
MALLBA: Middleware for Communications in a

Geographically Distributed Optimization System

Alba E., Cotta C., Dı́az M., Soler E., Troya J.M.

May 30, 2000

Departamento de Lenguajes y Ciencias de la Computación Universidad de
Málaga

{eat, ccottap, mdr, esc, troya}@lcc.uma.es

Abstract

This paper contains a preliminar study on the most appropriate com-
munication middleware to be used in the MALLBA project. Since our
goal is to deliver a user friendly and geographically distributed optimiza-
tion system we must analyze several issues on the best ways of building
such a middleware. First, we review the potential advantages and draw-
backs of some existing communication models and tools. Then, we discuss
on the services required by our optimization system and give a possible
service definition for the middleware. Finally, the integration of the pro-
posed middleware and the optimization skeleton being devised is studied
with the aim of providing an integral solution to distributed optimization
systems.

1 Introduction

This paper discusses the architecture and functionalities of a communication
system that we call ”middleware” to be used as the basic means for parallelizing
and controlling the kind of processes needed in the project MALLBA (TIC1999-
0754-C03-03).

Briefly stated, the MALLBA project is intended to provide a geographically
distributed optimization system that allows a novice (though technical) user
to pose a problem to be solved in parallel by many clusters of heterogeneous
computers. Such a system could be build in many forms, but in MALLBA
the optimization engines are embedded in the so-called ”skeletons”. A skeleton
is a generic tool allowing the user to define a concrete optimization algorithm
by creating instances of a general optimization procedure. The user is guided
by a graphical interface to fill up the ”holes” representing the alternatives the
optimization algorithm provides to the user.

Skeletons for heuristic, exact, and hybrid algorithms will be developed within
MALLBA, allowing a user to specify a problem-dependent algorithm that fits

1



his needs. Since the problems to which these skeletons will be faced can be quite
difficult, parallel skeletons can also be specified, as extensions of the sequential
ones. The parallel skeletons can run both on a NOW (Network Of Worksta-
tions) or in a geographically distributed system composed by several clusters of
computers having different hardware capabilities.

After this brief revision of the MALLBA goals one point is clear: the design
of the communication facilities for such a system is a very important issue. The
communication services should be defined to be abstract enough for use in the
skeletons and, at the same time, specific enough to the NOWs’ technologies in
order to get efficiency. By using the middleware services the skeleton designer
will be able to spawn, trace, modify, and shut down the whole optimization
task. This is the basic communication layer to be extended in order to build
a more sophisticated service permitting automatic process location and taking
into account the actual state of the whole hardware system (workstations, LAN
and WAN links).

In short, we first need to review the existing communication models and
toolkits in order to find out whether and how they match our requirements.
Section 2 contains a brief discussion on this matter. Afterward, in Section 3, we
present a first draft on the services of the middleware system. In Section 4 the
integration between the optimization skeletons and the middleware library is
analyzed. Finally, some conclusions and further work is pointed out in Section
5.

2 Evaluation of Existing Communication Sys-
tems

The principle objection to parallel computers and applications is that they are
difficult to program. There is a significant component of truth in this claim, par-
ticularly for large-scale parallel machines. However, most scientific calculations
require parallel computers to yield useful results in affordable run times.

There are three reasons why parallel programming is more challenging than
serial programming [19]. First, parallel programs must include the mechanics
of exchanging data between processors or handling mutual exclusion regions.
Second, in an efficient parallel program the work must be evenly divided among
processors. Third, the data structures must be divided among processors to
preserve data locality. The first reason adds complexity to the semantics and
the syntax of a program, the second one is an algorithmic challenge with no
serial counterpart, and the latter one is an extension of serial data locality and
cache performance issues.

In this section we review some programming tools that allow parallel pro-
gramming at different levels of flexibility and generality. We then discuss in a
final subsection the advantages and drawbacks of the outlined systems from the
point of view of our geographically distributed system. Obviously, there is a
large number of such communication facilities, from which only a representa-

2



tive subset is included here. Now, let us proceed with an overview of popular
communication models and tools.

2.1 Sockets

The BSD socket interface (see e.g. [3])is a widely available message-passing
programming tool. A set of data structures and C functions allow the program-
mer to establish full-duplex connections between two computers with TCP for
implementing general purpose distributed applications. Also, a connectionless
service over UDP (and even over IP) is available for applications needing such
a facility. Synchronous and asynchronous parallel programs can be developed
with the socket API, with the added benefits of large applicability, high stan-
dardization, and complete control on the communication primitives.

