
Hong Kong, June 1-6, 2008 1 / 24

Finding Liveness

Errors with ACO

Francisco Chicano

and Enrique Alba

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Hong Kong, June 1-6, 2008 2 / 24

• Nowadays software is very complex

• An error in a software system can imply the loss of lot of money

…

… and even human lifes

• Techniques for proving the correctness

of
the software are required

•Model checking

→ fully automatic

Motivation
Motivation

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Hong Kong, June 1-6, 2008 3 / 24

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩ =

Explicit State

MC State Explosion Heuristic MC

Safety & Liveness

Properties

Explicit State Model Checking

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Hong Kong, June 1-6, 2008 4 / 24

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩ =

Explicit State

MC State Explosion Heuristic MC

Safety & Liveness

Properties

Explicit State Model Checking

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Hong Kong, June 1-6, 2008 5 / 24

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩

Using Nested-DFS

=

Explicit State

MC State Explosion Heuristic MC

Safety & Liveness

Properties

Explicit State Model Checking

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Hong Kong, June 1-6, 2008 6 / 24

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

• Number of states very large

even for small models

• Example: Dining philosophers with n

philosophers

→ 3n

states
20 philosophers → 1039 GB

for storing the states

•

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Explicit State MC

State Explosion

Heuristic MC

Safety & Liveness

Properties

Hong Kong, June 1-6, 2008 7 / 24

• The search for errors can be directed by using heuristic information

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based

heuristics

• Structural

heuristics

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3
2

0

3

5

1

2

4
0

7
6

Heuristic value

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Heuristic Model Checking

• Deadlock-detection

heuristics

• State-dependent

heuristics

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

Properties

Hong Kong, June 1-6, 2008 8 / 24

Safety property

• Counterexample ≡

path to accepting state

• Graph exploration algorithms can be used: DFS

and BFS

Liveness

property

• Counterexample

≡

path to accepting cycle

• It is not possible to apply DFS or BFS

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

Safety and Liveness

Properties

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

Properties

Hong Kong, June 1-6, 2008 9 / 24

• Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

• They can find “good”

solutions with a “reasonable”

amount of resources

Single solution Population

Metaheuristic

Algorithms

Metaheuristic

Algorithms

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

Hong Kong, June 1-6, 2008 10 / 24

Single solution

Iterative
Improvement

Iterated Local
Search

Guided Local
Search

Variable
Neighborhood

 Search

Greedy Randomized
Adaptive Search

Procedure

Tabu

 Search
Simulated
Annealing

Evolutionary
Computation

Scatter
Search

Estimation of
Distribution
Algorithms

Ant Colony
Optimization

Particle Swarm
Optimization

Population

Metaheuristics

Classification

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

Hong Kong, June 1-6, 2008 11 / 24

•

Ant Colony Optimization (ACO) metaheuristic

is inspired by the
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

ACOhg-live

Hong Kong, June 1-6, 2008 12 / 24

• The ant selects its next node stochastically

• The probability of selecting one node
depends on the pheromone trail and the
heuristic value (optional) of the edge/node

• The ant stops when a complete
solution is built

i

j

l

m

k

Ni

τij

ηij

kTrail

Heuristic

ACO: Construction Phase

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

ACOhg-live

Hong Kong, June 1-6, 2008 13 / 24

• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

ACO: Pheromone Update

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

with

Metaheuristics

ACO ACOhg

ACOhg-live

with

Hong Kong, June 1-6, 2008 14 / 24

The length of the ant
paths is limited by λant λant Objective node

What if…?

Starting nodes for path construction change

After σs

steps

Second stage Third stage

Initial node

ACOhg: Huge Graphs Exploration

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

Hong Kong, June 1-6, 2008 15 / 24

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

First

phase

Hong Kong, June 1-6, 2008 16 / 24

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

Second

phase

Hong Kong, June 1-6, 2008 17 / 24

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

Hong Kong, June 1-6, 2008 18 / 24

•We selected 7 Promela

models

for the experiments

• Parameters for ACOhg-live

• ACOhg-live implemented in HSF-SPIN

• 100

independent executions

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q) ^ □(r → ◊s)
giopij 740 yes i+3(j+1) □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)

Promela

Models

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters Results Discussion

Parameter msteps colsize λant σs ξ a ρ α β

1st phase
100

10 20
4

0.7
5 0.2 1.0 2.0

2nd phase 20 4 0.5

Hong Kong, June 1-6, 2008 19 / 24

•We selected 7 Promela

models

for the experiments

• Parameters for ACOhg-live

• ACOhg-live implemented in HSF-SPIN

• 100

independent executions

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q) ^ □(r → ◊s)
giopij 740 yes i+3(j+1) □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)

Promela

Models

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters Results Discussion

i=2,6,10

j=2

j=8,14,20

Parameter msteps colsize λant σs ξ a ρ α β

1st phase
100

10 20
4

0.7
5 0.2 1.0 2.0

2nd phase 20 4 0.5

Hong Kong, June 1-6, 2008 20 / 24

Results I: Comparison of Heuristic Information

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

• Comparison of Hham

and Hfsm

Models & parameters

Results

Discussion

Hong Kong, June 1-6, 2008 21 / 24

Results II: Comparison of ACOhg-live and NDFS

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

• Comparison of ACOhg-live and NDFS

Models & parameters

Results

Discussion

Hong Kong, June 1-6, 2008 22 / 24

How to use ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results Discussion

Model

ACOhg-live

NDFS

Large

model

or
a short couterexample

is

needed

Small

model

and
any

counterexample
is

needed

fast

•

ACOhg-live should be used in the first/middle stages

of the software development,
when software errors are expected

•

ACOhg-live can also be used in other phases of the software development for testing
 concurrent software

Hong Kong, June 1-6, 2008 23 / 24

•

ACOhg-live is the first algorithm

based on metaheuristics

(to the best of our
knowledge) applied to the search for liveness

errors in concurrent models

•

The heuristic function based on finite state machines

is a better guide in the second
phase of ACOhg-live

•

ACOhg-live is able to outperform Nested-DFS

in efficacy and efficiency in the search
for liveness

errors

Conclusions

Future Work
•

Use of Strongly Connected Components

of the never claim graph for improving the

search (in progress)

• Analysis of parameterization for reducing the parameters

• Include ACOhg-live into JavaPathFinder

for finding liveness

errors in Java programs

Conclusions & Future Work

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Conclusions & Future Work

Hong Kong, June 1-6, 2008 24 / 24

Finding Liveness

Errors with ACO

Thanks for your attention !!!

	Finding Liveness Errors with ACO
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

