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• Nowadays software is very complex

• An error in a software system can imply the loss of lot of money
 

…

… and even human lifes

• Techniques for proving the correctness
 

of
the software are required

• Model checking
 

→ fully automatic
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Intersection Büchi
 

automaton

• Objective: Prove that model
 

M satisfies the property  :  

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬
 

f

∩ =

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony 
Optimization Experiments

Conclusions 
& Future Work



4 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi
 

automaton

• Objective: Prove that model
 

M satisfies the property  :  

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬
 

f

∩ =

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony 
Optimization Experiments

Conclusions 
& Future Work



5 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi
 

automaton

• Objective: Prove that model
 

M satisfies the property  :  

• SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬
 

f

∩

Using Nested-DFS

=

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background Ant Colony 
Optimization Experiments

Conclusions 
& Future Work



6 / 28

2007

London, United Kingdom, July 7-11, 2007

• Safety properties
 

are those expressed by an LTL formula of the form:

• Finding one counterexample ≡
 

finding one accepting state

• Classical algorithms for graph exploration can be used: DFS
 

and BFS
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• Number of states very large
 

even for small models

• Example: Dining philosophers with n
 

philosophers
 

→ 3n

 

states
20 philosophers → 1039 GB

 
for storing the states

•
 

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem
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•
 

The search for errors can be directed by heuristics using algorithms 
like A*, IDA*, WA*

 

and Best-First

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based
 

heuristics

• Structural
 

heuristics
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heuristics
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• Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

• They can find “good”
 

solutions with a “reasonable”
 

amount of resources

Single solution Population

Metaheuristic
 

Algorithms
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•
 

Ant Colony Optimization (ACO) metaheuristic
 

is inspired by the 
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction
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• The ant selects its next node stochastically

• The probability of selecting one node 
depends on the pheromone trail and the
heuristic value (optional) of the edge

• The ant stops when a complete 
solution is built

i
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k

Ni

τij

ηij

kTrail

Heuristic

ACO: Construction Phase
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• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

with

ACO: Pheromone Update

Introduction Background Ant Colony 
Optimization Experiments

Conclusions 
& Future Work

Metaheuristics

 

ACO ACOhg

with



15 / 28

2007

London, United Kingdom, July 7-11, 2007

•
 

Existing ACO models cannot be applied
 

to the search for errors in concurrent 
programs

The graph is very large, the construction of a complete solution could require 
too much time and memory

In some models the number of nodes of the graph is used for computing the 
initial pheromone values

• We need a new model
 

for tackling these problems: ACOhg
 

(ACO for Huge Graphs)

Constructs the ant paths and updates the pheromone values in the same way as 
the traditional models

Allows the construction of partial solutions

Allows the exploration of the graph using a bounded amount of memory

The pheromone matrix is never completely stored

ACOhg: Motivation
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The length of the ant 
paths is limited by λant λant Objective node

What if…?

Initial node

ACOhg: Huge Graphs Exploration
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The length of the ant 
paths is limited by λant λant Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Initial node Two alternatives
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The length of the ant 
paths is limited by λant λant Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Missionary Technique: starting nodes for path construction change

After σs

 

steps

Second stage Third stage

Initial node Two alternatives
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• The number of pheromone
 

trails increases during the search

• This leads to memory problems

• We must remove
 

some pheromone 
trails from memory

Steps
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Remove pheromone trails τij

 
below a given threshold τθ
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In the missionary technique, 
remove all pheromone trails 

after one stage

ACOhg: Pheromones
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• The fitness function must be able to evaluate partial solutions

• Penalties are added for partial solutions
 

and solutions with cycles

Partial solution
with cycle

Partial solution 
without cycle

Complete solution

Total penalty Penalty constant for 
partial solutions Penalty constant for 

solutions with cycles
Path length

ACOhg: Fitness Function
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• We selected 5 Promela
 

models
 

for the experiments

* Theoretical result

• For all except needham, the states do not fit into the main memory of the computer

Model LoC States Processes Safety 
Property

giop22 717 unknown 11 Deadlock

marriers4 142 unknown 5 Deadlock

needham 260 18242 4 LTL formula

phi16 34 43046721* 17 Deadlock

pots 453 unknown 8 Deadlock

Promela
 

Models
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•
 

The ACOhg
 

model was implemented inside the MALLBA
 

library and then 
included into the HSF-SPIN

 
model checker

• Fitness function: length of the path + heuristic + penalty for partial solutions

• Two variants: using no heuristic (ACOhg-b) and using it (ACOhg-h)

• Machine: Pentium 4 at 2.8 GHz with 512 MB

Parameter Value Parameter Value
Steps 100 ξ 0.5
Colony size 10 a 5
λant 10 ρ 0.8
σs 2 α 1.0
s 10 β 2.0

Parameters for ACOhg
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•
 

We compare the results of ACOhg
 

algorithms against state-of-the-art model checker 
algorithms: DFS, BFS, A*, and BF

•
 

ACOhg
 

algorithms are the only ones
 

that are able to find errors in very large models 
(marriers20). 

Results I: Efficacy
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Which
 

algorithm
 

finds
 

errors?
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Results II: Details
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• Error trail length vs. memory graph

•
 

In general, unlike exhaustive algorithms, ACOhg
 

algorithms keep all the results in a 
good performance region (high accuracy and efficiency)

Results III: Graphical Comparison
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ACOhg
 

algorithms require 
less memory than BFS

They also get shorter (better) 
error trails than DFS
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• GA
 

is the previous metaheuristic
 

algorithm applied to this problem

• Godefroid
 

& Khurshid
 

(2002), found errors in phi17
 

and needham
 

models with GA

•
 

To the best of our knowledge, this is the most recent result
 

for this problem using 
metaheuristics

•
 

The results state that ACOhg
 

has higher efficacy and efficiency
 

than GA (even taking 
into account the differences in the machines)

•
 

But we cannot do a fair comparison
 

because the models and the model checkers are 
different (Verisoft

 
against HSF-SPIN)

Introduction Background Ant Colony 
Optimization Experiments

Conclusions 
& Future Work

Previous Results with Metaheuristics
Models

 

Parameters

 

Results

 

Previous Results



27 / 28

2007

London, United Kingdom, July 7-11, 2007

•
 

ACOhg
 

is able to outperform state-of-the-art algorithms
 

used nowadays in current 
model checkers for finding safety errors

•
 

ACOhg
 

is able to explore really large concurrent models
 

for which traditional model 
checking techniques fail

•
 

This represents a promising starting point
 

for the use of metaheuristic
 

algorithms in 
model checking and an interesting subject in SBSE

Conclusions

Future Work
•

 
Combine ACOhg

 
algorithms with other techniques for reducing the amount of 

memory: Partial Order Reduction and Symmetry Reduction (in progress)

• Include ACOhg
 

into JavaPathFinder
 

for finding errors in Java programs (in progress)

• Parallel implementation of ACOhg
 

for this problem (parallel model checkers)

Conclusions and Future Work
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Questions?

Finding Safety Errors with ACO

Thanks for your attention !!!


	Finding Safety Errors with ACO
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