In despite their advantages, programming with sockets has many drawbacks
for applications involving a large number of computers with different operating
systems and on different networks. First, programming with sockets is error-
prone and requires understanding low level characteristics of the network. Also,
it does not include any process management, fault tolerance, task migration,
security options, and other attributed usually requested in modern parallel ap-
plications.

In short, it is a great tool but its applications on modern internet and dis-
tributed systems requires a considerable effort to meet a satisfactory degree of
abstraction.

2.2 PVM

The Parallel Virtual Machine (PVM) [14]is a software system that permits the
utilization of a heterogeneous network of parallel and serial computers as a uni-
fied general and flexible concurrent computational resource. The PVM system
initially supported the message passing, shared-memory, and hybrid paradigms;
thus, allowing applications to use the most appropriate computing model for
the entire application of for individual sub-algorithms. Processing elements in
PVM may be scalar machines, distributed and shared-memory multiprocessors,
vector computers and special purpose graphic engines; thereby, permitting the
use of the best-suited computing resource for each component of an application.

The PVM system is composed of a suite of user interface primitives sup-
porting software that together enable concurrent computing on loosely coupled
networks of processing elements. PVM may be implemented on heterogeneous
architectures and networks. These computing elements are accessed by appli-
cations via a standard interface that supports common concurrent processing
paradigms in the form of well-defined primitives that are embedded in procedu-
ral host languages. Application programs are composed of components that are
sub-tasks at a moderately larger level of granularity. During execution, multiple
instances of each component may be initiated.

The advantages of PVM are its wide acceptability, and its heterogeneous
computing facilities, including fault tolerance issues, and interoperability [15].

3



Managing a dynamic collection of potentially heterogeneous computational re-
sources as a single parallel computer is the real appealing treat of PVM. In
despite a large number of advantages, the standard for PVM has recently be-
ginning to be unsupported (no further releases); also, users of the messaging-pass
paradigm are shifting from using PVM to more new models of such paradigm
that run more efficiently on the new kinds of networks appearing nowadays. In
addition, since PVM 3.4 (the latest version) does not support threads, applica-
tions targeted to shared-memory computers do not use this software.

2.3 MPI

The Message Passing Interface (MPI) is a library of message-passing routines
[13]. When MPI is used, the processes in a distributed program are written in
a sequential language such as C or Fortran; they communicate and synchronize
by calling functions in the MPI library.

The MPI application programmer’s interface (API) was defined in the mid-
1990s by a large group of people from academia, government, and industry. The
interface reflects people’s experiences with earlier message-passing libraries, such
as PVM. The goal of the group was to develop a single library that could be
implemented efficiently on the variety of multiple processor machines. MPI has
now become the de facto standard, and several implementations exist, such as
MPICH www.mcs.anl.gov/mpi/mpich and LAM/MPI www.mpi.nd.edu/lam.

MPI programs have what is called an SPMD style - single program, multiple
data. In particular, every processor executes a copy of the same program. Each
instance of the program can determine its own identity and hence take different
actions. The instances interact by calling MPI library functions. The MPI func-
tions support process-to-process communication, group communication, setting
up and managing communication groups, and interacting with the environment.

The MPI standard allows programmers to write message-passing programs
without concern for low-level details such as machine type, network structure,
low-level protocols, etc. MPICH provides a portable, high-performance imple-
mentation of MPI that incorporates some support for heterogeneous environ-
ments (e.g. the p4 device), but provides only limited support for wide-area
metacomputing environments [7]. Some extensions by using the Nexus com-
munication library are available to interface with the Globus metacomputing
toolkit, an ongoing research project with important implications for the parallel
computing community (see the next section).

The impetus for developing MPI was that each massively parallel processor
(MPP) vendor was creating its own proprietary message passing API. In this
scenario it was not possible to write a portable parallel application. MPI is
intended to be a standard for message passing specifications that each MPP
vendor would implement on its system. The MPP vendors need to be able to
deliver high-performance and this became the focus of the MPI design. Given
this design focus, MPI is expected to always be faster than PVM on MPP hosts
[15].

The first standard named MPI-1 contains the following features:

4



• A large set of point-to-point communication routines, by far the richest
set of any library to date.

• A large set of collective communication routines for communication among
groups of processes.

• A communication context that provides support for the design of safe
parallel software libraries.

• The ability to specify communication topologies.

• The ability to create derived data types that describe messages of non-
contiguous data.

