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General approach
Real world
problems

Combinatorial Optimization
Metaheuristics

Software, tools
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Robustess, Quality,
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Chemistry
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Cooperative metaheuristics

Real worl problems

MetaheuristicsExact methods Machine Learning

Hybridization ? Hybridization ?

Better results, less time consuming

Stochastic
problems

Dynamic
problemsStatic problems

Fitness landscape
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Hybridization of machine learning and
metaheuristics

•L. Jourdan, C. Dhaenens and E-G. Talbi, "Using datamining techniques to help 
metaheuristics: a short survey", HM 2006, LNCS Vol. 4030, pp. 57-69. 
•L. Jourdan, D.W. Corne, D. Savic and G.A. Walters, "Preliminary Investigation of the
`Learnable Evolution Model' for Faster/Better Multiobjective Water Systems Design", 
EMO 2005. LNCS 3410, pp. 841-855
•L. Jourdan, D.W. Corne, D. Savic and G.A. Walters, "Hybridising Rule Induction and
Multi-Objective Evolutionary Search for Optimising Water Distribution Systems", In 
Proceeding of Fourth International Conference on Hybrid Intelligent Systems , IEEE 
HIS 2004, Kita Kyushu, Japan, 5-8 Dec 2004, pp. 435-439 
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Datamining/machine learning

One step of the complex Knowledge Dicovery in Databases (KDD) 
process

Collecting,
Cleaning,

Integration

Collecting,
Cleaning,

Integration

Data
Preparation

Data
Preparation

Verify &
Evaluate

Verify &
Evaluate

Data
Mining
Data

Mining

Data

Data

Models,
Patterns

Data
Warehouse
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Datamining

• Several classical tasks:
• Feature selection
• Classification
• Clustering (unsupervised classification)
• Association discovery 

DataminingDatamining

Feature
selection
Feature

selection ClassificationClassification Segmentation/
Clustering

Segmentation/
Clustering AssociationAssociation
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Taxonomy

Apriori knowledge Dynamic knowledge

Speeding-up Quality improvement

Evaluation Parameters Encoding Initialization

Population managementOperators Local Search

Kind of 
Knowledge

Aim

Localization

May use several characteristics.
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Contributions
LEMMO

Population

Pareto set

Induction
Algorithm

Generate
New Individuals

Match 
Negative
Rules ?

Repair

C4.5

Sample
Set
(+/-)

Set of
Rules
(+/-)

Classification
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Multi-objective water systems optimization

Design/rehabilitation problems
Choose

• Diameter of pipes

Objectives
• Minimize the cost of the network
• Minimize the head deficit Æ EPANET 2

Constraints
• Minimum pressure on nodes

Evaluation
• Evaluation: time consuming



10

Example of results
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Actually

Using sequence discovery in data to speed up transport problem
• Machine learning algorithms provide sequence of clients that are 

interesting (eg: C1 then C6 then C15): used algorithm SPADE, 
• the order of clients is an information to be use to provide a fixed
• structure is some chromosome of the population of the GA.
• Test bed problems: TSP, VRP mono and multi objective
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Hybridization of exact method and
metaheuristics

•L. Jourdan, M. Basseur
Metaheuristics: A Taxonomy
(Available

and E-G. Talbi, Hybridizing Exact Method and
, European Journal of Operational Research, 

online, 2008).
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Proposed grammar
< hybrid method > < design-issues > < implementation-issue >  
< design-issues > < hierarchical > < flat >
< hierarchical > < LRH >|< LCH >|< HRH >|< HCH >
< LRH > LRH (< method >( < method >))
< LCH > LCH (< method >( < method >))
< HRH > (< method >+ < method >)
< HCH > HCH (< method>)
< HCH > HCH (< method >,< method >)
< flat > (< resolution >,< optimization >,< function >)
< resolution > exact | approached
< optimization > global | partial

< function > general | specialist
< implementation-issue > sequential | parallel < scheduling >
< scheduling > static | dynamic | adaptive
< method > < exact > | <  heuristic >
< heuristic > LS | TS | SA | GA | ES | GP | GH | AC | SS | NM | ... < hybrid method >
< exact > B&B | B&C | B&P | PL | PD | MS | ... < hybrid method >
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Hybridization of Metaheuristics
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Hybridization of metaheuristics

