
1 / 28

2007

London, United Kingdom, July 7-11, 2007

Finding Safety Errors with ACO

Enrique Alba

and Francisco Chicano

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

2 / 28

2007

London, United Kingdom, July 7-11, 2007

• Nowadays software is very complex

• An error in a software system can imply the loss of lot of money

…

… and even human lifes

• Techniques for proving the correctness

of
the software are required

• Model checking

→ fully automatic

Motivation
Motivation

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

3 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩ =

Explicit State MC Safety Properties

State Explosion Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

4 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩ =

Explicit State MC Safety Properties

State Explosion Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

5 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f

∩

Using Nested-DFS

=

Explicit State MC Safety Properties

State Explosion Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

6 / 28

2007

London, United Kingdom, July 7-11, 2007

• Safety properties

are those expressed by an LTL formula of the form:

• Finding one counterexample ≡

finding one accepting state

• Classical algorithms for graph exploration can be used: DFS

and BFS

f

= □

p

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

Intersection automaton
Safety Properties
Deadlocks
Invariants
Assertions
…

Safety Properties

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Explicit State MC

Safety Properties State Explosion Heuristic MC

where p

is a past formula

7 / 28

2007

London, United Kingdom, July 7-11, 2007

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

• Number of states very large

even for small models

• Example: Dining philosophers with n

philosophers

→ 3n

states
20 philosophers → 1039 GB

for storing the states

•

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Explicit State MC

Safety Properties

State Explosion

Heuristic MC

8 / 28

2007

London, United Kingdom, July 7-11, 2007

•

The search for errors can be directed by heuristics using algorithms
like A*, IDA*, WA*

and Best-First

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based

heuristics

• Structural

heuristics

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3
2

0

3

5

1

2

4
0

7
6

Heuristic value

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Explicit State MC

Safety Properties

State Explosion Heuristic MC

Heuristic Model Checking

• Deadlock-detection

heuristics

• State-dependent

heuristics

9 / 28

2007

London, United Kingdom, July 7-11, 2007

• Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

• They can find “good”

solutions with a “reasonable”

amount of resources

Single solution Population

Metaheuristic

Algorithms

Metaheuristic

Algorithms

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

10 / 28

2007

London, United Kingdom, July 7-11, 2007

Single solution

Iterative
Improvement

Iterated Local
Search

Guided Local
Search

Variable
Neighborhood

 Search

Greedy Randomized
Adaptive Search

Procedure

Tabu

 Search
Simulated
Annealing

Evolutionary
Computation

Scatter
Search

Estimation of
Distribution
Algorithms

Ant Colony
Optimization

Particle Swarm
Optimization

Population

Metaheuristics

Classification

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

11 / 28

2007

London, United Kingdom, July 7-11, 2007

Single solution

Iterative
Improvement

Iterated Local
Search

Guided Local
Search

Variable
Neighborhood

 Search

Greedy Randomized
Adaptive Search

Procedure

Tabu

 Search
Simulated
Annealing

Evolutionary
Computation

Scatter
Search

Estimation of
Distribution
Algorithms

Ant Colony
Optimization

Particle Swarm
Optimization

Population

Genetic Algorithms

Alba & Troya, 1996

Godefroid

& Khurshid, 2002, 2004

Metaheuristics

Classification

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

12 / 28

2007

London, United Kingdom, July 7-11, 2007

•

Ant Colony Optimization (ACO) metaheuristic

is inspired by the
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

13 / 28

2007

London, United Kingdom, July 7-11, 2007

• The ant selects its next node stochastically

• The probability of selecting one node
depends on the pheromone trail and the
heuristic value (optional) of the edge

• The ant stops when a complete
solution is built

i

j

l

m

k

Ni

τij

ηij

kTrail

Heuristic

ACO: Construction Phase

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

14 / 28

2007

London, United Kingdom, July 7-11, 2007

• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

with

ACO: Pheromone Update

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

with

15 / 28

2007

London, United Kingdom, July 7-11, 2007

•

Existing ACO models cannot be applied

to the search for errors in concurrent
programs

The graph is very large, the construction of a complete solution could require
too much time and memory

In some models the number of nodes of the graph is used for computing the
initial pheromone values

• We need a new model

for tackling these problems: ACOhg

(ACO for Huge Graphs)

Constructs the ant paths and updates the pheromone values in the same way as
the traditional models

Allows the construction of partial solutions

Allows the exploration of the graph using a bounded amount of memory

The pheromone matrix is never completely stored

ACOhg: Motivation

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

16 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant
paths is limited by λant λant Objective node

What if…?

Initial node

ACOhg: Huge Graphs Exploration

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

17 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant
paths is limited by λant λant Objective node

What if…?

Expansion Technique: λant

changes

λant

= λant

+ δl

After σi

steps

Initial node Two alternatives

ACOhg: Huge Graphs Exploration

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

18 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant
paths is limited by λant λant Objective node

What if…?

