
NetStream: a Flexible and Simple OOP Message

Passing Service for LAN/WAN Utilization

Enrique Alba

November 9, 2001

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga

eat@lcc.uma.es

Abstract

This paper describes the design, goals, and details of NetStream, a
C++ class containing services for communicating information through a
network. The services in NetStream have been developed for running both
in local as well as in wide area networks; therefore, it provides message
passing in a manner that makes it useful for a large class of parallel pro-
grams. The services in NetStream have been developed as a layer on top
of the MPI standard, although nothing prevents further implementations
with a different system. These services are divided into two sub-classes,
namely basic and advanced; this makes the resulting interface appropri-
ate both for non-specialized persons and for experts in developing parallel
programs.

1 Introduction

This work is devoted to describe a C++ class containing basic and advanced
services for message passing through a communication network. From now on,
we will call this class NetStream since the design goals will lead us to define a
”stream-like” interface for accessing the network.

Message passing is a well-known communication paradigm very useful in a
set of assorted application domains, both for LAN and WAN services. PVM
[3] and MPI [2] are two popular libraries that fit rather well this category.
However, we envision some other goals that make this ”raw” libraries appear
working at too ”low-level” for our target users. In fact, our start objectives for
the communication library are listed below and own a close relationship to the
necessities of the Spanish national funded project MALLBA (TIC1999-0754-
C03-03):

• easy interface for people not being specialists in parallel programming,

1

• access to LAN as well as to WAN services,

• flexible and object oriented user interface,

• efficient message passing of objects through the network,

• easy extensibility with new services, and

• abstraction and re-utilization with a ”light weight” presentation.

In order to cope with these goals the resulting system must show a great
deal of concrete features. Since we need both basic and advanced services we
need to define methods in the final C++ class devoted to these two types of
users. In any case, we plan to offer methods having a very clear interface so
that the learning time will be minimized. In addition, because we want to access
both LAN and WAN characteristics an effort must be made to make a uniform
interface for they two in terms of resulting methods of the class.

Besides that, efficiency is an important goal, given that we want to use the
library both for sparse and intense message passing programs. And finally, we
directly embrace the object oriented technology; the reason is that we really
want to separate implementation from conceptual services. Of course, abstrac-
tion, re-utilization, and extension must be taken into account because nowadays
libraries continuously undergo revision steps in order to fix or add new services
to the existing ones.

As a result, we adopt MPI [2] as the base communication library in order to
implement NetStream because it is a standard in message passing and becauseof
its efficiency and future connectivity with emerging technologies such as Globus
[1]. However, this not prevent a future change in the implementation of the
NetStream library services on a different underlying system. Also, we will use
directly C++ as the base language since it is object oriented, very popular, and
(at present) more efficient than Java implementations for the so many different
kind of applications we are devising NetStream.

We will develop the whole library in a ”stream-like” fashion. This means
that we will only need to declare a NetStream object and then go on with
it by invoking the appropriate methods. We will use the standard inserter
<< and extractor >> operators in order to express reception and transmission of
information on a net stream. This will bring uniformity to our new streams with
respect to standard input/output streams and also it will allow the programmer
input/output a sequence of objects in a single statement (as well as it helps in
reducing the verbosity that would from using a named method instead of these
operators).

NetStream netstream;
...
netstream << 9 << ’a’ << "hello world";
...

2

Next section will deal with the definition of the basic services for novice users
in version 1.0. Then, we will move on to more advanced services in Section 3
aimed at satisfying the needs of parallel programmers. Section 4 details the
differences among the sucessive versions of NetStream. In Section 5 we will
show and explain some basic examples of use, just to arrive to Section 6 in
which we include an example of how groups are dealt with. A performance
analysis of times with parallel exchange of data with NetStream is shown in
Section 7. Finally, we will finish by summarizing the contents of this paper and
by discussing some open lines in Section 8.