Stochastic
problems

Dynamic
problemsStatic problems

Fitness landscape

Problems

Mono or multi-objective modelization

Resolution



1616

Static problems
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Multi-objective problems

•Difficulties in the problem: Docking

•Difficulties in amelioration of solutions: MORSP, MO Flowshop
• New multi objective metaheuristics: IBMOLS, SEEA, DMLS …
• Unification of models: MOGA, MOLS, … available on
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Bioinformatics problems

•J-C. Boisson, L. Jourdan, E-G. Talbi et D. Horvath. "Parallel multi-objective
algorithms for the molecular docking problem", Conference in Computational
Intelligence in Bioinformatics and Bioengineering (CIBCB), 15-17 septembre 2008, 
Sun Valley Resort, Idaho, USA. (Best student paper). 



19

Molecular docking

28/05/2009 J-C. BOISSON CIBCB 2008 19

Molecular docking Ù prediction of the optimal complex receptor/ligand
according to chemical and geometric properties.
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+

HIV-1 PROTEASE + XK263
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Molecular docking
Docking simulation :

• rigidÙ no conformation modification of the molecules.

• semi-flexibleÙ one of the two molecules may have its conformation 
modified during the process (generally the ligand).

• flexibleÙ conformational modifications for the both molecules

Several sites can exist for docking the ligand.

28/05/2009 J-C. BOISSON CIBCB 2008 20
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Molecular docking
SASA 

= 6201 Å2

SASA 
= 5548 Å2
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A new bi-objective model (2/4)

22

1. Energie of the ligand / receptor complex

Force field = Consistent Valence Force Field (CVFF)
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A new bi-objective model (3/4)
2. Complex surface

Available surfaces :

Î Van Der Waals surface (a: blue),

Î Solvent accessible surface (b: red),

Î Connoly surface  (c: green).

23
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Comparison results (2/2)

24

Instances from the
ccdc astex set

Instance RMSD (Å) std RMSA (Å) std

6rsa 1.66 1.04 1.32 1.3

1mbi 5.2 0.4 4.16 0.8

2tsc 2.19 2.75 2.19 2.68

1htf 2.88 2.64 2.59 1.33

1dog 4.38 0.99 2.44 0.56

NSGA-II IBEA

Å Ù Angström std Ù standard deviation
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Docking@GRID

25
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Docking@GRID

26
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Chemistry problems

•L. Jourdan, O. Schütze, T. Legrand, E-G. Talbi, and J-L. Wojkiewicz. An Analysis
of the Effect of Multiple Layers in the Multi-objective Design of Conducting
Polymer Composites. Materials and Manufacturing Processes, Volume 24, Issue 3 
March 2009 , pages 350 - 357.
•O. Schuetze, L. Jourdan, T. Legrand, E-G. Talbi, J-L. Wojkiewicz, New Analysis of
the Optimization of Electromagnetic Shielding Properties Using Conducting
Polymers and a Multi-Objective Approach, Volume 19 Issue 7, Pages 762 - 769, 
Polymers for Advanced Technologies (Available online, 2008). 
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Objective

Cooperative work with Polymer 
laboratory

Propose new materials for shielding 
with specific physical properties

- For military usage:
- Radar
- Missiles

- For public usage
- Car devices: Navigation, DVD, …
- Cellular phone
- …
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Physical model
In

ci
de

n
ce

 F
ie

ld
s

Reflexion

Absorption

Transmission EI
ε1
σ1

ε2
σ2

εn
σn

d1 d2 dN

x

y       z.

ET

ER



30

Physical model

PAni/
PU

PAni/
PU

Kapton

d
1

d
2

d
3

Polyaniline-polyurethane

Æ To attenuate the passage of the electromagnetic waves 

Material ε’ σ (S/m) d (µm)

1st Layer PAni/PU
- 30 to 6000 de 0 à 300

Kapton (or other material)
3.1 0 0 to 130

3rd Layer PAni/PU
- de 30 à 6000 de 0 à 300
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Modelization
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Shielding efficiency

Cost / Constraints

- R  = reflexion coefficient of wave on shielding  

- pn = massic percentage of PAni-PU of the layer n 

- dn = thickness of the layer n
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More academic problems