MPI-1 users soon discovered that their applications were not portable across a
network of workstations because there was no standard method to start MPI
tasks on separate hosts. Different MPI implementations used different methods.
In 1995 the MPI committee began meeting to design the MPI-2 specification
to correct this problem and to add additional communication functions to MPI
including:

• MPI_SPAWN functions to start MPI processes.

• One-sided communication functions such as put and get.

• MPI_IO.

• Language bindings for C++.

The MPI-2 specification was finished in June 1997. The MPI-2 document adds
200 functions to the 128 original functions specified in the MPI-1.

All the mentioned advantages have made MPI the standard for the future
applications using message-passing services. The drawbacks relating dynamic
process creation and interoperability are being successfully solved. In addition,
the connectivity with the Globus system is an important feature that stresses
the importance of MPI.

2.4 GLOBUS

Globus is a new, extremely ambitious project to construct a comprehensive set
of tools for building meta-computing applications [6]. The goal of the Globus
project is to provide a basic set of tools that can be used to construct portable,
high-performance services, which in turn support metacomputing applications.
Globus thus builds upon and vastly extends the services provided by earlier
systems such as PVM, MPI, Condor, and Legion. The project is also concerned
with developing ways to allow high-level services to observe and guide the op-
eration on the low-level mechanisms.

The toolkit modules execute on top of a meta-computer infrastructure and
they are used to implement high-level services. The metacomputer infrastruc-
ture, or testbed, is realized by software that connects computers together. Two

5



instances of such an infrastructure have been built by the Globus group. The
first, the I-WAY networking experiment, was built in 1996; it connected 17 sites
in North America and was used by 60 research groups to develop applications.
The second metacomputer infrastructure, GUSTO (Globus Ubiquitous Super-
computing Testbed), was built in 1997 as a prototype for a computational grid
consisting of about 15 sites. GUSTO in fact won a major award for advancing
high performance distributed computing.

The Globus toolkit consists of several modules:

• Communication module: Provides efficient implementation of many of the
communication mechanisms, including message passing, multicast, remote
procedure call, and distributed shared memory. It is based on the Nexus
communication library.

• Resource location and allocation module: Provides mechanisms that allow
applications to specify their resource requirements, locate resources that
meet those requirements, and acquire access to them.

• Resource information module: Provides a directory service that enables
applications to obtain real-time information about the status and structure
of the underlying metacomputer.

• Authentication module: Provides mechanisms that are used to validate
the identity of users and resources. These mechanisms are in turn used as
building blocks for services such as authorization.

• Process creation module: Initiates new computations, integrates them with
ongoing computations, and manages termination.

• Access module: Provides high-speed remote access to persistent storage,
databases, and parallel file systems. the module uses the mechanisms of
the Nexus communication library.

The Globus toolkit modules are being used to help implement high-level ap-
plication services. One such service is what is called an Adaptive Wide Area
Resource Environment (AWARE). It will contain an integrated set of services,
including ”metacomputing enabled” interfaces to an implementation of the MPI
library, various programming languages, and tools for constructing virtual en-
vironments (CAVEs). The high-level services will also include those developed
by others, including the Legion metacomputing system, and implementations
of CORBA, the Common Object Request Broker Architecture. See [8] for more
details on Globus, and the Globus Web site at www.globus.org for detailed
information and current status of the project.

2.5 Java-RMI

The implementation of remote procedure calls (RPC) in Java is called Java-
RMI [12]. The Remote Method Invocation in Java allows an application to

6



use a remote service with the added advantages of being platform-independent
and able to access to the rest of useful Java characteristics when dealing with
distributed computing and the Internet in general.

The client/server model used by JavaRMI is however somewhat slow in the
current implementations of Java, an especially important consideration when
dealing with optimization algorithms. An additional drawback is that current
trends in the communication markets seem leading to abandon the support for
this model of computation.

2.6 CORBA, ActiveX, and DCOM

Although many topics currently deal with multithreaded, parallel, and/or dis-
tributed programs, some higherlevel research is devoted on how to glue together
existing or future applications so they can work together in a distributed, Web-
based environment. Software systems that provide this glue have come to cre-
ate the term ”middleware”. CORBA, ActiveX, and DCOM are three of the
best known examples [17]. They and most other middleware systems are based
on objectoriented technologies. Common Object Request Broker Architecture
(CORBA) is a collection of specifications and tools to solve problems of inter-
operatibility in distributed systems (www.omg.org). ActiveX is a technology for
combining Web applications such as browsers and Java applets with desktop
services such as document processors and spreadsheets. The Distributed Com-
ponent Object Model (DCOM) serves as a basis for remote communications, for
example, between ActiveX components (www.activex.org).

