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Abstract

As more research centers embark on sequencing new genomes, the
problem of DNA fragment assembly for shotgun sequencing is growing
in importance and complexity. Accurate and fast assembly is a crucial
part of any sequencing project and many algorithms have been devel-
oped to tackle it. Since the DNA fragment assembly problem is NP-hard,
exact solutions are very difficult to obtain. Various heuristics, including
genetic algorithms, were designed for solving the fragment assembly prob-
lem. While the sequential genetic algorithm has given good results, it is
unable to sequence very large DNA molecules. In this work, we present
a distributed genetic algorithm that surmounts that problem. We show
how the distributed genetic algorithm can tackle problem instances that
are 77K base pairs long accurately.

Keywords: DNA Fragment Assembly Problem, Genetic Algorithms,
Distributed Genetic Algorithms.

1 Introduction

DNA fragment assembly is a technique that attempts to reconstruct the origi-
nal DNA sequence from a large number of fragments, each one having several
hundred base-pairs (bps) long. The DNA fragment assembly is needed because
current technology, such as gel electrophoresis, cannot directly and accurately



sequence DNA molecules longer than 1000 bases. However, most genomes are
much longer. For example, a human DNA is about 3.2 billion nucleotides in
length and cannot be read at once.

The following technique was developed to deal with this limitation. First,
the DNA molecule is amplified, that is, many copies of the molecule are created.
The molecules are then cut at random sites to obtain fragments that are short
enough to be sequenced directly. The overlapping fragments are then assembled
back into the original DNA molecule. This strategy is called shotgun sequencing.
Originally, the assembly of short fragments was done by hand, which is ineffi-
cient and error-prone. Hence, a lot of effort has been put into finding techniques
to automate the shotgun sequence assembly. Over the past decade a number
of fragment assembly packages have been developed and used to sequence dif-
ferent organisms. The most popular packages are PHRAP [7], TIGR assembler
[18], STROLL [4], CAP3 [9], Celera assembler [12], and EULER [16]. These
packages deal with the previously described challenges to different extend, but
none of them solves them all. Each package automates fragment assembly using
a variety of algorithms. The most popular techniques are greedy-based. This
work reports on the design and implementation of a parallel distributed genetic
algorithm to tackle the DNA fragment assembly problem.

The remainder of this chapter is organized as follows. In the next section, we
present background information about the DNA fragment assembly problem. In
Section 3, the details of the sequential Genetic Algorithm (GA) are presented.
We discuss the GA operators, fitness functions [14], and how to design and
implement a GA for the DNA fragment assembly problem. In Section 4, we
present the parallel distributed GA. We analyze the results of our experiments
in Section 5. We end this chapter by giving our final thoughts and conclusions
in Section 6.

2 The DNA Fragment Assembly Problem

We start this section by giving a vivid analogy to the fragment assembly prob-
lem: “Imagine several copies of a book cut by scissors into thousands of pieces,
say 10 millions. Each copy is cut in an individual way such that a piece from
one copy may overlap a piece from another copy. Assume one million pieces lost
and remaining nine million are splashed with ink, try to recover the original
text.” [16]. We can think of the DNA target sequence as being the original
text and the DNA fragments are the pieces cut out from the book. To further
understand the problem, we need to know the following basic terminology:

e Fragment: A short sequence of DNA with length up to 1000 bps.
e Shotgun data: A set of fragments.
e Prefix: A substring comprising the first n characters of fragment f.

e Suffix: A substring comprising the last n characters of fragment f.



e Overlap: Common sequence between the suffix of one fragment and the
prefix of another fragment.

e Layout: An alignment of collection of fragments based on the overlap
order.

e Contig: A layout consisting of contiguous overlapping fragments.

e Consensus: A sequence derived from the layout by taking the majority
vote for each column of the layout.

To measure the quality of a consensus, we can look at the distribution of
the coverage. Coverage at a base position is defined as the number of fragments
at that position. It is a measure of the redundancy of the fragment data. It
denotes the number of fragments, on average, in which a given nucleotide in the
target DNA is expected to appear. It is computed as the number of bases read
from fragments over the length of the target DNA [17].

Yoi length of the fragment i
target sequence length

(1)

where n is the number of fragments. TIGR uses the coverage metric to ensure
the correctness of the assembly result. The coverage usually ranges from 6 to 10
[10]. The higher the coverage, the fewer the gaps are expected, and the better
the result.