•A. Liefooghe, L. Jourdan, N. Jozefowiez, E-G. Talbi. On the Integration
of a TSP Heuristic into an EA for the Bi-objective Ring Star Problem. C. 
Cotta et al. (eds.): International Workshop on Hybrid Metaheuristics
(HM 2008), Lecture Notes in Computer Science (LNCS) vol. 5296, pp. 
117–130, Malaga, Spain, 2008. 
•A. Liefooghe, L. Jourdan, M. Basseur, E-G. Talbi, E.K. Burke. 
"Metaheuristics for the Bi-objective Ring Star Problem." Eighth
European Conference on Evolutionary Computation in Combinatorial
Optimisation (EvoCOP 2008), Lecture Notes in Computer Science 
(LNCS), vol. 4972, pp. 206-217, Napoli, Italy, 2008. 
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The Bi-objective Ring Star Problem (B-RSP)

The B-RSP aims to locate a simple cycle through a subset of nodes of a 
graph while:

• Minimizing a ring cost (proportional to the length of the cycle)

• Minimizing an assignment cost (from non-visited nodes to visited nodes)

33
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Justification of the Bi-objective Approach

ring cost

as
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m
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t

34
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Related Works

• Mono-objective RSP [Labbé et al. 2004, 2005]
• Minimizing both costs

– Exact methods and metaheuristics
• Minimizing the ring cost / constraint on the assignment cost

– Exact methods and metaheuristics
RSP never explicitly investigated in a multi-objective way
• Median tour problem / Maximum covering tour problem        
[Current and Schilling 1994]

• Minimizing the tour length
• Maximizing the access for non-visited nodes

• Planning for mobile healthcare facilities [Doerner et al. 2007]
• Non-visited nodes: assigned to the cycle or unable to reach a 

tour stop

35
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Contributions

Bi-RSP

NSGA II, IBEA … MOLS : IBMOLS … SEEA

GeniusGenius Heuristic

Meta-heuristic
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Indicator-Based Multi-Objective LS (IBMOLS)
[Basseur et al. 2007]

• Initialization initial population P

• Fitness assignment quality indicator I [Zitzler et al. 2004]
• Fitness (x) = I (x , P\{x})

• Local search step for all x Є P
• x* ← one (randomly chosen) neighbor of x
• Fitness (x) = I (x* , P)
• Update fitness values: Fitness (z) += I (x* , z), for all z Є P

• w ← worst solution of P
• Remove w from P
• Update fitness values: Fitness (z) -= I (w , z) , for all z Є P

• Output archive A

37
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IBMOLS (2/2)
[Basseur et al. 2007]

• Iterated IBMOLS (I-IBMOLS)
• Population re-initialization: random noise
• Multiple mutations applied to randomly chosen archive items

• Quality indicator
• I (x , x’) additive epsilon-indicator (Iε+)                         

[Laumanns et al. 2002] [Zitzler et al. 2004]
• I (x , P\{x}) exponential approach

• Note
• Extreme points of the trade-off surface
• Drawback of the epsilon-dominance

[Hernandez-Diaz et al. 2007]

38
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Indicator-Based EA (IBEA)
[Zitzler et al. 2004]

• Initialization initial population P

• Fitness assignment quality indicator I (Iε+)
• Fitness (x) = I (x , P\{x})

• Diversity preservation none

• Selection binary tournament

• Variation crossover and mutation

• Replacement remove the worst individual and update fitness 
values until |P| = N

• Elitism archive A of potentially efficient solutions

• Output archive A

39
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Non-dominated Sorting GA (NSGA-II)
[Deb et al. 2002]

• Initialization initial population P

• Fitness assignment non-dominated sorting
• Population divided into fronts
• Fitness (x) = index of the front x belongs to

• Diversity preservation crowding distance (objective space)

• Selection binary tournament

• Variation crossover and mutation

• Replacement N worst individuals are removed

• Elitism archive A of potentially efficient solutions

• Output archive A
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Simple Elitist EA (SEEA)

• Initialization initial population P

• Fitness assignment none

• Diversity preservation none

• Selection random individual from A until |P| = N

• Variation crossover and mutation

• Replacement generational

• Elitism archive A of potentially efficient solutions

• Output archive A
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Solution Encoding

Random keys [Bean 1994]

• To each visited node: a random key x Є [0,1[

• Random key of v1 (depot): x1 = 0

• Non-visited node: special value

• If xi < xj, vj comes after vi

Example:
Node v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Key 0 0.7 - 0.3 - 0.8 0.2 - 0.5 -

42

Î Cycle = (v1, v7, v4, v9, v2, v6)