CORBA is especially important because it is growing in the application side
rapidly; it allows clients to invoke operations on distributed objects without
concern for object location, programming language, operating system, commu-
nication protocols, or hardware. Reusability, interoperatibility, and the rest
of mentioned advantages make CORBA a serious standard when dealing with
objects in present distributed systems.

2.7 Others

There is an enormous number of other communication toolkits for constructing
a new middleware system. Here, we only briefly review some of the most popular
ones:

• OpenMP: OpenMP is a set of compiler directives and library routines
that are used to express shared-memory parallelism (www.openmp.org).
The OpenMP Application Program Interface (API) was developed by
a group representing the major vendors of high-performance computing
hardware and software. Fortran and C++ interfaces have been designed,
with some efforts to standardize them. The majority of the OpenMP in-
terface is a set of compiler directives. The programmer adds these to a
sequential program to tell the compiler what parts of the program to ex-
ecute concurrently, and to specify synchronization points. The directives

7



can be added incrementally, so OpenMP provides a path for parallelizing
existing software. This contrasts with the Pthreads and MPI approaches,
which are library routines that are linked with and called from a sequen-
tial program, and which require the programmer to manually divide up
the computational work.

• BSP: The Bulk synchronous Parallel (BSP) model is a so-called bridg-
ing model that separates synchronization from communication and that
incorporates the effects of a memory hierarchy and of message passing
[18]. The BSP model has three components: processors, a communication
network, and a mechanism for synchronizing all the processors at regular
intervals. The parameters of the model are the number of processors, their
speed, the cost of a communication, and the synchronization period. A
BSP computation consists of a sequence of supersteps. In each superstep,
every processor executes a computation that accesses its local memory
and sends messages to other processors. The messages are requests to
get a copy of (read) or to update (write) remote data. At the end of
a superstep, the processors perform a barrier synchronization and then
honor the requests they received during the superstep. The processors
then proceed to the next superstep. In addition to being an interesting
abstract model, BSP is now also a programming model supported by the
Oxford Parallel Applications Center. More on BSP can be learned at
www.bsp-worldwide.org.

• Extensions to MPI: While many hardware vendors have adopted the
MPI standard and provide their own users with fast and stable implemen-
tations, there is no support for metacomputing with MPI for the moment
being. PVM is designed to overcome that problem, but, since PVM is no
longer the standard in the field most users have moved to MPI. To avoid
changing the code of these users for metacomputing experiments PVMPI
[5] has come to bridge the gap between PVM and MPI. But, in practice,
this would require the user to substantially change his code. Only an
interoperable MPI such as PACX-MPI [4] has finally provided access for
metacomputing with MPI. A very promising wide-area implementation
of MPI using the services in Nexus to interface Globus is the result of
ongoing works [7].

• Legion: The Legion [9] research project at the University of Virginia
(www.virginia.edu) aims to provide and architecture for designing and
building system services that present the illusion of a single virtual ma-
chine. Persistence, security, improved response time, and greater through-
put are among its many design goals. But, the key characteristic of the
system is its ambition of presenting a transparent, single virtual machine
interface to the user. Legion aims at presenting a seamless computing
environment with a single namespace, but supporting multiple program-
ming languages (and models) and interoperability. It is an objectoriented
system that attempts to exploit inheritance, reuse, and encapsulation; the

8



distributed object programming system Mentat (a precursor to Legion) is
in fact the basis for programming the first public release of Legion.

• NetSolve: A somewhat different, clientserverbased approach is adopted
by NetSolve [2], a computational framework that allows users to access
computational resources distributed across the network. NetSolve offers
the ability to search for computational resources on a network, choose the
best available resource based on a number of parameters, solve a problem
(with retry for fault tolerance) and return the answer to the user. Re-
sources used by NetSolve are computational servers that run on different
hosts, and may provide both generic and specialized capabilities. The
system provides a framework to allow these servers to be interfaced with
virtually any numerical software. Access is achieved through a variety of
interfaces; two which have been developed are as a MATLAB interface
and a graphical Java interface. It is also possible to call NetSolve from C
or FORTRAN programs using a NetSolve library API.

An interesting revision of heterogeneous distributed programming tools (includ-
ing Globus, NetSolve, Harness, Legion, PVM, MPI, etc) can be found in (Sun-
deram and Geist 99).

2.8 Which of Them?

Since our goal is to construct an optimization system that spawns across several
clusters of machines we can identify the following important issues that must
be met by the middleware system:

• To have some abstract mechanisms to allow highorder communication
operations by means of a rich programming interface.