2 Basic Services in NetStream v1.0

Basic services are targeted to non-specialized users wanting an easy manner of
sending and receiving information through the network. Consequently, these
services will have clear semantics as well as an easy interface. Since there are
a large variety of basic classes in the standard C++, we will overload the in-
put/output methods for each of such basic classes. See the example below:

class NetStream

{

public:

NetStream (); // Default constructor

// Constructor with source integer left unchanged

NetStream (int, char **); // Init the communications

~NetStream (); // Default destructor

void init(int,char**); // Init the communication system. Invoke it only ONCE

void finalize(void); // Shutdown the communication system. Invoke it ONCE

// BASIC INPUT SERVICES <comments> BASIC OUTPUT SERVICES

// ==

NetStream& operator>> (bool& d); NetStream& operator<< (bool d);

NetStream& operator>> (char& d); NetStream& operator<< (char d);

NetStream& operator>> (short& d); NetStream& operator<< (short d);

NetStream& operator>> (int& d); NetStream& operator<< (int d);

NetStream& operator>> (long& d); NetStream& operator<< (long d);

NetStream& operator>> (float& d); NetStream& operator<< (float d);

NetStream& operator>> (double& d); NetStream& operator<< (double d);

NetStream& operator>> (char* d); /*NULL terminated*/ NetStream& operator<< (char* d);

NetStream& operator>> (void* d); /*NULL terminated*/ NetStream& operator<< (void* d);

#ifdef _LEDA_

NetStream& operator>> (string& d); NetStream& operator<< (const string& d);

template <class T> NetStream& operator>> (array<T>& d); template <class T> NetStream& operator<< (const array<T>& d);

template <class T> NetStream& operator>> (slist<T>& d); template <class T> NetStream& operator<< (const slist<T>& d);

template <class T> NetStream& operator>> (list<T>& d); template <class T> NetStream& operator<< (const list<T>& d);

#endif

int pnumber(void); // Returns the number of processes

NetStream& _my_pid(int* pid); // Returns the process ID of the calling process

NetStream& _wait(const int stream_type);// Wait for an incoming message in the specified stream

NetStream& _set_target(const int p); // Stablish "p" as the default receiver

NetStream& _get_target(int* p); // Get into "p" the default receiver

NetStream& _set_source(const int p); // Stablish "p" as the default transmitter

NetStream& _get_source(int* p); // Get into "p" the default transmitter

...

};

Let us now describe the basic interface. First, the user must include the
netstream.hh file in its program file. Then, he or she must declare a NetStream
object. The constructor may have no arguments or else it might have the two
arguments of the main program or the init method.

The user is supposed to make a init() call before all the system begin to
work and a call to finalize() for shutting down the communication system

3

(only once). New versions of NetStream will define these methods as static,
thus allowing a class scope invokation NetStream::init(). In the middle of this
parenthesis-like structure the user can input/output basic data types from/to
the NetStream previously declared object. Normal classes such as int, double,
and char are of course included among the large set of classes that can be
exchanged through the net.

#include "netstream.hh"

int main (int argc, char** argv)

{

NetStream netstream;

int mypid;

...

netstream.init(argc,argv); // Initialize the comm system

netstream << set_target(1) // Set the target process

<< set_source(1) // Set the source process

<< my_pid(&mypid);// Get the pid of the calling process

...

netstream << 9 << ’a’ << "hello world"; // Send data through the net

netstream >> i >> c >> str; // Receive data from the net

...

netstream.finalize(); // Shutdown the comm system

} // main

As you notice, before engaging in input/output operations the user can
set/get the process number in the other end from/to which the communica-
tion is being achieved. For this purpose, four methods are readily provided (see
NetStream public interface). Notice that these, as well as other methods, begin
with an underscore character ” ”. The reason is that the same methods exist for
invocation inside and inserter << or extractor >> operator in a single sentence.
This is included for compatibility with the manipulator philosophy of standard
streams in C++. A manipulator is a method that can be fed into a >> or <<
operator in order to perform a task. A manipulator can be merged with stan-
dard input/output operations, thus providing a nice and uniform interface for
streams. Manipulators can also have arguments; they look like normal meth-
ods with the exception that they can be used in isertions and extractions of a
stream.

The method pnumber() allows the user to know the number of processes
running in parallel, and the method _my_pid() returns as an argument the
process identifier of the calling process in the set of parallel processes.

The method wait() allows the user to wait for an incoming message in a
given stream. The most usual net stream the user will need is the regular
stream for sending/receiving normal data to/from other processes.

netstream << wait(regular); // Wait for a regular message

Finally, for these users having code that includes data types from the LEDA
library, next versions of the NetStream class were initially thought to support

4

exchanging LEDA types such as string, array, slist, and list. However, at
present, some changes in the availability of this data library and in the priorities
of our project have leaded to not supporting LEDA in NetStream.