Î v3, v5, v8, v10: assigned to a visited node so that the cost is minimum
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create archive A with

non-dominated sol. of P
generate initial 
population P

random selection on A binary tournament 
selection on P

variation operators
(crossover, mutation)

generational 
replacement

indicator-based
fitness assignment

merge and delete worst 
solutions one by one

update A with
non-dominated sol. of P

if a condition is satisfied, 
apply GENIUS on Pstop?return A

start

Phase 1 Phase 2
n

y

EA

HM

43
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Stochastic problems

•A. Liefooghe, M. Basseur, L. Jourdan, E-G. Talbi "Multi-Objective
Combinatorial Optimization for Stochastic Problems: an Application to the
Flow-Shop Scheduling Problem", EMO 2007, LNCS Vol. 4408, pp. 386-
400, Matsushima, Japan
•A. Liefooghe, L. Jourdan, M. Basseur, E-G. Talbi, Métaheuristiques pour 
le flow-shop sous incertitude, Revue d'Intelligence artificielle, Hermès, 
vol. 22, n°2, pp. 183-208, 2008. ISBN : 0992-499X 
•A. Liefooghe, L. Jourdan, E-G. Talbi, «Stochastic multi objective 
optimization », in preparation
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Outlines

• Work on the modelization of the problem: how to have robust
solutions for stochastic problems: incorporate the robustness in the
model

•Work on the resolution algorithms: make algorithms robust to noise

•Application on flowshop, VRP, …
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Evolutionary Optimization in Uncertain Environments

4 classes:

Noisy objective function

Robustness
• Variation on decision variables
• Variation on environmental parameters

Approximated objective function (costly or unavailable function)

Time-varying objective function (dynamic environments, see next 
part)

[Jin & Branke 2005]
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Noisy Objective Function

x2

x1decision space

f2

f1objective space
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Variation on Decision Variables

x2

x1decision space

f2

f1objective space
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Variation on Environmental Parameters

x2

x1decision space

f2

f1objective space
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EMO for Uncertain Single-objective Problems

Searching for robust solutions

A common (single-objective) approach
• Unique objective: expected objective function

Multi-objective approach
• Objective 1: expected value
• Objective 2: variance/Stardand deviation/Entropy

Î Performance and robustness treated as separate goals

Similar techniques have been applied to solve uncertain MOPs
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Stochastic Multi-objective Programming

Multi-objective approaches

Stochastic approaches

From stochastic to deterministic objective

Expected value [White 1982]

Minimum variance [White 1982]

Both (number of objectives multiplied by 2)

[Caballero et al. 2003]

Stochastic 
multi-objective 

problem

Deterministic 
multi-objective 

problem

Deterministic 
mono-objective 

problem

Stochastic 
multi-objective 

problem

Stochastic 
mono-objective 

problem

Deterministic 
mono-objective 

problem
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EMO for Uncertain MOPs

Noisy objective function
• Probabilistic Pareto dominance [Teich 2001] [Hughes 2001]
• Modified ranking (average + variance) in NSGA-II [Babbar 2003]
• Epsilon-based approach [Basseur & Zitzler 2006]

Robustness
• Variation on decision variables

– Average value per objective [Deb & Gupta 2006]
• Variation on environmental parameters

– none

Existing approaches
• Assumption of specific properties on probability distribution
• Experimented on academic continuous MOPs
• Performance assessment forgets about the uncertainty
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Uncertainty Handling

Deterministic case
• A single outcome vector z Є Z per feasible solution x Є X
• f represents a deterministic mapping from X to Z
• z = f(x) = ‘true’ evaluation of x

Stochastic case
• Each time a solution is evaluated, the outcome vector can potentially 

map to a different point of the objective space
• f does not represent a deterministic mapping from X to Z
• ‘true’ evaluation of x unknown
• No assumption on any probability distribution associated to the objective 

functions or the parameters
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Scenario-based Uncertainty Handling

Let S = {s1,s2,…,sp} be a finite set of independent and equally 
probable scenarios

To each solution x Є X is now associated a sample of objective 
vectors {z(1),z(2),…,z(p)}, where z(i) represents the outcome vector of x
if scenario si occurs

Some issues:

The number of available scenarios is often limited in practice
• Be aware of performance evaluation

Difficult to determine a good sample size
• Trade-off between a fine accuracy and a reasonable time consumption
• Here, we assume a user-given sample size
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Scenario-based Uncertainty Handling

x2

x1decision space

one feasible 
solution

f2

f1objective space

unknown true 
evaluation

one 
evaluation

potential 
evaluation space

s1

s2

s3

s4
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VRPSD: search for robust solution
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VRP Output

Depot

Customers 

Routes

Demand
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Stochastic VRP

• One or several components of VRP are random
variables and unknown.