• To be popular enough and extensively tested for becoming a good choice,
not only at present but for future trends in communication models and in
networking technology.

• To be general enough for highlevel programming but not too specialized
in some kinds of applications, since our optimization problems can belong
to quite different problem classes.

• To be targeted to a wide spectrum of applications and, at the same time,
being able to provide efficiency in concrete clusters of machines.

Several other minor issues can be added to the previous list, but in practice
the presented ones help in clarifying the decision. Since no one of the studied
systems is by itself useful for our skeleton approach we need to select a com-
munication toolkit for the implementation of our own middleware system. The
reason is that interfacing the middleware with the optimization skeletons is a
specialized operation that is not present in any of the mentioned tools.

Although we have made a somewhat detailed presentation of many systems,
only a few of them fit our requirements. First, the socket abstraction for message

9



passing is powerful enough for our application domain, but it needs excessive
low level manipulations when programming distributed systems with them. We
discard other tools like JavaRMI since such a client/server model is still quite
slow in present releases of Java; in addition, it seems that in the forthcoming
years this standard is going to be abandoned in favor of other new models.

On the other side, CORBA seems the most widely accepted object broker
for distributed systems. CORBA is a highly standard and crossplatform facility
with the added advantage of being languageindependent. However, it is still
unclear if our skeleton engine will present a truly objectoriented interface to its
environment. This last, and the expected reduction in efficiency if the standard
CORBA is chosen, both in a single cluster of machines and in a wide area
network, are the reasons for not using it in the present implementation of the
middleware for our applications.

We have reviewed also many other distributed programming paradigms such
as BSP, OpenMP, and many tools for metacomputing such as Legion and others.
None of them will be used for our middleware system since their close relation-
ship with well established types of applications (shared memory systems, virtual
computers with easy use but with a difficult control to achieve efficiency, . . . ).
NetSolve seems appropriate at first glance. It allows the user application to call
remote procedures such as FFT, matrix operations, etc. with some blocking/non
blocking options. However, this can be useful in some engineering computations
only, because it does not allow to control processes nor hardware capabilities.

Then, our discussion is reduced to three communication tools, namely PVM,
MPI, and Globus. We first discard Globus since it has an excessively ambitious
spectrum of applications. Globus is quite complex for our needs: we need con-
trolling processes and exchanging messages among workstations located in the
same cluster or among geographically distributed clusters. However, we are not
still able at present of evaluating the importance of Globus in parallel comput-
ing, since its popularity, efficiency, and controllability are continuously growing
in these days. Nonetheless, it would be great that the selected underlying com-
munications could be carried out with a toolkit having present or scheduled
future interface with Globus.

Finally, we end with two systems, PVM and MPI. Although and hetero-
geneous computing system could be readily implemented on PVM, we choose
MPI for several reasons. First, the message passing community has shifted from
PVM to MPI naturally, due to the largest efficiency that can be got with MPI.
Second, PVM is beginning to enter the ”unsupported status”, this being a se-
rious drawback for future users and projects based in PVM. Third, the initial
problems in MPI relating interoperability, dynamic process groups and some
other minor details are being solved in MPI-2 and the new standards. Fourth,
MPI has recently being used in many works to be explicitly extended for efficient
implementations in wide area networks. Fifth, MPI is quite popular, available,
and standardized. Finally, MPI has already a direct extension to meet the
Globus project through the Nexus services.

All these reasons lead us to rely on MPI for constructing the specialized
middleware needed to be interfaced with the optimization skeletons for general

10



and, at the same time, efficient distributed optimization. The next section will
draw the main services needed for the middleware system and then a forthcom-
ing section will deal with how it is planned to use this middleware from inside
the skeleton implementations.

3 An Initial Draft for the Middleware

Here follows a brief description of the communication interface to be used by
the MALLBA project. Primitives can be grouped in several sets:

1. Process Execution.

2. Connection Management.

3. Miscellaneous.

Let us now proceed to discuss these primitives.