After the user has typed is parallel program by using NetStream, he or she
can compile it with the usual mpicc operating system command and the run it
with the usual mpirun command.

3 Advanced Services

There are several advanced services available for any NetStream object. These
services are specially important for solving synchronization tasks, namely es-
tablishing synchonization points (called barriers), broadcasting one message to
the rest of processes, and checking whether there is a pending message in the
regular or packed stream. The corresponding methods in the NetStream class
are (respectively) _barrier(), _broadcast(), and _probe(). As before, there
exist methods with the same name and behavior that can be used as manipu-
lators with the << and >> operators. See the following code to learn the syntax
of the NetStream methods:

class NetStream

{

public:

... // BASIC SERVICES already described

NetStream& _pack_begin(void); // Marks the beginning of a packed information

NetStream& _pack_end(void); // Marks the end of a packed and flush it to the net

NetStream& _probe(const int stream_type, int& pending); // Check whether there are awaiting data

NetStream& _broadcast(void); // Broadcast a message to all the processes

NetStream& _barrier(void); // Sit and wait until all processes are in barrier

...

};

When programming for a LAN environment, passing basic C++ types such
as int or double is OK with modern technologies, since the latency is low.
However, for a WAN environment sending many continuous messages with such
basic types could provoke an unnecessary delay in communications. Network
resources can be better exploited if the user define data packets.

Defining a data packet is very easy because only the manipulators

pack_begin

and

pack_end

must be used. All the output operations in between these two reserve words
are put inside the same physical packet, with the ensuing savings in time. The
contents of the packet are not forced to share the same base object class or type,
thus improving the flexibility of this construction.

if(mypid==0) // The sending process
{ ...

strcpy(str,"this is sent inside a heterogeneous packet");
netstream << pack_begin

5

<< str << 9.9 << ’z’
<< pack_end;

...
}
else // The receiving process
{

...
netstream << wait(packed); // Wait for a packed message
netstream << pack_begin // Reads the packed message

>> str >> d >> c
<< pack_end;

...
}

4 Versions of NetStream

Some changes from version 1.0 has been already included to yield two new
versions (1.5 and 1.6). NetStream v1.5 extends v1.0 in several ways:

• Methods init() and finalize() are set to be static, thus being common
to any instance of NetStream objects, and callable in a more intuitive way
(e.g. NetStream::init()) in accordance to the global operations they
perform for any object.

• Group management services are provided in the form of new methods,
namely one method for obtaining/setting the default communicator, one
method to create a group inside a given communicator and one method
to link two communicators in order to send messages from one sub-group
to the other.

// GROUP management

// Set the netstream to a new communicator

void set_communicator(NET_Comm comm);

// Get the present communicator in this netstream

NET_Comm get_communicator(void);

// Create a new group inside the present communicator

static NET_Comm create_group(NET_Comm comm, int color, int key);

// Create a bridge between local and remote MATCHING call

static NET_Comm create_inter_group(NET_Comm lcomm, int lrank,

NET_Comm bcomm, int rrank,

int strtrype);

• Do not consider LEDA objects anymore. From v1.6 on the library do not
provide any support to send/receive LEDA objects.

• The method int my_pid() is added in order to have an easy invokation
inside conditional and repetitive sentences (precedent version needs to
invoke this through a stream-like sentence).

6

• This version supports unsigned and long double input/output through
the net.

On the other hand, current version 1.6 adds an internal change allowing
more efficient executions and eliminating some bugs of precedent version when
using packets:

• Internal in/out independent buffers have been defined.

New versions of NetStream will address issues concerning WAN services for
obtaining delay times of the packets on-line, in order to provide the user with
the actual performance of the network. This will highly assist the library users
in taking decisions on when and how send information to a far node in the WAN.

5 A Basic Example of Utilization

In this section we provide an example of utilization of some of the more interest-
ing features of the NetStream class. We will include basic operations as well as
other more sophisticated behavior such as sending/receiving packets for use in
the WAN when the programmer judges inefficient to send basic (small) objects
through a long distance connection. Also, some synchronization services such
as creating a barrier or a wait operation are illustrated to shown the versatility
of the library.