• SVRP Variants
• Stochastic demands VRPSD: the customer demands are 

random variables [Taillman 1969].
• Stochastic customers VRPSC: the presence of the

customers has probability [Jézéquel 1985].
• Stochastic customers and demands VRPSCD: combination

between VRPSD and VRPSC [Jézéquel 1985].



59Vehicle Routing Problem with stochastic
Demands VRPSD

• Customer demands are 
• Uncertain.
• Random variables.
• depend on probability distribution Normal distribuion, uniform distribution 

.....
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Uncertainty of Demands in VRPSD
•Uniform distribution:

• pij is between two values.

Exponential distribution:
• Break down, repair.....

Normal distribution:
• Human factors.
• Unknown or uncontrollable factors.
• Parameters described in a vague.   

Long-normal distribution:           
• Uncertainties are all taken into account simultaneously .       
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Real life Examples

•Milk distribution: distributing uncertain amount of milk to each
customer.

•Waste collection: collecting uncertain amount of waste from each
waste node.

•Merchandise routing: selling uncertain amount of merchandise to 
each costumer.
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Robust Model for VRPSD

Two suggested models:

First Model:

zMinimize the average distance of the route.
zMinimize the Standard Deviation of the distance of the route.

Second Model:

zMinimize the average distance of the route.
zMinimize the Entropy of the distance.

• Taking into account the probability of the demands.
• -∑pi*ln(pi)‏
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First results
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Actually

Definition of a protocole comparison, experiment on larger datasets
(grid power ☺ )
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MO Flowshop
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Flow-shop: deterministic model

• N jobs to schedule on M machines

• Machines are critical resources

• 2 objectives to optimize (minimize)
• Makespan (Cmax)
• Total tardiness (T)

_

M1

M2

M3

Cmax

T
_
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Flow-shop: sources of uncertainty

• Due dates (dj)
• Interval [dj

1,dj
2]

• Dynamic variations

• Processing times (pi,j)
• Breakdowns
• Human factors
• Unknown / uncontrollable parameters
• …

Proactive stochastic approach where processing times are 
represented by random variables
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x2

x1Decision space

f2

f1Objective space

True 
evaluation

One 
evaluation

Potential 
evaluation space

Feasible 
solution
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x2

x1Decision space

Feasible 
solution

f2

f1Objective space

True 
evaluation

One 
evaluation

Potential 
evaluation space

69

Average 
evaluation
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x2

x1Decision space

Feasible 
solution

f2

f1Objective space

True 
evaluation

One 
evaluation

Potential 
evaluation space

70

p1

p2

p3

p4
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The definition of Robust solution

decision space objective space

x2

x1 f1

f2

A

B

A

B

The Robust solution is less sensitive to the perturbations at its
neighborhood. [Deb & Gupta 2006]

B is more robust than A
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Motivation for Robust VRPSD

•Having Robust solution 
• Less randomness and less sensitive 

to perturbation:
– smaller potential evaluation

space.

•Smaller potential space:
• Being closer to the unknown true

evaluation.

•One of the common methods to have a 
robust solution is to  Optimize the second 
order moment or higher order moments of
the evaluation function[Jin & Sendhoff
2003]

potential 
evaluation space

unknown true 
evaluation

Objective Space

Objective Space

unknown true 
evaluation

potential 
evaluation space
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Proposed Search Methods

A user-given IZ-indicator is assumed

Nine uncertainty-handling IX-indicators
• Five general-purpose approaches (can be used outside IBEA)
• Four IBEA-related approaches

These strategies allow the statement of different kinds of     DM 
preferences

Î Nine uncertainty-handling IBEAs
• Uncertainty-handling IX-indicators used in the fitness assignment 

scheme of IBEA
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Proposed Search Methods

A user-given IZ-indicator is assumed

Nine uncertainty-handling IX-indicators
• Five general-purpose approaches (can be used outside IBEA)
• Four IBEA-related approaches

