

ACOhg

Problema Abordado

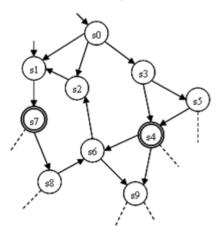
Experimentos

Conclusiones y Trabajo Futuro

- Grupo de Ingeniería del Software de la Universidad de Mélaga

Enrique Alba y Francisco Chicano

ACOhg


Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

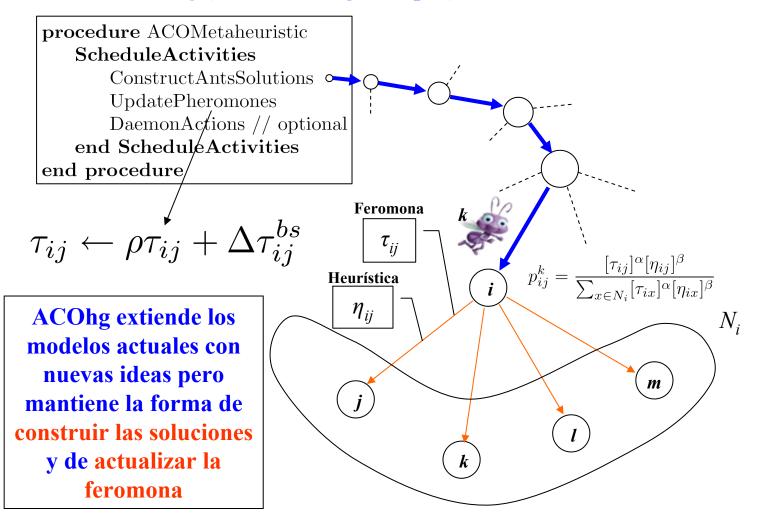
Introducción

- Los ACOs resuelven problemas planteados como búsqueda de caminos mínimos en grafos
- Existen problemas en los que el grafo subyacente es desconocido y/o muy extenso

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

- Los modelos actuales de ACO no se pueden aplicar a dichos problemas
 - En un grafo muy grande, la construcción de una solución completa puede requerir mucha memoria y tiempo
 - En algunos modelos el número de nodos del grafo se usa para inicializar la matriz de feromonas

ACOhg


Problema Abordado

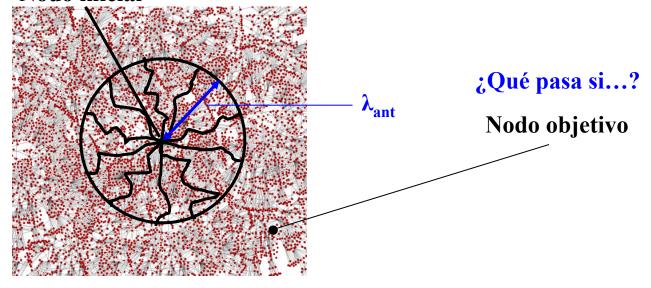
Experimentos

Conclusiones y Trabajo Futuro

Introducción

• Necesitamos un nuevo modelo para abordar estas dificultades: ACOhg (ACO for Huge Graphs)