Notice that most of the methods are invoked inside the << and >> operators
(what it is called stream manipulators) for the sake of uniformity and elegancy
in C++.

#include "../../netstream.hh"

int main (int argc, char** argv) {

NetStream netstream;

int mypid;

char c;

int i, s, t;

double d;

char str[1000];

NetStream::init(argc,argv); // Initialize the comm system

mypid = netstream.my_pid(); // Notice the new invokation in v1.5

if (mypid==0)

{

strcpy(str,"hello world");

netstream << set_target(1) << set_source(1)

<< get_target(&t) << get_source(&s)

<< my_pid(&mypid);

netstream << barrier; // Synchronize

7

netstream << 9 << ’a’ << str;

netstream >> i >> c >> str;

cout << "process " << mypid << ":"

<< " sends to process " << t

<< " and gets data from processs " << s << endl

<< i << endl << c << endl << str << endl << flush;

strcpy(str,"this is sent inside a heterogeneous packet");

netstream << pack_begin

<< str << 9.9 << ’z’

<< pack_end;

}

else

{

netstream << set_source(0) << set_target(0)

<< get_source(&s) << get_target(&t)

<< my_pid(&mypid);

netstream << barrier; // Synchronize

netstream >> i >> c >> str;

netstream << i << c << str; // ECHO

netstream << wait(packed); // Wait for a packed message

netstream << pack_begin // Reads the packed message

>> str >> d >> c

<< pack_end;

cout << "process " << mypid << ":"

<< " sends to process " << t

<< " and gets data from processs " << s << endl

<< str << endl << d << endl << c << endl << flush;

}

NetStream::finalize();

}

6 Example of Groups Management

In this section we provide an example of utilization of the newly added methods
to deal with groups of processes exchanging data in parallel. The methodology is
simple: inside the present communicator a group of processes sharing the same
color is defined and separated from the rest of processes. The communicator of
the new group and the old group are explicitly linked by a method dealing with
such inter-communicator matter.

#include <stream.h>

8

#include "stdio.h"

#include "../../netstream.hh"

int main(int argc,char ** argv) {

NetStream netstream;

char msg[20];

char msg1[20];

int myrank, my_new_rank;

int local_root, remote_root, target;

int tag=99;

NET_Comm new_comm, inter_communicator, my_comm;

int number_of_processes, half_size;

int color, key;

NetStream::init(argc,argv); // Init the comm system

// Get the process ID of this process

netstream << my_pid(&myrank);

// Get the number of processes

number_of_processes = netstream.pnumber();

// Half the number of processes

half_size = number_of_processes/2;

// The key does not need to be unique

// nor starting at 0. It’s useful for sorting

// ranks inside new groups

key = myrank;

if (number_of_processes>=2) // The first step is creating both groups.

{

if (myrank<half_size) // First group is composed by processes 0..half_size-1

color=0; // Color shared by all the processes in the first group

else

color=1; // Color shared by all the processes in the second group

// Get the communicator of the netstream

my_comm = netstream.get_communicator();

// CREATE THE GROUPS

new_comm = netstream.create_group(my_comm,color,key);

// Set default communicator for I/O

netstream.set_communicator(new_comm);

// Find process ID in new group.

// Notice that we invoke it as a method!

my_new_rank = netstream.my_pid();

cout << "\nProcess n: " << my_new_rank << " group: "

<< color << " ...old process n: " << myrank << flush;

// Do not forget to synchronize to begin communication!!!

netstream << barrier;

// Now we send a message to the last process of the our group

// and to the last process of the other group.

if (color==0)

{

local_root = 0;

remote_root = half_size;

// Now we need an intercommunicator descriptor

9

inter_communicator = netstream.create_inter_group

(new_comm,local_root,my_comm,remote_root,tag);

if (my_new_rank==0)

{

strcpy(msg,"initial msg");

target=half_size-1;

cout << "\nTarget process: "<< target << "\tSender process: "

<< myrank << flush;

netstream << set_target(target) << set_source(0);

netstream << msg;

}

else

{

if (my_new_rank==half_size-1)