PROCESS EXECUTION

pid create_process(host, type, continue)

Create a process on a host. If the kind of process is known beforehand then
the creation can be internally made more efficiently; otherwise, i.e. if there
is a new kind of process or nothing is known about it a standard spawning
is performed. The created process can be completely new or else to resume
the work just abandoned by other process of the same type. This last allow
to simulate the migration of a process to the user of the middleware. It is
assumed that the remote host has the binary and configuration files to run such
a process type. Upon successful completion this service returns the identifier of
the created process (negative if an error occurs). Process ID’s are unique in the
system.

host is the IP address, DNS name or URL pointer to the host receiving
this process. Using different names will allow to deal with the same physical
host having different software capabilities. In addition, by generically using the
Unified Resource Location (URL) we use an Internet standard to specify the
domain, the host, and the protocol to access it.

type is a value from the set (EA, DP, SA, DC, TS, OTHER). Having in-
formation from the kind of algorithm can enhance its parallel creation. If no
information is available on the kind of algorithm the OTHER label can be used.

continue contains the process ID from which to continue execution (process
migration occurs). If null then a new process will be created.

pstatus get_process_status(pid)

Gets the status of a running process. This status is a set of values for the next
attributes (status, step, best_solution_found, running_time, wasted_effort).

11



The status of a process can be creating, running, migrating, terminated, or
unknown.

pid is the connection associated to the remote process to get info from.

pinfo get_process_info(pid)

Gets the available information on a process. This information includes the
type of process, its pstatus, and its URL.

pid is the remote process whose info is being requested.
pinfo is made up of type, status and URL.

int terminate_process(pid)

Kill a process in a controlled fashion. The pid is no longer valid in the
process name space. Returns 0 upon successful termination, and a negative
value if an error occurs, e.g. if the pid does not exist.

CONNECTION MANAGEMENT

cid open_connection(pid, copt)

This primitive creates a connection to a running process with a given con-
nection model and with some optional flags. The process connected to must
exist. It returns a connection ID (negative if an error occurs).

pid is the identifier of the process to connect to.
copt is a list with options used for the initial configuration of the channel.

The following facilities will be available in the option list: sync/async read/write
operations, connection_oriented/connectionless, and data/control con-
nections.

int close_connection(cid)

Closes an open connection. It fails (negative integer) if the connection was
not open. Future data operations on the closed connection will fail; cid is the
connection to be closed.

long int send(cid, data, length)

Sends user data on an open connection by using the options defined when
the connection was open. It returns the number of bytes sent on the connection
(negative if an error occurs).

cid is the connection to transport data.
data is the information to be delivered.
length is the number of data bytes to be sent.

long int receive(cid, data, length)

12



Gets info from the communication channel. It returns the number of bytes
read from the connection (negative if an error occurs).

cid is the connection to read the data from.
data is used to store the read data;
length is the number of bytes read from the connection.

int probe(cid)

Returns whether there is (1) or not (0) any info awaiting in the connection
cid. If the returned value is negative an error has occurred, indicating e.g.
unknown connection.

int connection_is_open(cid)

Gets the status of the connection: TRUE(1) if open and FALSE(0) if closed.
A negative value indicates that the connection is unknown.

cstats get_connection_stats(cid)

Gets statistics on the connection.
cid is the connection to get info from.
verb”cstats” is a list of values including: number of bytes sent/received,

round trip average time, etc.

model get_connection_model(cid)

Gets the model defining the actual behaviour of a connection. A connection
model is a set of representative values for the connection between two processors.
The model is computed by taking into account the model for the link between the
two computers hosting the applications and the number and type of connections
sharing the same physical link.

model is a list of values defining some connection features. Basically it
contains a weekly mean (expected) model on the performance of the cluster and
(WAN) links. The model can receive a null value, thus indicating that nothing
is known about the connection. The information, when it exists, is structured
by week day (from monday to sunday) and by hour (from 0 to 23). The specified
information will contain the link bandwidth and latency at this moment.

MISCELLANEOUS

model get_link_model(url1, url2)

Gets the model defining the mean expected behaviour of a link between two
URLs. This information is basically static for every link. The administrator is
the responsible for feeding more exact values from time to time. This is the basic
model that the middleware will use to compute the actual connection models.

model is a list of values defining bandwidth and latency weekly or null if
no model is available.

url1, url2 are URLs to two computers known to the system.

13



url_list preferred_processors(type)

This is a service computing an ordered list of preferred processors for a new
process to be created. This list is worked out by considering the computational
load of every processor and the distance to the actual processor running this
middleware call. The processor load will be computed after its percentage of CPU
and memory use, and other attributes internally considered important in future
releases of the middleware. The distance between two processors is measured
after the model of the link connecting this two processors (further tuning will
be available in subsequent releases of the middleware).

Upon successful completion the result is a list of valid URLs for the middle-
ware. If any error exists, or if processors cannot be ranked then a null value is
returned.