ACOhg


Problema Abordado

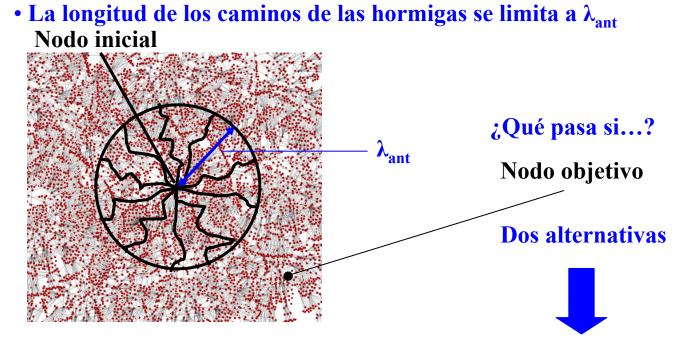
Experimentos

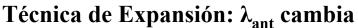
Conclusiones y Trabajo Futuro

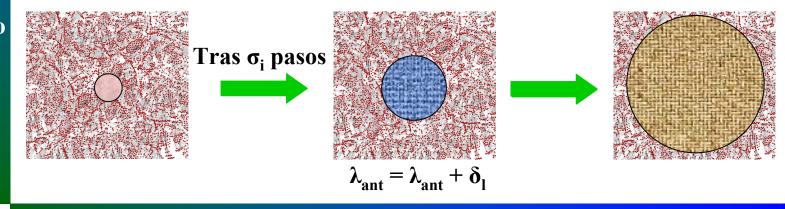
ACOhg: Longitud de los Caminos

• La longitud de los caminos de las hormigas se limita a λ_{ant} Nodo inicial

ACOhg: Longitud de los Caminos


Introducción

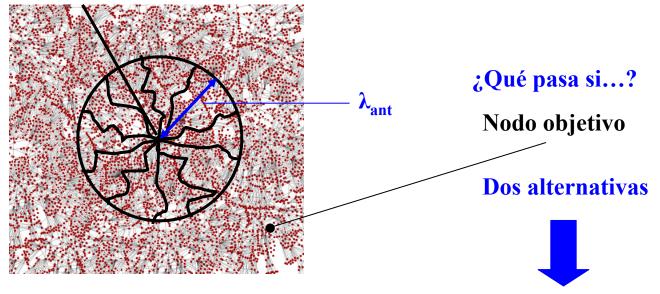

ACOhg


Problema Abordado

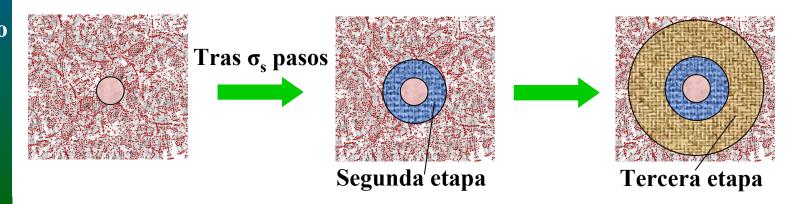
Experimentos

Conclusiones y Trabajo Futuro

ACOh


Problema Abordado

Experimentos

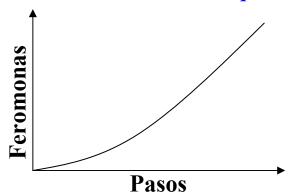

Conclusiones y Trabajo Futuro

ACOhg: Longitud de los Caminos

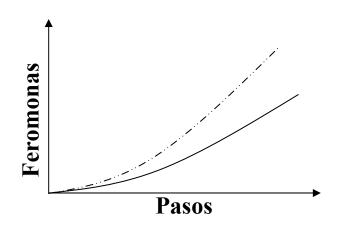
• La longitud de los caminos de las hormigas se limita a λ_{ant} Nodo inicial

Técnica del Misionero: cambio de los nodos iniciales de los caminos

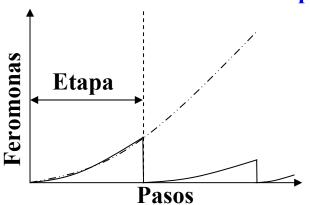
ACOhg


Problema Abordado

Experimentos


Conclusiones y Trabajo Futuro

ACOhg: Feromonas

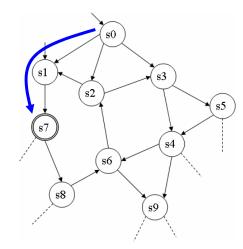

- El número de rastros de feromona aumenta durante la búsqueda
- Esto conduce a problemas de memoria
- Se deben eliminar algunos valores de feromona de la memoria

Eliminar valores de feromona τ_{ij} por debajo de un umbral τ_0

En la técnica del misionero, eliminar todos los valores de feromona tras cada etapa

