosen not to use any random number generator
where m is not a power of 2.

 24

If the transition function f contains only simple algebraic operations such as addition and
multiplication then there is information flow from the least significant bits of the X values to
the most significant bits through the carries, but no information flow in the opposite direction.
The consequence of this is that the least significant bits of each X forms an independent
random number generator with inferior randomness. The most significant bits are more
random than the least significant bits. This is unacceptable since some applications may
rely on the least significant bits. For example, it is quite common to have an application that
tests whether Xn is odd or even, which is determined only by the least significant bit. To
avoid this problem, it is necessary to establish a feedback from the most significant bits to
the least significant bits. This is done in the multiply-with-carry generator, which adds the
upper bits of a multiplication result to the lower bits. A multiply-with-carry generator with
more than one factor is the Mother-Of-All generator invented by George Marsaglia:

nn

nn

nknknn

SbC
SbX

CXaXaS

 of bits upper
 of bits lower

11

=
=

+++= −− L

This generator has very good randomness and passes all tests in the powerful TestU01
battery of tests for randomness4. A minor drawback of this generator2 is that it has a slight
bias in the upper bits of Xn. This bias is too small to show in any experimental tests.

The present package uses a Mother-Of-All generator with k = 4 and b = 32. The transition
function involves four multiplications of 32-bit factors into 64-bit products and addition of
these 64-bit products. It is required that the compiler supports such 64-bit operations, or it
must be coded in assembly language.

Some measures of randomness are better determined by theoretical analysis than by
experiment. Most importantly, the cycle length should preferably be so long that it cannot be
determined experimentally. The cycle length is the number of random numbers that can be
generated before the sequence is repeated. The highest possible cycle length is equal to
the number of different possible states in the state vector = 2kb. In many cases, the cycle
length is less than this value.

The theoretical analysis of a good random number generator can be very difficult. This is a
serious dilemma: The random number generators that are easy to analyze theoretically tend
to have poor randomness. If the random number generator has a simple mathematical
structure that is easy to analyze, then it is also possible to construct a test that explores this
structure and the generator will fail this test.

The best generators based on integer algebra with feedback from the high bits to the low
bits are difficult to analyze theoretically. Thus, the theoretical properties of the Mother-Of-All
generator have not been analyzed as thoroughly as one may wish.

Another class of random number generators that are easier to analyze theoretically are
based on finite field algebra. Addition and multiplication in the finite field F2

b are done simply
by bitwise XOR and AND operations on b-bit integers (C operators ^ and &). These
generators are known as Linear Feedback Shift Registers (LFSR). The much used
Mersenne Twister belongs to this class of random number generators6. The transition
function f consists of only XOR and AND operations, and shift operations for shuffling the
bits. This type of generators can be constructed with extremely long cycle lengths.

The fact that LFSR generators have a relatively simple mathematical structure also means
that it is possible to construct tests that they cannot pass. The linear complexity test can
easily defeat any LFSR generator. This test is based on the Berlekamp-Massey algorithm
which is an algorithm that detects the structure of an LFSR generator from any bit sequence
it has generated4. It is no wonder that the LFSR generators fail this test because the

 25

Berlekamp-Massey algorithm is in fact used during the construction of some LFSR
generators9. An arguably more relevant test is the binary matrix rank test. All LFSR
generators fail the binary matrix rank test when a sufficiently large matrix is used4. The
bigger the state vector in the generator, the bigger a matrix is needed in the test before it
fails. The standard Mersenne Twister (MT19937) has such a large state vector that it takes
hours to execute a binary matrix rank test large enough to defeat it.

The Mersenne Twister has an output function Yn = g(Xn) where Yn is used as the random
number output. The output function g of the Mersenne Twister is called tempering6. The
tempering function g simply shuffles and XOR's the bits in Xn with each other. You may say
that this redistributes randomness rather than generate randomness because the value of
Yn is not fed back into the state vector. A Mersenne Twister without the tempering algorithm
fails the important gap test. The tempering algorithm takes a significant part of the total
execution time because it has a dependency chain that prevents parallel execution.