These strategies allow the statement of different kinds of     DM 
preferences

Î Nine uncertainty-handling IBEAs
• Uncertainty-handling IX-indicators used in the fitness assignment 

scheme of IBEA
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Uncertainty-handling Indicators

IZ-indicator
Example: additive ε-indicator [Zitzler et al. 2003]

• Iε+(z,z’) = maxi Є {1,…,n} (zi – zi’)
• Minimum value by which a point z can or                         has to be 

translated to weakly dominate z’

IX-indicator
In the deterministic case, it is a commonplace

• IX(x,x’) = IZ(f(x),f(x’))

IXN-indicator (fitness values)
Different techniques exist [Zitzler & Künzli 2004]

Example: summing approach
• IXN(x,P\{x}) = ∑x’ Є P\{x} IX(x’,x) (P: current population)

Iε+(z,z’) > 0

Iε+(z’,z) > 0

z

z’

objective space
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Solution-level Binary Indicators

Single scenario indicator
IX(1)(x,x’) = IZ(z(1),z’(1))
Best-case objective vector indicator
IX(Z-best)(x,x’) = IZ(zbest,z’best)
zk

best: minimum of {zk
(1),…,zk

(p)} ∀ k Є {1,…,n}
Worst-case objective vector indicator
IX(Z-worst)(x,x’) = IZ(zworst,z’worst)
zk

worst: maximum of {zk
(1),…,zk

(p)} ∀ k Є {1,…,n}
Average-case objective vector indicator [Babbar et al. 2003][Deb et al. 2006]

IX(Z-avg)(x,x’) = IZ(zavg,z’avg)
zk

avg: average of {zk
(1),…,zk

(p)} ∀ k Є {1,…,n}
Median-case objective vector indicator
IX(Z-med)(x,x’) = IZ(zmed,z’med)

Î convert the objective vector sample set into a single point
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Solution-level Binary Indicators

x2

x1decision space

f2

f1objective space

s1

s2

s3

s4

z(1)z(2)

z(4)
z(3)

x

zworst

zbest

z(1)

zavg

zmed
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Binary Indicators based on IZ-values 

Given an IZ-indicator and two solutions x and x’ Є P, let us define 
the following sample set

IZ-set = { IZ(z(1),z’(1)) , IZ(z(2),z’(2)) , … , IZ(z(p),z’(p)) }

Best-case Indicator

IX(best)(x,x’): minimum value of IZ-set

Worst-case Indicator

IX(worst)(x,x’): maximum value of IZ-set

Average-case Indicator

IX(avg)(x,x’): average value of IZ-set

Median-case Indicator

IX(med)(x,x’): median value of IZ-set

Î convert the IZ-values into a single one
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Performance Assessment

Approximating the efficient set of a deterministic MOP is already bi-
objective

• Good convergence and diversity properties
• Large literature: performance metrics…

Uncertain MOP
• Robustness as a third goal?
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Performance Assessment

This issue has not been satisfyingly addressed yet 
• Uncertainty forgotten (‘true’ scenario assumed)
• Mean over a sample of objective vectors

Main drawbacks
• In practice, not a unique (deterministic, average-case or random) 

scenario
• Re-evaluated set may contain both dominating and dominated solutions
Î Some state-of-the-art performance metrics may be useless
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Performance Assessment

A single simulation run per algorithm

Let us define two output sets of two algorithms A and B

Ai = {x1,x2,…,xa}

Now, given a xj and q scenarios

f(xj) = {zj(1),zj(2),…,zj(q)}

Then

ZA = {z1(1),z1(2),…,z1(q),
z2(1),z2(2),…,z2(q),
…
za(1),za(2),…,za(q)}

Bi = {x’1,x’2,…,x’b}

f(x’j) = {z’j(1),z’j(2),…,z’j(q)}

ZB = {z’1(1),z’1(2),…,z’1(q),
z’2(1),z’2(2),…,z’2(q),
…
z’b(1),z’b(2),…,z’b(q)}

s1 sq
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Performance Assessment – Protocol 1

x2

x1decision space

f2

f1objective space

s1

s2

s3

s4

z(1)z(2)

z(4)
z(3)

x

zworst

zbest

z(1)

zavg

zmed
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Performance Assessment – Protocol 1

x2

x1decision space

f2

f1objective space

z(1),zbest, zworst, zavg or zmeddeterministic or 
random scenario

Î convert the objective vector sample set into a single point
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Performance Assessment – Protocol 1

f2

f1

f2

f1 objective spaceobjective space

metrics taking both dominating
and dominated sol. into account

exp: distance to PO*

dominance depth (n.-d. sorting)
(or dominance rank, count)