ACOhg: Función de Fitness

- La función de fitness debe ser capaz de evaluar soluciones parciales
- Se penalizan las soluciones parciales y las que contienen ciclos

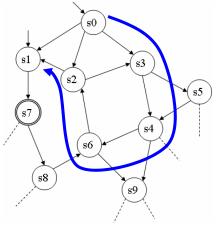

Introducción

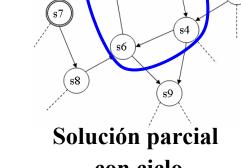
ACOhg

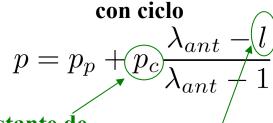
Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro




Penalización total

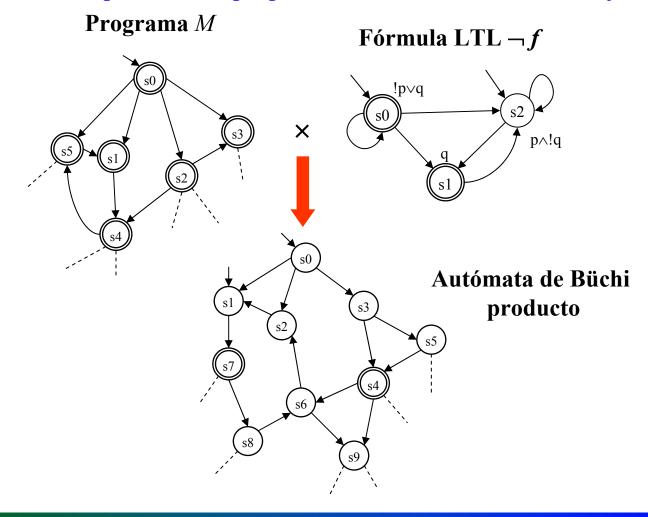

Constante de penalización para soluciones parciales

Solución parcial sin ciclo

Constante de penalización para soluciones con ciclos Longitud del camino

Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007

ACOhg


Problema Abordado

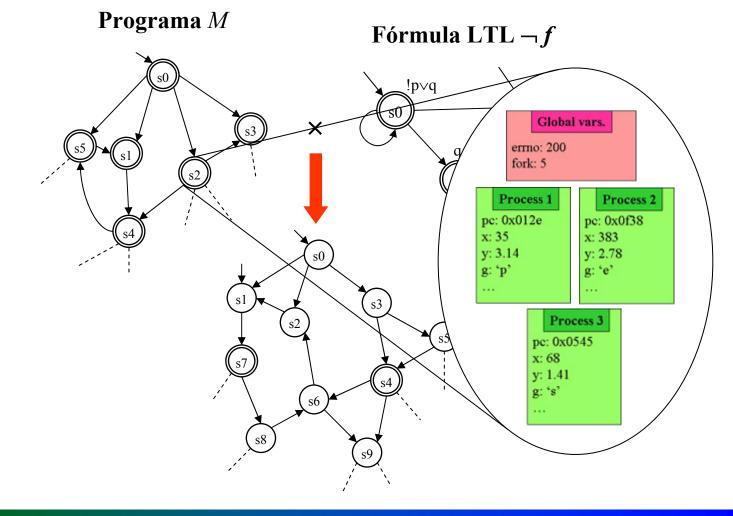
Experimentos

Conclusiones y Trabajo Futuro

Problema Abordado (I)

- Objetivo: encontrar errores en programas concurrentes
- SPIN: se especifica una propiedad usando una fórmula LTL f