A good random number generator should have chaotic behavior1. The degree of chaos is
measured by a term which is called bifurcation in chaos theory. This is almost similar to the
concept of diffusion in cryptology3,8. The bifurcation is the divergence of two trajectories that
differ in their starting point by only one bit in the state vector. The standard Mersenne
Twister has very poor bifurcation. For example, it takes many steps to recover from a state
where most of the bits are zero3.

Certain improvements have been made since the invention of the original Mersenne
Twister. Two improved generators based on the same principle as the Mersenne Twister
are the WELL generator 8 and the SFMT generator9. Both have better randomness, better
bifurcation/diffusion and higher speed than the original Mersenne Twister, and some
versions don't require the tempering function.

While the WELL generator has better bifurcation/diffusion than the SFMT generator, I have
chosen the latter for the sake of efficient implementation. The impressive speed of modern
computers are to a considerable degree due the their ability to do multiple operations
simultaneously. The amount of parallelism that can be obtained in the software
implementation is limited by the shortest feedback path in the transition function f. The
shortest feedback path is 32 bits in the WELL generator, but 128 bits in the SFMT
generator. This makes it possible to do parallel operations in 128-bit SIMD (Single
Instruction Multiple Data) registers with the SFMT generator, but not the WELL generator.
None of these generators can fully use the 256-bit or 512-bit registers that are expected to
be available in future computers. The SFMT is among the fastest random number
generators that satisfy our high requirements for randomness.

The SFMT generator is specifically designed to take advantage of the SIMD capabilities of
modern computers. Such capabilities are standard in modern PC's (SSE2 or later instruction
set), but absent in older PC's and some mainframe computers. The portability of the SFMT
generator is therefore limited. The C++ implementation in the randomc class library
requires that the computer has the SSE2 instruction set and that the compiler supports it.
The implementation in the randoma library includes a branch for supporting old computers
without SIMD/SSE2. On computers with other processors than Intel or AMD you need to
use the original C implementation by Mutsuo Saito9.

A very efficient method of improving randomness is to combine the outputs of two or more
different random number generators4,5. In fact, you can get a good random number
generator out of two or more bad ones, especially if they are very different. The philosophy
behind this method is quite simple. Combining something non-random with something
random produces something random. Any "non-randomness" that one of the generators
may have is eliminated by the other generator as long as it doesn't have the same
weakness. Only if both generators have the same weakness will it show in the combined
output. The combination of two random number generators can be as simple as generating

 26

a b-bit integer from each generator and adding these two numbers modulo 2b. A particular
random number generator is suitable for a particular application if there is no undesired
interaction between generator and application. The risk of an undesired 3-way interaction
between application, generator 1 and generator 2 is much smaller than the risk of an
undesired 2-way interaction between the application and a single generator if the two
generators are different. I have not been able to find any experimental evidence of
undesired interactions between two random number generators, even if they were very
similar in design.

I have implemented this principle by allowing the combination of the SFMT generator and
the Mother-Of-All generator. These two generators are based on different kinds of algebra
and are therefore very different. A generator based on integer algebra may fail certain tests
based on integer algebra; and a generator based on finite field algebra is known to fail
certain tests based on finite field algebra. But each generator eliminates the weaknesses of
the other one so that the combined generator is as good as we can wish for. The
advantages of the SFMT generator are long cycle length and high-order equidistribution9.
The weaknesses are a relatively low bifurcation and the failure to pass certain tests based
on finite field algebra. The advantages of the Mother-Of-All generator are a very high
bifurcation and the fact that it passes the most stringent experimental tests for randomness.
The disadvantages are a slight bias in the output and the fact that it is difficult to analyze
theoretically so that it may have undetected theoretical weaknesses. All of these
weaknesses are eliminated by combining the two generators. The fact that the two
generators are based on fundamentally different algebras makes it unlikely that they have
any noticeable weakness in common.

