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• Nowadays software is very complex

• An error in a software system can imply the loss of lot of money
 

…

… and even human lifes

• Techniques for proving the correctness
 

of
the software are required

•Model checking
 

→ fully automatic
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Intersection Büchi
 

automaton

• Objective: Prove that model
 

M satisfies the property  :  

• HSF-SPIN: the property f is an LTL formula
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• Number of states very large
 

even for small models

• Example: Dining philosophers with n
 

philosophers
 

→ 3n

 

states
20 philosophers → 1039 GB

 
for storing the states

•
 

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem
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• The search for errors can be directed by using heuristic information

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based
 

heuristics

• Structural
 

heuristics
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• Deadlock-detection
 

heuristics

• State-dependent
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Safety property

• Counterexample ≡
 

path to accepting state

• Graph exploration algorithms can be used: DFS
 

and BFS

Liveness
 

property

• Counterexample
 

≡
 

path to accepting cycle

• It is not possible to apply DFS or BFS 
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• Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

• They can find “good”
 

solutions with a “reasonable”
 

amount of resources

Single solution Population

Metaheuristic
 

Algorithms

Metaheuristic
 

Algorithms
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Single solution

Iterative 
Improvement

Iterated Local 
Search

Guided Local 
Search

Variable 
Neighborhood

 Search

Greedy Randomized 
Adaptive Search 

Procedure

Tabu

 Search
Simulated 
Annealing

Evolutionary 
Computation

Scatter 
Search

Estimation of 
Distribution 
Algorithms
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•
 

Ant Colony Optimization (ACO) metaheuristic
 

is inspired by the 
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction
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• The ant selects its next node stochastically

• The probability of selecting one node 
depends on the pheromone trail and the
heuristic value (optional) of the edge/node

• The ant stops when a complete 
solution is built

i
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Heuristic

ACO: Construction Phase
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• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

ACO: Pheromone Update
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The length of the ant 
paths is limited by λant λant Objective node

What if…?

Starting nodes for path construction change

After σs

 

steps

Second stage Third stage

Initial node

ACOhg: Huge Graphs Exploration
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• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live
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•We selected 7 Promela
 

models
 

for the experiments

• Parameters for ACOhg-live

• ACOhg-live implemented in HSF-SPIN

• 100
 

independent executions

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q)  ^ □(r → ◊s) 
giopij 740 yes i+3(j+1) □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)

Promela
 

Models
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Results I: Comparison of Heuristic Information
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Results II: Comparison of ACOhg-live and NDFS
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How to use ACOhg-live
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Results   Discussion

Model

ACOhg-live

NDFS

Large
 

model
 

or
a short couterexample

is
 

needed

Small
 

model
 

and
any

 
counterexample
is

 
needed

 
fast

•
 

ACOhg-live should be used in the first/middle stages
 

of the software development, 
when software errors are expected

•
 

ACOhg-live can also be used in other phases of the software development for testing
 concurrent software
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•
 

ACOhg-live is the first algorithm
 

based on metaheuristics
 

(to the best of our 
knowledge) applied to the search for liveness

 
errors in concurrent models

•
 

The heuristic function based on finite state machines
 

is a better guide in the second 
phase of ACOhg-live

•
 

ACOhg-live is able to outperform Nested-DFS
 

in efficacy and efficiency in the search 
for liveness

 
errors

Conclusions

Future Work
•

 
Use of Strongly Connected Components

 
of the never claim graph for improving the 

search (in progress)

• Analysis of parameterization for reducing the parameters

• Include ACOhg-live into JavaPathFinder
 

for finding liveness
 

errors in Java programs

Conclusions & Future Work
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Finding Liveness
 

Errors with ACO

Thanks for your attention !!!
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