ACOhg


Problema Abordado

Experimentos

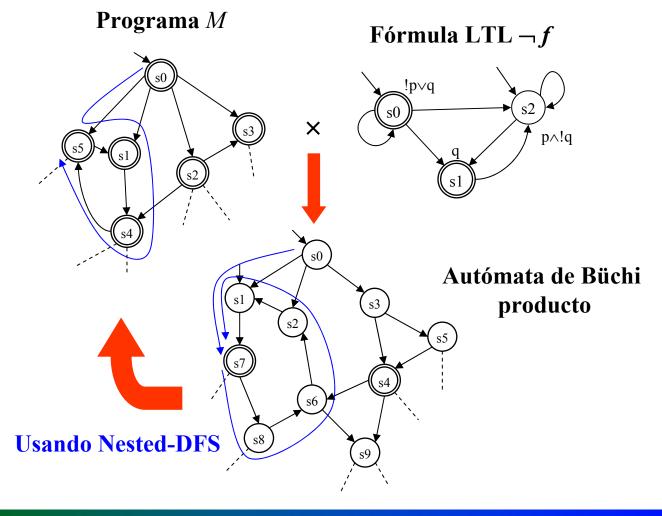
Conclusiones y Trabajo Futuro

Problema Abordado (I)

- Objetivo: encontrar errores en programas concurrentes
- SPIN: se especifica una propiedad usando una fórmula LTL f

ACOhg

Problema Abordado


Experimentos

Conclusiones y Trabajo Futuro

Problema Abordado (I)

• Objetivo: encontrar errores en programas concurrentes

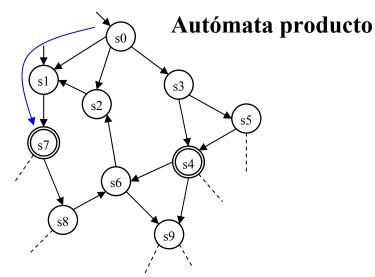
• SPIN: se especifica una propiedad usando una fórmula LTL f

Problema Abordado (II)

• Las propiedades de seguridad son aquéllas que pueden expresarse con una fórmula LTL de la forma:

$$f = \Box p$$

Introducción


ACOhg

Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro donde p es una fórmula pasada (sólo con operadores pasados)

• Encontrar una traza de error ≡ encontrar un estado de aceptación

Propiedades de Seguridad

Interbloqueos

Invariantes

Asertos

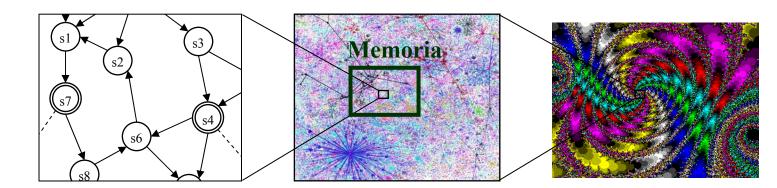
• •

• Pueden usarse algoritmos clásicos de exploración de grafos: ej., DFS y BFS

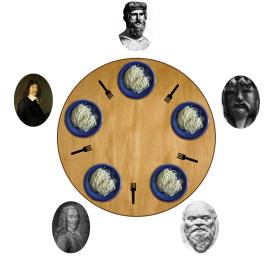
13/22 MAEB 2007

Problema Abordado (y III)

• Número de estados muy grande incluso para pequeños programas


Introducción

ACOhg


Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

- El programa usado en los experimentos modela el problema de los filósofos de Edsger Dijkstra
 - \triangleright *n* filósofos \rightarrow 3ⁿ estados
 - **> 20 filósofos** → **1039 GB** para almacenar los estados

ACOhg

Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

Experimentos: Comparación

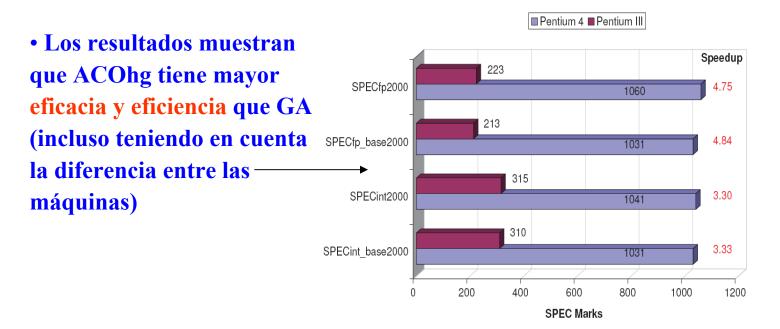
• Comparamos MMAShg con los algoritmos exhaustivos DFS y BFS