{

netstream << set_source(0)<< set_target(0);

netstream >> msg1;

cout <<"\n*Intramessage received: " << msg1 << flush;

strcpy(msg,"inter-msg");

netstream.set_communicator(inter_communicator);

target = number_of_processes-half_size-1;

cout << "\n*Intercomm target process: "<< target

<< " Intercomm sender process: " << my_new_rank << flush;

netstream << set_target(target) << set_source(0);

// The new communicator was selected as default before

netstream << msg;

cout << "\n***Intermsg sent: " << msg << flush;

}

}

}

else //The other group (color==1)

{

local_root = 0;

remote_root = 0;

inter_communicator = netstream.create_inter_group

(new_comm,local_root,my_comm,remote_root,tag);

if (my_new_rank==number_of_processes-half_size-1)

{

netstream.set_communicator(inter_communicator);

// it is not necessary to modify the target attribute:

netstream << set_target(0) << set_source(half_size-1);

netstream >> msg1;

cout << "\n***Intermessage received:" << msg1 << flush;

}

}

}

else

{

cout << "\nUnable to make groups. Number of processes smaller than 2."

<< flush;

}

NetStream::finalize();

} // main

10

7 Performance Evaluation

In this section we present some basic performance measurements to show that
NetStream is usually as fast as a raw MPI program, with a slight overhead
when sending packed data. The tests have been performed in a 100 Mbps Fast-
Ethernet cluster. We analyze the exchanges between two stations in this cluster
(Pentium III, 700 Mhz, 128 Mb RAM).

In Figure 1 we show the time in milliseconds of sending different amount of
data of the basic char, int and double values. It can be observed that there is
no overhead of NetStream over MPI for any amount of data.

Figure 1: Sending int/double values between two workstations linked by Fast-
Ethernet: MPI versus NetStream times.

In Figure 2 we show the trends for packets of different lengths of the basic
data types int and double as they are very usual in numerical applications. A
small overhead is then detected, especially for very long packets. The user must
decide whether these small delays is worth-wile in the application at hands. In
a WAN environment, and e.g. for optimization tasks, the packets are usually in
the region of less than 2 Kb, and the overhead can be ignored.

8 Concluding Remarks

The NetStream library is a communication tool aimed at helping programmers
of parallel program to exchange information through a network, whether LAN
or WAN. Also, two levels of utilization are possible, namely basic services for
novice users and advanced ones for experienced programmers.

Abstraction, flexibility, and easy interface are some of the more important
goals that influenced the design of NetStream. The interface and operations are
continuously being improved resulting in new versions of this software.

11

Figure 2: Sending packed int/double values between two workstations linked
by Fast-Ethernet: MPI versus NetStream times.

Acknowledgements

This work is being partially funded by the Spanish Science and Technology
Commission (CICYT), under contract TIC99-0754-C03-03.

References

[1] Foster I., Kesselmann C.(1997) ”Globus: A Metacomputing Infrastructure
Toolkit”. Int. Journal of Supercomputing Applications 11(2):115–128.

[2] Message Passing Interface Forum (1994) ”MPI: A Message-Passing In-
terface Standard”. International Journal of Supercomputer Applications
8(3/4):165–414.

[3] Sunderam V.S. (1990) ”PVM: A Framework for Parallel Distributed Com-
puting”. Journal of Concurrency Practice and Experience 2(4):315–339.