4 Integration with the Optimization Skeletons

In this section we discuss an initial proposal for making the middleware system
available for use in the optimization skeleton implementations. The middleware
system is composed of several elements:

• The Application Program Interface (API).

• The System Files.

• The Instantiation Module (IM).

The API allows the skeletons to use the middleware. The system files con-
tains information about the interconnected LANs, the processors, and the WAN
as a whole. The instantiation module provides a way for the administrator to
tune the behavior of the middleware for its own cluster.

We now proceed to explain their use in the following subsections.

4.1 The Application Program Interface (API)

The API for the skeletons to use the distributed system is defined by the set of
data types and methods described in the previous section. By means of these
data types and methods any skeleton will be able to spawn, change, terminate,
and in general manage a complex system of parallel optimization skeletons.

All the skeletons, exact, heuristic, and hybrid must use the same API to
access the network facilities. This will ensure having a similarly constructed
set of optimization skeletons. The special needs of every kind of algorithm will
be taken into account by accessing the flags and other indicators included to
customize the well-known behavior of every primitive in the API.

Sequential skeletons will not use the API, unless a distributed optimization
skeleton is requested to run on a single processor. Therefore, the middleware
will be of interest for the development of distributed optimization skeletons.

14



This basic API includes simple services to be combined in the future into
more complex services. This layered approach is quite usual in communication
protocols (e.g. OSI, TCP/IP, etc.). Some more complex services such as auto-
matic mapping of processes to processors, load balancing, and dynamic changes
in the network of communicating skeletons will be addressed by combining the
API primitives, and may be by extending their semantics and by adding new
services in future versions of the middleware.

4.2 The System Files

Since our distributed optimization system is intended to run on a cluster of
machines in a second phase of the MALLBA project (after the initial core-
sequential phase) we need a model of the local area network. The reason is that
we do not only want a distributed skeleton system, but an efficient distributed
skeleton system. This efficiency requirement clearly makes necessary to take
into account the special characteristics of the LAN being used while preserving
the abstraction and standardization of the API.

Our proposal consists in providing LAN and WAN information into some
systems files. The instantiation module will help the user to refine some general
values to obtain an improved model of the communication network.

Internal models for most common networks (e.g. fast-ethernet, ATM, Mirynet)
will be included for users having no idea on technical issues concerning their own
network. At least, when installing the system, the kind of network to be used
will be detected to get a good efficiency in most cases .

Since we are going to deal with very different LANs the LAN system file will
contains the following data:

• Name of the LAN. Some default names will be provided, such as
ethernet, fast-ethernet, gigabit-ethernet, atm, mirynet, fddi, other.

• Theoretical bandwidth. The default names will have internally an
associate bandwidth depending on the official standards of the included
networks, such as 155 Mbps for atm and 100 Mbps for fast-ethernet.

• Number of processors. The total number of processors to be used
must be indicated beforehand. The processors to be used will be taken
from a list of available processors by following the order in which this list
is provided. Later in this section we explain how the processors will be
managed.

The available set of processors needs to be defined by the user in order the
system to know where to run the necessary optimization skeletons. Processors
will be organized in clusters. Every cluster will contain thus a variable number
of processors. For each processor the following information is needed:

• The DNS name of the processor.

• The IP address of the processor.

15



• The clock speed, if known.

• The RAM memory, if known.

• The operating system version, if known.

• Whether the processor is dedicated or not, if known.

At least, the name and/or the IP address must be given for every processor
in order to be usable. The rest of parameters will have default values that
can be tuned depending on the LAN knowledge the user has. The result of the
LAN skeleton is a two-level hierarchy of machines and some additional info from
which the API will take advantage to run more efficiently. The LAN file will
validate at last some of the most critical values provided by the users, such as
the name/address of every processor, in order to assess a minimum quality for
the running environment.

As well as the LAN system file will help in a more efficient instantiation of
the parallel optimization skeletons, a system file will exist to specify a model for
the whole distributed system. After the definition of the LAN, we can easily see
that the distributed system is considered as a set of machine clusters. At the
geographically distributed level we specify some values concerning the whole set
of computational resources to run a given skeleton.

The machines involved in the computations belong each one to one (and only
one) given cluster. Thus, we need to know which clusters are considered and how
they are linked. The considered parameters effecting the whole communication
system are:

• A set of pairs indicating two interconnected clusters.

• For every pair of interconnected clusters a performance model will be
given.

•

The performance model can be a null model, a default model, or a user-defined
model. In any case the performance model will detail the following week infor-
mation:

• A valid label indicating the day of the week (from monday to sunday).

• A beginning and terminating day hour (0..24h).