Programa	Aspectos	DFS	BFS	MMAShg	
	Longitud	1338	10	10.00	
phi8	Mem. (KB)	29696	17408	4830	
	Tiempo (ms)	70	70	27	
	Longitud		-	16.04	
phi12	Mem. (KB)		-	9344	
	Tiempo (ms)		-	58	
	Longitud	-	-	25.40	
phi16	Mem. (KB)	_	-	18157	
	Tiempo (ms)	-	-	161	
phi20	Longitud	-		38.68	
	Mem. (KB)	-		40628	
	Tiempo (ms)	-		528	

• MMAShg es claramente mejor para los programas abordados

ACOhg

Problema Abordado


Experimento

Conclusiones y Trabajo Futuro

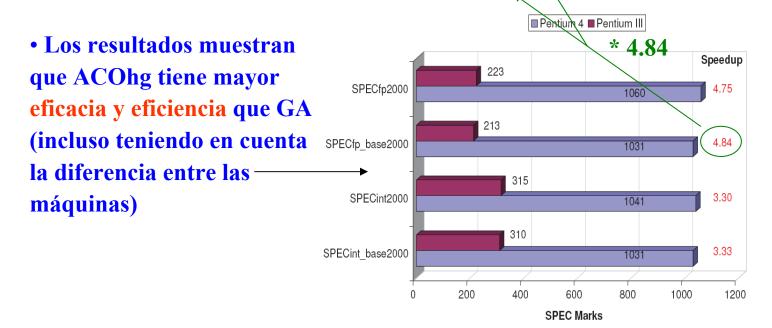
Experimentos: ACOhg vs. GA

- GA es la única metaheurística aplicada previamente al problema
- Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002)

Programa	Algoritmo	Éxito (%)	Tiempo (s)	Mem. (KB)
phi17	GA	52	197.00	n/a
	ACOhg	100	0.28	11274
	GA	3	3068.00	n/a
needham	ACOhg	100	0.23	4865

ACOhg

Problema Abordado


Experimento

Conclusiones y Trabajo Futuro

Experimentos: ACOhg vs. GA

- GA es la única metaheurística aplicada previamente al problema
- Usamos phi17 y needham (protocolo Needham-Schroeder) para la comparación (Godefroid & Khurshid, 2002)

Programa	${f Algoritmo}$	Éxito (%)	Tiempo(s)	Mem. (KB)
phi17	GA	52	197.00	n/a
	ACOhg	100	1.36	11274
needham	GA	3	3068.00	\ n/a
	ACOhg	100	1.11	\setminus 4865

Experimentos: Influencia de λ_{ant}

• Analizamos la influencia de λ_{ant} en los resultados

Introducción

ACOhg

Problema Abordado

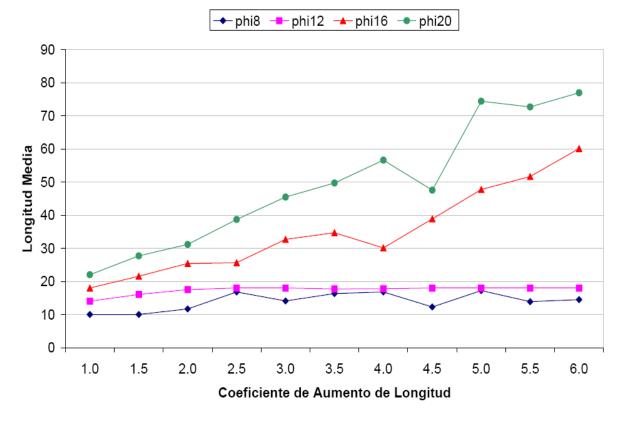
Experimentos

Conclusiones y Trabajo Futuro

Número de	Coeficiente de aumento de longitud (η)										
Filósofos	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
8	100	100	100	100	100	100	100	100	100	100	100
12	90	100	100	100	100	100	100	100	100	100	100
16	43	95	100	100	100	100	100	100	100	100	100
20	7	52	95	100	100	100	100	100	100	100	100

