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• Concurrent software is difficult to test ...

• ... and it is in the heart of a lot of
 

critical systems

• Techniques for proving the correctness
 

of concurrent software are required
•Model checking

 
→ fully automatic

• In the past the work using metaheuristics
 

focused on safety properties
• In this work we focus on liveness

 
properties
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Intersection Büchi
 

automaton

• Objective: Prove that model
 

M satisfies the property  :  

• HSF-SPIN: the property f is an LTL formula
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• Number of states very large
 

even for small models

• Example: Dining philosophers with n
 

philosophers
 

→ 3n

 

states
20 philosophers → 1039 GB

 
for storing the states

•
 

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem
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• The search for errors can be directed by using heuristic information

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based
 

heuristics

• Structural
 

heuristics
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• Deadlock-detection
 

heuristics

• State-dependent
 

heuristics
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Safety property

• Counterexample ≡
 

path to accepting state

• Graph exploration algorithms can be used: DFS
 

and BFS

Liveness
 

property

• Counterexample
 

≡
 

path to accepting cycle

• It is not possible to apply DFS or BFS 
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Strongly Connected Components
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OPTIMIZATION/SEARCH TECHNIQUESOPTIMIZATION/SEARCH TECHNIQUES

EXACTEXACT APPROXIMATEDAPPROXIMATED

Ad Hoc

 

HeuristicsAd Hoc

 

Heuristics METAHEURISTICSMETAHEURISTICS

Optimization/Search
 

Techniques

• Newton
• Gradient

Based on CalculusBased on Calculus

• Depth

 

First

 

Search
• Branch

 

and

 

Bound

EnumerativesEnumeratives

• SA
• VNS
• TS

Trayectory-basedTrayectory-based

• EA
• ACO
• PSO

Population-basedPopulation-based
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•
 

Ant Colony Optimization (ACO) metaheuristic
 

is inspired by the 
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction
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• The ant selects its next node stochastically

• The probability of selecting one node 
depends on the pheromone trail and the
heuristic value (optional) of the edge/node

• The ant stops when a complete 
solution is built
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ACO: Construction Phase
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• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

ACO: Pheromone Update
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The length of the ant 
paths is limited by λant λant Objective node

What if…?

Starting nodes for path construction change

After σs

 

steps

Second stage Third stage

Initial node

ACOhg: Huge Graphs Exploration
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• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live
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Pseudocode • Improvement 
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•We used 11 Promela
 

models
 

for the experiments

• Parameters for ACOhg-live

• Formula-based
 

and finite state machine
 

heuristics
• ACOhg-live implemented in HSF-SPIN
• 100

 
independent executions and statistical validation

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q)  ^ □(r → ◊s) 
giopj 740 yes j+6 □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)
elevj 191 yes j+3 □(p → ◊q)
sgc 1001 no 20 ◊p

Promela
 

Models
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Results I: Influence of the SCC Improvement
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Results II: ACOhg-live+
 

vs. NDFS and INDFS
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How to use ACOhg-live
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Model

ACOhg-live

(I)NDFS

Large
 

model
 

or
a short couterexample

is
 

needed

Small
 

model
 

and
any

 
counterexample
is

 
needed

 
fast

•
 

ACOhg-live should be used in the first/middle stages
 

of the software development, 
when software errors are expected

•
 

ACOhg-live can also be used in other phases of the software development for testing
 concurrent software
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•
 

ACOhg-live is the first algorithm
 

based on metaheuristics
 

(to the best of our 
knowledge) applied to the search for liveness

 
errors in concurrent models

•
 

The improvement based on the SCCs
 

of the never claim outperforms
 

the efficacy of 
ACOhg-live

•
 

ACOhg-live is able to outperform (Improved) Nested-DFS
 

in efficacy and efficiency 
in the search for liveness

 
errors

Conclusions

Future Work
• Analysis of parameterization for reducing the parameters

• Include ACOhg-live into JavaPathFinder
 

for finding liveness
 

errors in Java programs

•
 

Combine ACOhg-live with techniques for reducing the memory
 

required for the search 
such as partial order reduction

 
(work in progress)

Conclusions & Future Work

Introduction Background Algorithmic 
Proposal Experiments

Conclusions 
& Future Work

Conclusions & Future Work



34 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Thanks for your attention !!!

Searching for Liveness
 

Property Violations 
in Concurrent Systems with ACO
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