6.1 Using multiple streams
Many modern computers have multiple cores and the trend goes towards an increasing
number of cores. Time-consuming applications can take advantage of this by dividing the
work between multiple threads, with each core running one thread.

No random number generator is inherently thread-safe. This means that you cannot access
it from more than one thread simultaneously without running the risk of messing up the
internal state. Using a mutex is a very inefficient solution. It is much better to have one
random number generator for each thread so that each thread has its own stream of
random numbers. This can be done in C++ by making one instance (object) of the random
number generator class in each thread.

Obviously, the multiple streams of random numbers should be different without any
correlation between them. Four different ways of avoiding correlation between the streams
have been proposed3,7:

1. Use fundamentally different random number generators for each stream.

2. Use similar generators but with different values for various parameters in the
generator algorithm, such as multiplication factors, shift counts and AND masks.

3. Use identical generators with a jump-ahead feature. If the first stream is expected to
use at most L random numbers, then the second stream can jump ahead from the
same starting point (seed) and skip the first L numbers.

4. Use identical generators with different seeds. The probability that the streams have
overlapping sequences can be reduced to a negligible value if the cycle length is
sufficiently long.

I have decided to use method 4 for the following reasons. Method 1 is not realistic because
we have a limited number of random number generator algorithms with known good quality.

 27

Method 2 requires a computerized search for good values of the parameters in the
generator algorithm. This search is too slow to be carried on online. Instead it is necessary
to store a table with as many parameter sets as the maximum number of streams. This is
actually feasible, but as the number of microprocessor cores may grow exponentially in the
future according to Moores law, the program will be burdened with quite big tables in order
to be suitable for future computers. Method 3 is only feasible if a fast jump-ahead method is
available. Unfortunately, the fast jump-ahead feature comes at the cost of slowing down the
basic generation of random numbers3.

Method 4 requires that the cycle length is very long. The probability that there is an overlap
when you have s streams, each of length L, out of a total cycle length ρ is approximately

ρ2
)1(Lssp −= .

For example, if we make 100 streams of 1010 random numbers each from an SFMT
generator with cycle length ρ = 211213, we have a probability of overlap p ≈ 10-3362. This
probability is so small that we can rely on overlaps never happening. There is even plenty of
room for future increases in the number of streams and their lengths.

A Mersenne Twister or a combined generator has even longer period, hence lower
probability of overlap. A Mother-Of-All generator has a shorter cycle length so that it cannot
be considered completely safe to generate multiple streams from a Mother-Of-All generator
unless it is combined with some other generator with a long cycle length.

The above calculations are based on the assumption that each stream starts at a random
point in the cycle of length ρ and that the starting points are independent. This requires a
good seeding procedure. The seeding procedure fills the state vector with random numbers
based on a seed which is typically a single integer. The seeding procedure used in the
present software uses a separate random number generator of a different design in order to
avoid any interference. An extra feature is the RandomInitByArray function which makes
it possible to initialize the random number generator with multiple seeds. We can make sure
that the streams have different starting points by using the thread id as one of the seeds.

6.2 Deciding the cycle length
There is no practical limit to how long we can make the cycle length. The advantages of a
long cycle length are:

• The probability of overlapping subsequences is reduced.

• It is possible to obtain high-order equidistribution on generators with long cycle
lengths.

The disadvantages of a long cycle length are:

• The search for good parameters becomes more difficult.

• The state vector becomes bigger. This takes more space in memory and cache and
slows down cache-hungry applications.

The cycle length of 219937 for the standard Mersenne Twister is actually excessive for most
purposes. I have chosen to implement this cycle length nevertheless for the sake of
portability. Many software packages have a Mersenne Twister with this cycle length. I have
chosen a somewhat shorter cycle length for the SFMT generator, but still long enough for

 28

even very demanding applications. The code can easily be changed to get a different cycle
length.