• The expected bandwidth and latency available at this day and time range.

4.3 The Instantiation Module

The Instantiation Module (IM) is a tool providing the user with the ability
to get into the middleware system as much knowledge as possible about the
processors, clusters, and WAN facilities.

16



The IM is the interface application that the user can invoke to instantiate
and customize the automatic default behavior of the middleware system. It
is expected that the performance of the optimization skeletons run in parallel
will raise as the tuning of the middleware is higher to deal with the existing
hardware.

5 Concluding Remarks

In this first draft we have discussed the pro and cons of many communication
toolkits from the point of view of the MALLBA necessities. Our conclusion is
that MPI is the standard that better fits our needs. These needs can be briefly
summarized in the following topics: availability, efficiency, and future trends.
Some other candidates such as CORBA or Globus have been finally left out at
this stage of the MALLBA project.

With the LAN and WAN system files, the proposed API will provide a
useful set of services to program distributed optimization algorithms, whatever
the kind of skeleton is (exact, heuristic, or hybrid). More in dept study of this
proposal will probably reveals that further tuning is needed, and this is the
reason of presenting an architectural approach to the middleware system.

References

[1] Andrews G.R.(2000) ”Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison-Wesley.

[2] Casanova H, Dongarra J.J. (1995) ”NetSolve: A Network Server for Solv-
ing Computational Science Problems”. TR CS-95-313, Univ. of Tennessee
(November).

[3] Comer D.E., Stevens D.L. (1993) ”Internetworking with TCP/IP (Volume
III)”. Prentice-Hall.

[4] Eickermann Th., Henrichs J., Resch M., Stoy R., Völpel R. (1998) ”Meta-
computing in Gigabit Environments: Networks, Tools, and Applications”.
Parallel Computing 24:1847–1872.

[5] Fagg G.E., Dongarra J.J. (1996) ”PVMPI: An Integration of the PVM and
MPY Systems”. Department of Computer Science, TR CS-96-328, Univ. of
Tennessee.

[6] Foster I., Kesselmann C.(1997) ”Globus: A Metacomputing Infrastructure
Toolkit”. Int. Journal of Supercomputing Applications 11(2):115–128.

[7] Foster I., Geisler J., Gropp W., Karonis N., Lusk E., Thiruvathukal G.,
Tuecke S. (1998) ”Wide-Area Implementation of the Message Passing Inter-
face”. Parallel Computing 24:1735–1749.

17



[8] Foster I., Kesselmann C. (1999) ”The Grid: Blueprint for a New Computing
Infrastructure”. Morgan Kaufmann.

[9] Grimshaw A.S., Wulf W.A. (1997) ”The Legion Vision of a Worldwide Vir-
tual Computer”. Communications of the ACM 40(1):39–45.

[10] Gropp W., Lusk E. (?) ”Why are PVM and MPI so Different?” TR Math-
ematics and Computer Science Division, Argonne National Laboratory.

[11] Haupt T., Akarsu E., Fox G. (2000) ”WebFlow: a Framework for Web
Based Metacomputing”. Future Generation Computer Systems 16:445–451.

[12] JavaSoft (1997) ”RMI: The JDK 1.1 Specification”.
javasoft.com/products/jdk/1.1/docs/guide/rmi/index.html.

[13] Message Passing Interface Forum (1994) ”MPI: A Message-Passing In-
terface Standard”. International Journal of Supercomputer Applications
8(3/4):165–414.

[14] Sunderam V.S. (1990) ”PVM: A Framework for Parallel Distributed Com-
puting”. Journal of Concurrency Practice and Experience 2(4):315–339.

[15] Sunderam V.S., Geist G.A. (1999) ”Heterogeneous Parallel and Distributed
Computing”. Parallel Computing 25:1699–1721.

[16] Tierney B., Johnston W., Lee J., Thompson M. (2000) ”A Data Inten-
sive Distributed Computing Architecture for ”Grid” Applications”. Future
Generation Computer Systems 16:473–481.

[17] Umar A. (1997) ”Object-Oriented Client/Server Internet Environments”.
Prentice-Hall.

[18] Valiant L.G. (1990) ”A Bridging Model for Parallel Computation”. Com-
munications of the ACM 33(8):103–11.

[19] Womble D.E., Sudip S.D., Hendrickson B., Heroux M.A., Plimpton S.J.,
Tomkins J.L., Greenberg D.S. (1999) ”Massively Parallel Computing: A
Sandia Perspective”. Parallel Computing 25:1853–1876.

18