12

Appendix: Public Interface of the NetStream Class

/***

*** netstream.cc ***

*** v1.6 - July 2001 ***

*** ***

*** v1.5 - March 2001 ***

*** v1.0 - November 2000 ***

*** ***

*** v1.5 extends v1.0: ***

*** .- Changes metods init() and finalize() to be static ***

*** .- Incorporates process group management ***

*** .- Do not consider LEDA anymore ***

*** .- Contains a method "int my_pid()" for easy invokations ***

*** .- Adds "unsigned" and "long double" input/output ***

*** ***

*** v1.6 extends v1.5: ***

*** .- Internal in/out buffers for packed separated ***

*** ***

*** Communication services for LAN/WAN use following the message ***

*** passing paradigm. ***

*** STREAM C++ VERSION ***

*** MPI implementation ***

*** Developed by Enrique Alba ***

***/

#ifndef INC_netstream #define INC_netstream

#include "mpi.h" #include <assert.h>

// Class NetStream allows to define and use network streams through LAN and WAN

#define REGULAR_STREAM_TAG 0 // Used for tagging MPI regular messages

#define PACKED_STREAM_TAG 1 // Used for tagging MPI packet messages

#define NET_TYPE MPI_Datatype // Network allowable data types

#define NET_BOOL MPI_CHAR // Bools like chars

#define NET_CHAR MPI_CHAR

#define NET_SHORT MPI_SHORT

#define NET_INT MPI_INT

#define NET_LONG MPI_LONG

#define NET_UNSIGNED_CHAR MPI_UNSIGNED_CHAR

#define NET_UNSIGNED_SHORT MPI_UNSIGNED_SHORT

#define NET_UNSIGNED MPI_UNSIGNED

#define NET_UNSIGNED_LONG MPI_UNSIGNED_LONG

#define NET_FLOAT MPI_FLOAT

#define NET_DOUBLE MPI_DOUBLE

#define NET_LONG_DOUBLE MPI_LONG_DOUBLE

#define NET_BYTE MPI_BYTE

#define NET_PACKED MPI_PACKED

#define NET_Comm MPI_Comm

#define MAX_MSG_LENGTH 20480 // Max length of a message

#define MAX_PACK_BUFFER_SIZE 20480 // Max length of a packed message

// Help structure for manipulators having one int& argument

class NetStream; struct smanip1c // "const int" { NetStream&

(*f)(NetStream&, const int); // The ONE argument function

int i; // The argument

smanip1c(NetStream&(*ff)(NetStream&,const int), int ii) : f(ff), i(ii) {} // Constuctor

};

struct smanip1 // "int*" note: references do not work! "int&" {

NetStream& (*f)(NetStream&, int*); // The ONE argument function

int* i; // The argument

smanip1(NetStream&(*ff)(NetStream&, int*), int* ii) : f(ff), i(ii) {} // Constuctor

};

// Tags for the available streams

const int any = MPI_ANY_TAG; // Tag value valid for any stream const

int regular = REGULAR_STREAM_TAG; // Tag value for regular stream of data const

int packed = PACKED_STREAM_TAG; // Tag value for packed stream of data

class NetStream {

public:

NetStream (); // Default constructor

// Constructor with source integer left unchanged

NetStream (int, char **); // Init the communications

~NetStream (); // Default destructor

static void init(int,char**); // Init the communication system. Invoke it only ONCE

static void finalize(void); // Shutdown the communication system. Invoke it ONCE

// GROUP management

void set_communicator(NET_Comm comm); // Set the netstream to a new communicator

NET_Comm get_communicator(void); // Get the present communicator in this netstream

static NET_Comm create_group(NET_Comm comm, int color, int key); // Create a new group inside the present communicator

// Create a bridge between local and remote MATCHING call

13

static NET_Comm create_inter_group(NET_Comm lcomm, int lrank, NET_Comm bcomm, int rrank, int strtrype);

// BASIC INPUT SERVICES <comments> BASIC OUTPUT SERVICES

// ==

NetStream& operator>> (bool& d); NetStream& operator<< (bool d);

NetStream& operator>> (char& d); NetStream& operator<< (char d);

NetStream& operator>> (short& d); NetStream& operator<< (short d);

NetStream& operator>> (int& d); NetStream& operator<< (int d);

NetStream& operator>> (long& d); NetStream& operator<< (long d);

NetStream& operator>> (float& d); NetStream& operator<< (float d);

NetStream& operator>> (double& d); NetStream& operator<< (double d);

NetStream& operator>> (char* d); /*NULL terminated*/ NetStream& operator<< (char* d);

NetStream& operator>> (void* d); /*NULL terminated*/ NetStream& operator<< (void* d);

// Extended data types from version 1.5 on

NetStream& operator>> (unsigned char& d); NetStream& operator<< (unsigned char d);

NetStream& operator>> (unsigned short int& d); NetStream& operator<< (unsigned short int d);

NetStream& operator>> (unsigned int& d); NetStream& operator<< (unsigned int d);

NetStream& operator>> (unsigned long int& d); NetStream& operator<< (unsigned long int d);