7 File lists

Files in randomc.zip
ran-instructions.pdf This file
randomc.h Header file for the random number generator classes
sfmt.h Header file for the SFMT generator
mersenne.cpp Source code for Mersenne Twister generator
mother.cpp Source code for Mother-Of-All generator
sfmt.cpp Source code for SFMT generator
rancombi.cpp Code for combining two generators
userintf.cpp Functions that depends on user interface
ex-ran.cpp Example program generating random numbers
testirandomx.cpp Test difference between IRandom and IRandomx
license.txt Gnu general public license
readme.txt Short introduction

Files in randoma.zip
ran-instructions.pdf This file
randoma.h Header file for library functions
randomc.h Header file for the random number generator classes
randomacof32.lib Binary function library, 32-bit COFF format
randomacof64.lib Binary function library, 64-bit COFF format
randomaomf32.lib Binary function library, 32-bit OMF format
randomaelf32.a Binary function library, 32-bit ELF format
randomaelf32p.a Binary function library, 32-bit ELF format, position independent
randomaelf64.a Binary function library, 32-bit ELF format
randomamac32.a Binary function library, 32-bit Mach-O format
randomamac32p.a Binary function library, 32-bit Mach-O format, position indepdt.
randomamac64.a Binary function library, 32-bit Mach-O format
randomad32.dll Binary function library, 32-bit Windows DLL
randomad32.lib Import library for randomad32.dll
randomad64.dll Binary function library, 64-bit Windows DLL
randomad64.lib Import library for randomad64.dll
testrandomac.cpp Test comparing randomc.zip and randoma.zip libraries
license.txt Gnu general public license
readme.txt Short introduction
randomasrc.zip Source code for binary libraries, assembly language

Files in randomasrc.zip
randomac.make Makefile for all libraries and zip-files
MakeRandomac.bat Batch program to make all libraries and zip-files
randoma.h Header file for library functions
randomah.asi Header file for assembly codes
mersenne32.asm Source code for Mersenne Twister, 32 bit
mersenne64.asm Source code for Mersenne Twister, 64 bit
mother32.asm Source code for Mother-Of-All generator, 32 bit
mother64.asm Source code for Mother-Of-All generator, 64 bit
sfmt32.asm Source code for SFMT generator, 32 bit

 29

sfmt64.asm Source code for SFMT generator, 64 bit
instrset32.asm Source code for InstructionSet function, 32 bit
instrset64.asm Source code for InstructionSet function, 64 bit
rdtsc32.asm Source code for ReadTSC function, 32 bit
rdtsc64.asm Source code for ReadTSC function, 64 bit
randomad32.asm Source code for DLL entry function, 32 bit
randomad64.asm Source code for DLL entry function, 64 bit
randomad32.def Module definition file for DLL, 32 bit
randomad64.def Module definition file for DLL, 32 bit
randomad32.exp Export definition for DLL, 32 bit
randomad64.exp Export definition for DLL, 32 bit

Files in stocc.zip
ran-instructions.pdf This file
distrib.pdf Description of statistical distributions
sampmet.pdf Description of sampling methods used
stocc.h Header file for non-uniform random number generators
randomc.h Header file for uniform random number generators
stoc1.cpp Source code for Bernoulli, Binomial, Hypergeometric, Normal,

Poisson, Multinomial, MultiHypergeometric and Shuffle
stoc2.cpp Alternative source code for Binomial, Hypergeometric, Poisson
stoc3.cpp Source code for noncentral hypergeometric distributions
wnchyppr.cpp Code for Wallenius noncentral hypergeometric distribution
fnchyppr.cpp Code for Fisher's noncentral hypergeometric distribution
erfres.cpp Auxiliary tables for Wallenius distribution
erfresmk.cpp Program for making erfres.cpp
ex-stoc.cpp Example program showing different distributions
ex-cards.cpp Example program shuffling a deck of cards
ex-lotto.cpp Example program producing random numbers without duplicates
ex-evol1.cpp Example program simulating evolution with selective survival
ex-evol2.cpp Example program simulating evolution with differential fertility
testbino.cpp Test program for binomial distribution
testhype.cpp Test program for hypergeometric distribution
testpois.cpp Test program for Poisson distribution
testfnch.cpp Test program for Fisher's noncentral hypergeometric distribution
testmfnc.cpp Test program for multivariate Fisher's noncentral hyp. distrib.
testwnch.cpp Test program for Wallenius' noncentral hyp. distrib.
testmwnc.cpp Test program for multivariate Wallenius' noncentral hyp. distrib.
license.txt Gnu general public license
readme.txt Short introduction

8 License conditions
These software libraries are free: you can redistribute the software and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

Commercial licenses are available on request to www.agner.org/contact.