Expansion Technique: λant

changes

λant

= λant

+ δl

After σi

steps

Missionary Technique: starting nodes for path construction change

After σs

steps

Second stage Third stage

Initial node Two alternatives

ACOhg: Huge Graphs Exploration

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

19 / 28

2007

London, United Kingdom, July 7-11, 2007

• The number of pheromone

trails increases during the search

• This leads to memory problems

• We must remove

some pheromone
trails from memory

Steps

Ph
er

om
on

es

Steps

Ph
er

om
on

es

Remove pheromone trails τij

below a given threshold τθ

Steps

Ph
er

om
on

es

Stage

In the missionary technique,
remove all pheromone trails

after one stage

ACOhg: Pheromones

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

20 / 28

2007

London, United Kingdom, July 7-11, 2007

• The fitness function must be able to evaluate partial solutions

• Penalties are added for partial solutions

and solutions with cycles

Partial solution
with cycle

Partial solution
without cycle

Complete solution

Total penalty Penalty constant for
partial solutions Penalty constant for

solutions with cycles
Path length

ACOhg: Fitness Function

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

21 / 28

2007

London, United Kingdom, July 7-11, 2007

• We selected 5 Promela

models

for the experiments

* Theoretical result

• For all except needham, the states do not fit into the main memory of the computer

Model LoC States Processes Safety
Property

giop22 717 unknown 11 Deadlock

marriers4 142 unknown 5 Deadlock

needham 260 18242 4 LTL formula

phi16 34 43046721* 17 Deadlock

pots 453 unknown 8 Deadlock

Promela

Models

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Models Parameters

Results

Previous Results

22 / 28

2007

London, United Kingdom, July 7-11, 2007

•

The ACOhg

model was implemented inside the MALLBA

library and then
included into the HSF-SPIN

model checker

• Fitness function: length of the path + heuristic + penalty for partial solutions

• Two variants: using no heuristic (ACOhg-b) and using it (ACOhg-h)

• Machine: Pentium 4 at 2.8 GHz with 512 MB

Parameter Value Parameter Value
Steps 100 ξ 0.5
Colony size 10 a 5
λant 10 ρ 0.8
σs 2 α 1.0
s 10 β 2.0

Parameters for ACOhg

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Models

Parameters Results

Previous Results

23 / 28

2007

London, United Kingdom, July 7-11, 2007

•

We compare the results of ACOhg

algorithms against state-of-the-art model checker
algorithms: DFS, BFS, A*, and BF

•

ACOhg

algorithms are the only ones

that are able to find errors in very large models
(marriers20).

Results I: Efficacy

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Models

Parameters

Results Previous Results

Which

algorithm

finds

errors?

24 / 28

2007

London, United Kingdom, July 7-11, 2007

Results II: Details

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Models

Parameters

Results Previous Results

25 / 28

2007

London, United Kingdom, July 7-11, 2007

• Error trail length vs. memory graph

•

In general, unlike exhaustive algorithms, ACOhg

algorithms keep all the results in a
good performance region (high accuracy and efficiency)

Results III: Graphical Comparison

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Models

Parameters

Results Previous Results

ACOhg

algorithms require
less memory than BFS

They also get shorter (better)
error trails than DFS

26 / 28

2007

London, United Kingdom, July 7-11, 2007

• GA

is the previous metaheuristic

algorithm applied to this problem

• Godefroid

& Khurshid

(2002), found errors in phi17

and needham

models with GA

•

To the best of our knowledge, this is the most recent result

for this problem using
metaheuristics

•

The results state that ACOhg

has higher efficacy and efficiency

than GA (even taking
into account the differences in the machines)

•

But we cannot do a fair comparison

because the models and the model checkers are
different (Verisoft

against HSF-SPIN)

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Previous Results with Metaheuristics
Models

Parameters

Results

Previous Results

27 / 28

2007

London, United Kingdom, July 7-11, 2007

•

ACOhg

is able to outperform state-of-the-art algorithms

used nowadays in current
model checkers for finding safety errors

•

ACOhg

is able to explore really large concurrent models

for which traditional model
checking techniques fail

•

This represents a promising starting point

for the use of metaheuristic

algorithms in
model checking and an interesting subject in SBSE

Conclusions

Future Work
•

Combine ACOhg

algorithms with other techniques for reducing the amount of

memory: Partial Order Reduction and Symmetry Reduction (in progress)

• Include ACOhg

into JavaPathFinder

for finding errors in Java programs (in progress)

• Parallel implementation of ACOhg

for this problem (parallel model checkers)

Conclusions and Future Work

Introduction Background Ant Colony
Optimization Experiments

Conclusions
& Future Work

Conclusions and Future Work

28 / 28

2007

London, United Kingdom, July 7-11, 2007

Questions?

Finding Safety Errors with ACO

Thanks for your attention !!!

	Finding Safety Errors with ACO
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

