Enhancing the Urban Road Traffic with Swarm Intelligence: A Case Study of Córdoba City Downtown

José García-Nieto¹, Enrique Alba¹, Ana Carolina Olivera² jnieto@lcc.uma.es

> University of Málaga (Spain)¹ <u>University Nacional</u> del Sur (Argentina)²

Overview

- 1. Introduction
- 2. The Problem: Optimal Cycle Programs of Traffic Lights
- 3. Optimization Strategy
- 4. Experimental Framework
 - 1. Scenario Instance: Córdoba
 - 2. Parameter Settings
- 5. Results and Analyses
 - 1. Performance Analysis
 - 2. Analysis of Obtained Cycle Programs
- 6. Conclusions and future work

Introduction

- Nowadays, the excessive vehicular traffic in current cities provokes severe problems related to: pollution, congestion, security, noise, and many others
- Improving the flow of vehicles is a mandatory task
- <u>Traffic lights</u> are configurable devices that partially control the flow of vehicles
- Nevertheless, the increasing number of traffic lights require a highly complex scheduling

A great number of combinations (color states and phase durations) appear that should be considered (explored) by experts

Motivation:

Providing the experts with **automatic intelligent tools** to obtain optimized traffic lights schedules for large urban areas

Introduction

<u>Hypothesis:</u> Metaheuristics approaches (concretely PSO) **can find** successful schedules of traffic lights for **heterogeneous urban scenarios** in **reasonable time**

- Our proposal: A Swarm Intelligence approach (Particle Swarm Optimization) coupled with SUMO (Microscopic Simulator of Urban Mobility), to automatically search quasi-optimal solutions (traffic lights schedules)
- Case Study: realistic metropolitan area in the city center of Córdoba

Córdoba 22/11/2011

The Problem: Optimal Cycle Programs of TLs

- All traffic lights located in the same intersection are governed by a common program, e. g., the combination of color states during a cycle period is kept valid (it must follow specific traffic rules of intersections)
- Main objective: find optimized cycle programs (CP) for all the TLs in a given area. CPs are referred to the time span (or phase duration) a set of TLs, in a given intersection, keep their color states

As in real schedules, CPs are designed for established time periods with certain vehicle densities and speeds (rush hours, nocturne periods, etc.)

ISDA 2011

The Problem: Optimal Cycle Programs of TLs

 Solution encoding: vector of integers where each element represents a phase duration of one state of TLs in intersections (SUMO structure of CPs)

 Adjacent intersections have to be also coordinated in order to improve the global flow of vehicles

The Problem: Optimal Cycle Programs of TLs

Fitness function: maximizing the number of vehicles that reach their destinations and minimizing the global trip time of all the vehicles, during the simulation time

$$fitness = \frac{TT + SW + (NV * ST)}{V^2 + P}$$

Values collected during the simulation process

- V : Number of vehicles that reach their destinations TT: Global trip time of all the vehicles ST: Simulation time NV: Vehicles that do not reach their destinations
- SW: Mean time each vehicle must stop and wait
- P: Proportion of colors in each phase and intersection

$$P = \sum_{k=0}^{tl} \sum_{j=0}^{ph} s_{k,j} * \left(\frac{G_{k,j}}{r_{k,j}}\right)$$

tl : Intersection ph: phase G: Number of traffic lights in green r: Number of traffic lights in red S: phase duration

Optimisation Strategy

Optimization algorithm (PSO) with Simulation procedure (SUMO)

Algorithm 1 Pseudocode of Standard PSO 2007 for OCP

```
1: initializeSwarm()
```

2: while $g < \max$ Iterations do

```
3: for each particle x_g^i do
```

4: b_g^n =bestNeighbourSelection(x_g^i, n)

5:
$$v_{g+1}^i =$$
updateVelocity $(w, v_g^i, x_g, \varphi_1, p_g, \varphi_2, b_g^n)$ //Eq. 4

6:
$$x_{g+1}^i = Q(updatePosition(x_g^i, v_{g+1}^i))$$
 //Eqs. 3 and 5

7: evaluate (x_{g+1}^i) //SUMO Simulation and Eq. 1

8:
$$p_{g+1}^i = \text{update}(p_g^i)$$

9: end for

10: end while

Mid-Thread quantisation $Q(x) = \Delta \cdot \lfloor x/\Delta + 0.5 \rfloor$

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Scenario Instance: Córdoba

- Scenario generated from actual information in real digital maps
- A urban area of approximately 0.75km² comprising: Ronda de los Tejares, Alfaros, Claudio Marcero, and Cervantes street
- 30 intersections each one of them including from 4 to 16 TLs. A total number of 152 TLs (solution dimension). Simulation time 500 s
- Three scenario versions with traffic densities: 100, 300, and 500 vehicles

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Experimental Setup

Comparison of <u>Standard PSO 2007</u>, <u>Differential Evolution (DE)</u>, <u>Random Search (RAND)</u>, and <u>SCPG</u> (deterministic cycle program generator provided by SUMO according to human expert information)

Implementation in C++ MALLBA Library [online available]

- Standard PSO and DE, with populations of 100 vector solutions and performing 200 iteration steps, e. g. total number of 20.000 function evaluations (simulations)
- Random Search also performing 20.000 function evaluations
- Phase durations (variables) initialized in the range of [6,31]

Solver	Parameter	Value
PSO	Swarm Size	100
	Particle Size (N. Traffic Lights)	152
	Local and Social Coefficients ($\varphi_1 = \varphi_2$)	2.05
	Neighborhood size (n)	3
	Inertia Weight (w)	0.7213
	Population Size	100
DE	Individual Size (N. Traffic Lights)	152
	Mutation Constant (F)	0.5
	Crossover Probability (Cr)	0.9

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Performance Comparison

- PSO obtains the best results in general, followed by DE, SCPG (*) and Random Search
- Statistically, each distribution pair (Wilcoxon) obtained significant differences (α=0.05), excepting for DE and RAND with (500 vehicles)
- The higher the traffic density, the greater the benefits of using PSO

Number of Vehicles

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Performance Comparison

- The global trip time becomes shorter as the PSO approaches the stop condition (improvement of 17.45% respect to SCPG solutions)
- The number of vehicles that reach their destinations increases along with the search progress

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Performance Comparison

- Simulation snapshots of resulted cycle programs generated by PSO and SCPG with 500 vehicles (initial traffic density)
- A low traffic density can be observed in PSOs' solutions, but traffic jams appeared in SCPG ones

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Conclusions

- We have proposed a Swarm Intelligent approach that, coupled with the SUMO traffic simulator, is able to find successful cycle programs of traffic lights. In concrete, we have focused on a metropolitan area of the of Córdoba city
- ✤ After the experimentation, we test our initial <u>hypothesis</u>:
 - Our proposal performed efficiently for the studied instance. In comparison with DE, Random Search, and SCPG, our PSO showed the best performance
 - ✤ PSO scales adequately in terms of traffic density with: 100, 300, and 500
 - Obtained CPs by PSO can improve both, the global trip time and the number of vehicles that reach their destinations
- Future work:
 - Tackling the problem with other metaheuristics
 - ✤ New large instances as close as possible to real scenarios of a whole city

Scenario Instance Experimental Setup Performance comparisons Analysis of Obtained Cycle Programs

Thank you so much!!