Î average , sum?

front 1

front 2

front 3

front 4
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Performance Assessment – Protocol 1

ZAi vs. ZBi → 1 performance measure (metric, ranking)

Ai vs. Bi→ 1 performance measure

A vs. B → l performance measures (1 per run)
Î statistical test (mean, variation…)

A = {A1,A2,…,Ai,…,Al}

Ai = {x1,x2,…,xj,…,xa}

ZAi= {z*1,z*2,…,z*j,…,z*a}

B = {B1,B2,…,Bi,…,Bl}

Bi = {x’1,x’2,…,x’j,…,x’b}

ZBi= {z’*1,z’*2,…,z’*j,…,z’*a}

(1), best, worst, avg, med
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Performance Assessment – Protocol 2

scenario per scenario comparison (metrics, ranking?)
f2

f1objective space
scenario 2

f2

f1objective space
scenario 1

A > B or B > A ? A > B or B > A ?
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Performance Assessment – Protocol 2

ZAi(k) vs. ZBi(k) → 1 performance measure (metric, ranking?)

Ai vs. Bi→ q performance measures (1 per scenario)
Î statistical test (according to scenario sk, A > B?)

A vs. B → (q*l) performance measures (q per run)
Î number of scenarios where A > B, A ≈ B, A < B

A = {A1,A2,…,Ai,…,Al}

Ai = {x1,x2,…,xa}

ZAi(k)= {z1(k),z2(k),…,za(k)}

B = {B1,B2,…,Bi,…,Bl}

Bi = {x’1,x’2,…,x’b}

ZBi(k)= {z’1(k),z’2(k),…,z’b(k)}

according to scenario sk
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Experiments (in progress)

Problems

8 benchmark test instances 
(from 20*5 to 50*20)

5 types of uncertainty on the 
processing times

• uniform, exponential, normal, 
log-normal, various 
(distribution ≠ on each 
machine)

2 levels of uncertainty
• + or - 10%, + or – 20%

Î 80 configurations

Algorithms

10 algorithms

10 runs per algorithm

2 sample sizes            (except 
for I(1))

• |S| = 10
• |S| = 20

Stopping criteria
• max. number of evaluations

Î 200 configurations

Î 16000 simulation runs
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Dynamic optimization

M. Khaoudjia, L. Jourdan, E-G. Talbi. A particle swarm for 
the resolution of the Dynamic Vehicle Routing, META’08, 
2008..
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ProblemProblem

The Management of  transport and the logistic chain in companies.
How to reduce the cost of the transporting of the products? 

Rising of the fuel prices
Impressive competition 
Emerging Trends
e-Commerce
Quickness and short delivery time (real time)

Dynamic elaboration of vehicle tours

DVRP: Dynamic Vehicle Routing Problem
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Vehicle Routing Problem

Background : 
• Vehicles with finite capacity, domiciled in the same depot.
• All the customers are known before the planning of  tours. 

Objective:
• Identify a set of tours that minimizes the cost of the traveled distance.

Complexity : NP-complete Class Customer

Depot

Tour 1

Tour 2
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Dynamic Vehicle Routing Problem

Background : 
• The customers are not all known (dynamics).
• The vehicles are already committed on roads.

Objective:
• Insert the new orders in  the existing plan of routing.
• Minimize the traveled distance.
• Complexity: NP-complete Class.

92
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Depot
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Depot

94

C6 C5

C2

C1

C3C4

C8

C7



95

Depot
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Adaptation of PSO for the DVRP 

Adapt a metaheuristic designed for continuous problems 

Adopt a suited coding for the problem 

Taking into account the time

100
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1APSOAPSO--DVRP : Adaptive DVRP : Adaptive ParticleParticle SwarmSwarm

OptimizationOptimization

Encoding of a particle Xi(t)
• Customers

• Start time of vehicles

101

C1

p1t1 s1

C2

p2t2 s2

Ci

ti pi si

Cn

pn sn

Cn

tn pn sn

Tv1

V1

Tv2

V2

Tv3

V3

Tvi

Vi

Tvn

Vn

Ti: Tour,   Pi : Location,  Si: (Y: served, N: unserved)  Ci : Customer,

Vi : Vehicle,  Tvi : Departure Time from the depot 
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OptimizationOptimization