This software is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose. See
the file license.txt or www.gnu.org/licenses for the license text.

http://www.fsf.org/
http://www.fsf.org/
http://www.agner.org/contact
http://www.gnu.org/licenses/

 30

The copyright shall be terminated when I die or no later than year 2056. No claim to
copyright ownership of this software and documentation shall be valid thereafter.

9 No support
Note that this is free software provided without any warranty or support. It is intended for
skilled programmers only, and it may not be compatible with all compilers and linkers. If you
have problems using it, then don't.

I am sorry that I don't have the time and resources to provide support for this software. If
you ask me to help with your programming problems then you will not get any answer.

10 Literature
1. Cernak, J: Digital Generators of Chaos. Physics Letters A, vol. 214, 1996, pp. 151-160.
2. Couture, R; L'Ecuyer, P: Distribution properties of Multiply-With-Carry Random Number

Generators. Mathematics of Computation, Vol. 66, p. 591-607, 1997.
3. L'Ecuyer, P; Panneton, F: Fast Random Number Generators based on Linear Recurrences

Modulo 2: Overview and Comparison. Proceedings of the 2005 Winter Simulation Conference.
M. E. Kuhl et. al. eds. 2005. www.iro.umontreal.ca/~lecuyer/papers.html

4. L'Ecuyer, P; Simard, R: TestU01: A C Library for Empirical Testing of Random Number
Generators. ACM Transactions on Mathematical Software, vol. 33, no. 4, 2007.
www.iro.umontreal.ca/~simardr/testu01/tu01.html

5. Marsaglia, G: A Current View of Random Number Generators. Proc. Computer Science and
Statistics: 16th Symposium on the Interface, Atlanta 1984. Elsevier Press.

6. Matsumoto, M; Nishimura, T: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation,
vol. 8, no. 1, 1998, pp. 3-30.

7. Matsumoto, M; Nishimura, T: Dynamic Creation of Pseudorandom Number Generators. In:
Niederreiter, H; Spanier, J., eds: Monte Carlo and Quasi-Monte Carlo Methods 1998. Springer,
2000, pp 56-69. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html

8. Panneton, F; L'Ecuyer, P; Matsumoto, M: Improved Long-Period Generators Based on Linear
Recurrences Modulo 2. ACM Transactions on Mathematical Software, vol. 32, no. 1, 2006, pp. 1-
16.

9. Saito, M; Matsumoto, M: SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom
Number Generator. In: Keller, A; et. al., eds: Monte Carlo and Quasi-Monte Carlo Methods 2006.
Springer, 2008, pp. 607-622. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/.

http://www.iro.umontreal.ca/~lecuyer/papers.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/

	Introduction
	Randomc package of random number generators
	Generators included in the randomc library

	Randoma package of random number generators
	Generators included in the randoma library
	Other functions included in the randoma library
	Execution speed

	Stocc package of non-uniform generators
	Frequently asked questions
	Getting started
	Is the random number generator that comes with my compiler good enough?
	Which random number generator should I choose?
	How do I change the code to use a different random number generator?
	Choosing a seed
	C++ version or binary library?
	Multi-threading
	Calling from other programming languages
	Position-independent code
	IRandom or IRandomX?
	Why is the floating point interval half-open?
	Generating events with a specific probability
	Generating non-uniform random numbers
	Monte Carlo simulation applications
	Simulating evolution
	Games and entertainment applications
	Gambling applications
	Security applications
	Error conditions

	Theoretical considerations
	Using multiple streams
	Deciding the cycle length

	File lists
	License conditions
	No support
	Literature