• La tasa de éxito aumenta con λ_{ant}

ACOhg


Problema Abordado

Experimentos

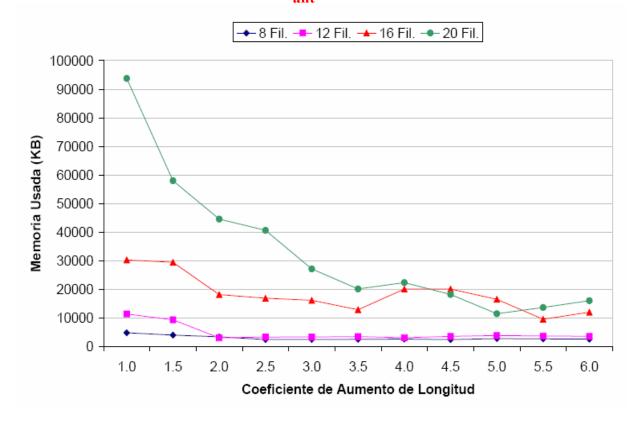
Conclusiones y Trabajo Futuro

Experimentos: Influencia de λ_{ant}

• Analizamos la influencia de λ_{ant} en los resultados

- La tasa de éxito aumenta con λ_{ant}
- La longitud media de los contraejemplos crece con λ_{ant}

ACOhg


Problema Abordado

Experimentos

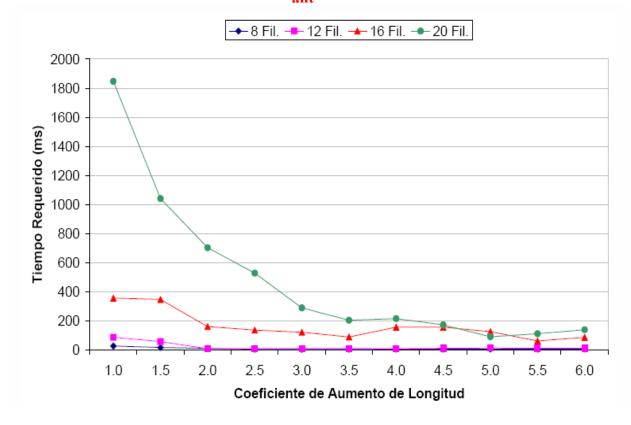
Conclusiones y Trabajo Futuro

Experimentos: Influencia de λ_{ant}

• Analizamos la influencia de λ_{ant} en los resultados

- La tasa de éxito aumenta con λ_{ant}
- La longitud media de los contraejemplos crece con λ_{ant}
- La memoria y el tiempo de cómputo disminuyen con λ_{ant}

ACOhg


Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

Experimentos: Influencia de λ_{ant}

• Analizamos la influencia de λ_{ant} en los resultados

- La tasa de éxito aumenta con λ_{ant}
- La longitud media de los contraejemplos crece con λ_{ant}
- La memoria y el tiempo de cómputo disminuyen con λ_{ant}

Conclusiones y Trabajo Futuro

Conclusiones

• ACOhg es capaz de superar las limitaciones de los modelos actuales de ACO cuando se enfrentan a problemas con grafos subyacentes desconocidos o de gran extensión

• ACOhg supera a algoritmos exhaustivos del dominio de la comprobación de modelos

• Asimismo obtiene mejores resultados que el GA usado en el pasado para este problema

Trabajo Futuro

• Estudiar el modelo ACOhg en profundidad, explorando todas las alternativas mencionadas

• Trasladar las ideas usadas en ACOhg a otras metaheurísticas para extender el conjunto de problemas al que se pueden aplicar

• Profundizar en el uso de ACOhg para la aplicación de encontrar errores en programas concurrentes

Introducción

ACOhg

Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

ACOhg

Problema Abordado

Experimentos

Conclusiones y Trabajo Futuro

Gracias por su atención !!!