NetStream& operator>> (long double& d); NetStream& operator<< (long double d);

int pnumber(void); // Returns the number of processes

bool broadcast; // Determines whether the next sent message is for broadcasting

// Input MANIPULATORS for modifying the behavior of the channel on the fly

// NO ARGUMENTS

NetStream& operator<< (NetStream& (*f)(NetStream& n)) { return f(*this); } // NO arguments

NetStream& _barrier(void); // Sit and wait until all processes are in barrier

NetStream& _pack_begin(void); // Marks the beginning of a packed information

NetStream& _pack_end(void); // Marks the end of a packed and flush it to the net

NetStream& _probe(const int stream_type, int& pending); // Check whether there are awaiting data

NetStream& _broadcast(void); // Broadcast a message to all the processes

// ONE ARGUMENT

// "const int"

NetStream& operator<< (smanip1c m) { return m.f((*this),m.i); }// ONE int& argument constant

// "int*"

NetStream& operator<< (smanip1 m) { return m.f((*this),m.i); }// ONE int& argument

// BASIC CLASS METHODS FOR MANIPULATORS

NetStream& _my_pid(int* pid); // Returns the process ID of the calling process

NetStream& _wait(const int stream_type); // Wait for an incoming message in the specified stream

NetStream& _set_target(const int p); // Establish "p" as the default receiver

NetStream& _get_target(int* p); // Get into "p" the default receiver

NetStream& _set_source(const int p); // Establish "p" as the default transmitter

NetStream& _get_source(int* p); // Get into "p" the default transmitter

// AUXILIAR PUBLIC METHODS FOR ALLOWING EASY MANAGEMENTS OF NETSTREAMS

int my_pid(void); // Returns the process ID of the calling process

private:

int default_target, default_source; // Default process IDs to send-recv data to-from

bool pack_in_progress; // Defines whether a packet is being defined with "pack_begin-pack_end"

int packin_index; // Index to be used for extracting from a IN packed message - v1.6

int packout_index; // Index to be used for adding to an OUT packed message - v1.6

int pending_input_packet; // Is there a pending packet already read into the IN buffer? - v1.6

char* packin_buffer; // Buffer to temporary storage of the IN packed being defined - v1.6

char* packout_buffer; // Buffer to temporary storage of the OUT packed being defined - v1.6

bool pack_in, pack_out; // Define whether input-output packed message is being used

void reset(void); // Reset member variables of this class

NET_Comm my_communicator; // Communicator of this netstream

void send(void* d, const int len, const NET_TYPE type, const int target);

void rcv (void* d, const int len, const NET_TYPE type, const int source);

}; // class NetStream

// MANIPULATORS (must be static or non-member methods in C++ -mpiCC only allows non-member!-)

// NO ARGUMENTS

NetStream& barrier(NetStream& n); // Sit and wait until all processes are in barrier

NetStream& broadcast(NetStream& n); // Broadcast a message to all the processes

NetStream& pack_begin(NetStream& n); // Marks the beginning of a packed information

NetStream& pack_end(NetStream& n); // Marks the end of a packed and flush it to the net

// ONE ARGUMENT

NetStream& __my_pid(NetStream& n, int* pid); // Returns the process ID of the calling process

inline smanip1 my_pid(int* pid){ return smanip1(__my_pid,pid); } // manipulator

NetStream& __wait(NetStream& n, const int stream_type);// Wait for an incoming message - helper

inline smanip1c wait(const int stream_type){ return smanip1c(__wait,stream_type); } // manipulator

NetStream& __set_target(NetStream& n, const int p); // Stablish "p" as the default receiver

inline smanip1c set_target(const int p){ return smanip1c(__set_target,p); } // manipulator

NetStream& __get_target(NetStream& n, int* p); // Get into "p" the default receiver

inline smanip1 get_target(int* p){ return smanip1(__get_target,p); } // manipulator

14

NetStream& __set_source(NetStream& n, const int p); // Stablish "p" as the default transmitter

inline smanip1c set_source(const int p){ return smanip1c(__set_source,p); } // manipulator

NetStream& __get_source(NetStream& n, int* p); // Get into "p" the default transmitter

inline smanip1 get_source(int* p){ return smanip1(__get_source,p); } // manipulator

// TWO ARGUMENTS - not used yet

NetStream& probe(NetStream& n, const int stream_type, int& pending); // Check whether there are awaiting data

#endif

15

