
1 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Searching for Liveness

Property Violations
in Concurrent Systems with ACO

Francisco Chicano

and Enrique Alba

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

2 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• Concurrent software is difficult to test ...

• ... and it is in the heart of a lot of

critical systems

• Techniques for proving the correctness

of concurrent software are required
•Model checking

→ fully automatic

• In the past the work using metaheuristics

focused on safety properties
• In this work we focus on liveness

properties

Motivation
Motivation

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

3 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f
(never claim)

∩ =

Explicit State Model Checking
Explicit State MC State Explosion Heuristic MC

Safety & Liveness

SCCs

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

4 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f
(never claim)

∩ =

Explicit State Model Checking
Explicit State MC State Explosion Heuristic MC

Safety & Liveness

SCCs

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

5 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Intersection Büchi

automaton

• Objective: Prove that model

M satisfies the property :

• HSF-SPIN: the property f is an LTL formula

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

s0

s1
s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

f
(never claim)

∩

Using Nested-DFS

=

Explicit State Model Checking
Explicit State MC State Explosion Heuristic MC

Safety & Liveness

SCCs

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

6 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

• Number of states very large

even for small models

• Example: Dining philosophers with n

philosophers

→ 3n

states
20 philosophers → 1039 GB

for storing the states

•

Solutions: collapse compression, minimized automaton representation, bitstate
 hashing, partial order reduction, symmetry reduction

• Large models cannot be verified but errors can be found

Memory

State Explosion Problem

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Explicit State MC

State Explosion

Heuristic MC

Safety & Liveness

SCCs

7 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The search for errors can be directed by using heuristic information

• Different kinds of heuristic functions have been proposed in the past:

• Formula-based

heuristics

• Structural

heuristics

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3
2

0

3

5

1

2

4
0

7
6

Heuristic value

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Heuristic Model Checking

• Deadlock-detection

heuristics

• State-dependent

heuristics

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

8 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Safety property

• Counterexample ≡

path to accepting state

• Graph exploration algorithms can be used: DFS

and BFS

Liveness

property

• Counterexample

≡

path to accepting cycle

• It is not possible to apply DFS or BFS

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

Safety and Liveness

Properties

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

s0

s4
s7

s6

s2

s1

s8
s9

s5

s3

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

9 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Strongly Connected Components

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

a b

c
e

df g

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

10 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Strongly Connected Components

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

11 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Strongly Connected Components

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

12 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Strongly Connected Components

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Explicit State MC

State Explosion Heuristic MC

Safety & Liveness

SCCs

a b

c
e

df g
F-SCC

N-SCC

P-SCC

13 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

OPTIMIZATION/SEARCH TECHNIQUESOPTIMIZATION/SEARCH TECHNIQUES

EXACTEXACT APPROXIMATEDAPPROXIMATED

Ad Hoc

HeuristicsAd Hoc

Heuristics METAHEURISTICSMETAHEURISTICS

Optimization/Search

Techniques

• Newton
• Gradient

Based on CalculusBased on Calculus

• Depth

First

Search
• Branch

and

Bound

EnumerativesEnumeratives

• SA
• VNS
• TS

Trayectory-basedTrayectory-based

• EA
• ACO
• PSO

Population-basedPopulation-based

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

14 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

•

Ant Colony Optimization (ACO) metaheuristic

is inspired by the
foraging behaviour of real ants

• ACO Pseudo-code

ACO: Introduction

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

ACOhg-live

15 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The ant selects its next node stochastically

• The probability of selecting one node
depends on the pheromone trail and the
heuristic value (optional) of the edge/node

• The ant stops when a complete
solution is built

i

j

l

m

k

Ni

τij

ηij

kTrail

Heuristic

ACO: Construction Phase

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO ACOhg

ACOhg-live

16 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• Pheromone update

During the construction phase

After the construction phase

• Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

ACO: Pheromone Update

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

with

Metaheuristics

ACO ACOhg

ACOhg-live

with

17 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

The length of the ant
paths is limited by λant λant Objective node

What if…?