102

Tour 1

Tour 2

C4
2 1 Y

C2
22 N

C3
1 2 Y

C1
11 Y

C5
13 Y

T0
V1

T0
V2

T1
V3

-1
V4

Tour 3

C1 C3

C4 C2

C5

C1 C3

Depot : 0

dépôt0

0

0

0

C4 C2

0

C50

Customers

Vehicles
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MovementMovement ofof particleparticle (2)(2)

103

1 1 1 2 2

News tours

Xi(t+1)

C4

C2

Depot

C3

C5

Tour 1

C1 C3

C4

C2

C5

C1

0 0

0 0

Tour 2

T0
V1

T0
V2

-1
V3

-1
V4

C4
2 1 Y

C2
31 N

C3
1 2 Y

C1
11 Y

C5
22 N

Change the tour of the unserved customers 

Update the commitment

Vehicles

v1
v2
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104

C5

C4

C1

C3

C2

Depot

C2

Depot

C5
C1

Xi(t+1)Xi(t) Vi(t+1)

C3C4

v2

v1

v1

v3

v2

Movement of particle (3)
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Simulation/Planning  

Tt1 t2 t3 t4 t5 = Tco t6

{S1, S2, S3}

APSO-DVRP

T+1

T :  Planning horizon
Tco: Cut-off time. The suspension time  of  new orders.
Si : static orders
Di: dynamic ordrers
Ri: Orders dismissed to the next working day

105

t7t0

APSO-DVRP

D4, D5D1 D6 R1, R2, R3,R4D7,D8

APSO-DVRP… …………

OVRP Optimization VRP Optimization

[Kilby&al, 98]

D2, D3
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106106

Customers

Event Scheduler

Static Problem

APSO for the
resolution of
OVRP/VRP

vehicles

GenerateProduces
Static

Solutions 

Input

Commit orders

Diagram of the proposed approach

Place orders
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107

T = 0

Generate a 
static VRP 

T< Tday

T< Tco

PSO-OVRP
resolution

PSO-VRP 
resolution

T = T+ 
Tslice

Commit orders

Collect the orders appeared in 
the last Tslice, and those not 

yet served

No

Yes No
Yes

end

Begin

Static Orders

Events
Scheduler
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Encode the
particle
swarm

Compute Time
< Tslice

Evaluate each particle for 
OVRP/VRP

Update the position  of each
particle

Initialize the velocity on 
each dimension 

Reset  the swarm to 
the best Position Gbest

Give the solution to 
the decision maker

Update the Gbest

No
Yes

Update the Pbest

Static VRP

end

Begin
PSO –
OVRP/VRP
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Example of results
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Results
Metaheuristics

Benchmarks APSO AS [61]] GA [41] TS [41] 

Min Average Min Average Min Average Min Average Ratio 

c50 575,889 591,208 631,3 681,86 570,89 593,42 603,57 627,9 -0,87%

c75 1029,75 1166,85 1009,36 1042,39 981,57 1013,45 981,51 1013,82 -4,83%

c100 1111,7 1158,12 973,26 1066,16 961,1 987,59 997,15 1047,6 -
15,66%

c100b 947,704 1111,89 944,23 1023,6 881,92 900,94 891,42 932,14 -7,45%

c120 1276,88 1450,82 1416,45 1525,15 1303,59 1390,58 1331,22 1468,12 +2,09
%

c150 1542,86 1618,21 1345,73 1455,5 1348,88 1386,93 1318,22 1401,06 -
17,04%

c199 1962,39 2036,62 1771,04 1844,82 1654,51 1758,51 1750,09 1783,43 -
18,60%

f71 279,519 368,053 311,18 358,69 301,79 309,94 280,23 306,33 +0,25
%

f134 15875 17629,6 15135,51 16083,56 15528,81 15986,84 15717,9 16582,04 -4,88%

tai75a 1816,07 1992,29 1843,08 1945,2 1782,91 1856,66 1778,52 1883,47 -2,11%
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Conclusion
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Conclusion

• Wide aera of research in optimization

• Contributions in problem modelization, new hybridizations, …

•Open issues: machine learning cooperation, stochastic and
dynamic multi objective optimization
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