Starting nodes for path construction change

After σs

steps

Second stage Third stage

Initial node

ACOhg: Huge Graphs Exploration

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

18 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

First

phase

19 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

Second

phase

20 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode

Tabu

list

21 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

• The search is an alternation of two phases

First phase: search for accepting states

Second phase: search for cycles from the accepting states

ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Metaheuristics

ACO

ACOhg

ACOhg-live

ACOhg-live

Pseudocode • Improvement
using SCCs

First phase: accepting
states in N-SCC are
ignored

Both phases: cycle
detected in F-SCC is a
violation

Tabu

list

22 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

•We used 11 Promela

models

for the experiments

• Parameters for ACOhg-live

• Formula-based

and finite state machine

heuristics
• ACOhg-live implemented in HSF-SPIN
• 100

independent executions and statistical validation

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q) ^ □(r → ◊s)
giopj 740 yes j+6 □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)
elevj 191 yes j+3 □(p → ◊q)
sgc 1001 no 20 ◊p

Promela

Models

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters Results Discussion

Parameter msteps colsize λant σs ξ a ρ α β

1st phase
100

10 20
4

0.7
5 0.2 1.0 2.0

2nd phase 20 4 0.5

23 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

•We used 11 Promela

models

for the experiments

• Parameters for ACOhg-live

• Formula-based

and finite state machine

heuristics
• ACOhg-live implemented in HSF-SPIN
• 100

independent executions and statistical validation

Model LoC Scalable Processes LTL formula (liveness)
alter 64 no 2 □(p → ◊q) ^ □(r → ◊s)
giopj 740 yes j+6 □(p → ◊q)
phij 57 yes j+1 □(p → ◊q)
elevj 191 yes j+3 □(p → ◊q)
sgc 1001 no 20 ◊p

Promela

Models

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters Results Discussion

j=10,15,20

j=20,30,40

Parameter msteps colsize λant σs ξ a ρ α β

1st phase
100

10 20
4

0.7
5 0.2 1.0 2.0

2nd phase 20 4 0.5

j=10,15,20

24 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results I: Influence of the SCC Improvement

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

SD
SD

25 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results I: Influence of the SCC Improvement

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

SD
SD

SD
SD

SD SD SD
SD

26 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results I: Influence of the SCC Improvement

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

SD
SD

SD
SD

SD SD SD
SD

SD
SD

SD

27 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results I: Influence of the SCC Improvement

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

SD
SD

SD
SD

SD SD SD
SD

SD
SD

SD

SD

SD

575192

SD

SD SD

SD

SD

SD

28 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results II: ACOhg-live+

vs. NDFS and INDFS

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

Models ACOhg-live+ NDFS INDFS
alter
giop10
giop15
giop20
phi20
phi30
phi40
elev10
elev15
elev20
sgc

29 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results II: ACOhg-live+

vs. NDFS and INDFS

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

Models ACOhg-live+ NDFS INDFS
alter
giop10
giop15
giop20
phi20
phi30
phi40
elev10
elev15
elev20
sgc

10001

10001

1069

1059

9999

SD

30 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results II: ACOhg-live+

vs. NDFS and INDFS

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

Models ACOhg-live+ NDFS INDFS
alter
giop10
giop15
giop20
phi20
phi30
phi40
elev10
elev15
elev20
sgc

10001

10001

1069

1059

9999

SD

392192 388096 15360

SD

31 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Results II: ACOhg-live+

vs. NDFS and INDFS

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results

Discussion

Models ACOhg-live+ NDFS INDFS
alter
giop10
giop15
giop20
phi20
phi30
phi40
elev10
elev15
elev20
sgc

10001

10001

1069

1059

9999

SD

392192 388096 15360

SD

15670
15320

SD

32 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

How to use ACOhg-live

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Models & parameters

Results Discussion

Model

ACOhg-live

(I)NDFS

Large

model

or
a short couterexample

is

needed

Small

model

and
any

counterexample
is

needed

fast

•

ACOhg-live should be used in the first/middle stages

of the software development,
when software errors are expected

•

ACOhg-live can also be used in other phases of the software development for testing
 concurrent software

33 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

•

ACOhg-live is the first algorithm

based on metaheuristics

(to the best of our
knowledge) applied to the search for liveness

errors in concurrent models

•

The improvement based on the SCCs

of the never claim outperforms

the efficacy of
ACOhg-live

•

ACOhg-live is able to outperform (Improved) Nested-DFS

in efficacy and efficiency
in the search for liveness

errors

Conclusions

Future Work
• Analysis of parameterization for reducing the parameters

• Include ACOhg-live into JavaPathFinder

for finding liveness

errors in Java programs

•

Combine ACOhg-live with techniques for reducing the memory

required for the search
such as partial order reduction

(work in progress)

Conclusions & Future Work

Introduction Background Algorithmic
Proposal Experiments

Conclusions
& Future Work

Conclusions & Future Work

34 / 34GECCO 2008, Atlanta, USA, July 12-16, 2008

Thanks for your attention !!!

Searching for Liveness

Property Violations
in Concurrent Systems with ACO

	Searching for Liveness Property Violations in Concurrent Systems with ACO
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