Coverage =

2.1 DNA Sequencing Process

To determine the function of specific genes, scientists have learned to read the
sequence of nucleotides comprising a DNA sequence in a process called DNA
sequencing. The fragment assembly starts with breaking the given DNA se-
quence into small fragments. To do that, multiple exact copies of the original
DNA sequence are made. Each copy is then cut into short fragments at random
positions. These are the first three steps depicted in Figure 1 and they take
place in the laboratory. After the fragment set is obtained, traditional assem-
ble approach is followed in this order: overlap, layout, and then consensus. To
ensure that enough fragments overlap, the reading of fragments continues until
the coverage is satisfied. These steps are the last three steps in Figure 1. In
what follows, we give a brief description of each of the three phases, namely
overlap, layout, and consensus.

Overlap Phase - Finding the overlapping fragments.

This phase consists in finding the best or longest match between the suffix of one
sequence and the prefix of another. In this step, we compare all possible pairs
of fragments to determine their similarity. Usually, the dynamic programming
algorithm applied to semiglobal alignment is used in this step. The intuition
behind finding the pairwise overlap is that fragments with a significant overlap
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CCETAGCCGEGATCCCGTCC
CCCGAACAGGCTCCCGCCGTAGCCG
AAGCTTTTTTCCCGAACAGGCTCCCG

* 5. Layout

AAGCTTTTTTCCCGAACAGGCTCCCG
CCCGAACAGGCTICCCGCCETAGCCE
CCETAGCCEGEGEATCCCETCC

{ & callconsensus

AAGCTTTTT TCCCGAACAGGC TCCCGCCETAGCCEEGATCCCGETCC

AARGCTTTITTTCCCGAACAGGCTCCCE
CCCEAACAGGCTCCCBCCGTAGCCE
CCETAGCCGEGEATCCCGT CC

Figure 1: Graphical representation of DNA sequencing and assembly [3]

score are very likely next to each other in the target sequence.

Layout Phase - Finding the order of fragments based on the computed sim-
ilarity score. This is the most difficult step because it is hard to tell the true
overlap due to the following challenges:

1. Unknown orientation: After the original sequence is cut into many frag-
ments, the orientation is lost. The sequence can be read in either 5’ to 3’
or 3’ to 5. One does not know which strand should be selected. If one
fragment does not have any overlap with another, it is still possible that
its reverse complement might have such an overlap.

2. Base call errors: There are three types of base call errors: substitution,
insertion, and deletion errors. They occur due to experimental errors
in the electrophoresis procedure. Errors affect the detection of fragment
overlaps. Hence, the consensus determination requires multiple alignments
in high coverage regions.

3. Incomplete coverage: It happens when the algorithm is not able to assem-
ble a given set of fragments into a single contig.

4. Repeated regions: Repeats are sequences that appear two or more times in
the target DNA. Repeated regions have caused problems in many genome-



sequencing projects, and none of the current assembly programs can han-
dle them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that
are not adjacent or overlapping on the target molecule join together into
one fragment. Contamination occurs due to the incomplete purification
of the fragment from the vector DNA.

After the order is determined, the progressive alignment algorithm is applied
to combine all the pairwise alignments obtained in the overlap phase.

Consensus Phase - Deriving the DNA sequence from the layout. The most
common technique used in this phase is to apply the majority rule in building
the consensus.

Example: We next give an example of the fragment assembly process.

Given a set of fragments {F1 = GTCAG, F2 = TCGGA, F3 = ATGTC, F4 =
CGGATG}, assume the four fragments are read from 5’ to 3’ direction. First,
we need to determine the overlap of each pair of the fragments by the using
semiglobal alignment algorithm. Next, we determine the order of the fragments
based on the overlap scores, which are calculated in the overlap phase. Suppose
we have the following order: F2 F4 F3 F1. Then, the layout and the consensus
for this example can be constructed as follows:

F2 - TCGGA

F4 —> CGGATG
F3 -> ATGTC
F1 -> GTCAG

Consensus —-> TCGGATGTCAG

In this example, the resulting order allows to build a sequence having just one
contig. Since finding the exact order takes a huge amount of time, a heuristic
such as Genetic Algorithm can be applied in this step [13, 14, 15]. In the
following section, we illustrate how the Genetic Algorithm is implemented for
the DNA fragment assembly problem.

3 DNA Fragment Assembly Using the
Sequential GA

The Genetic Algorithm (GA) was invented in the mid-1970s by John Holland
[8]. Tt is based on Darwin’s Evolution Theory. GA uses the concept of survival of
the fittest and natural selection to evolve a population of individuals over many
generations by using different operators: selection, crossover, and mutation. As
the generations are passed along, the average fitness of the population is likely
to improve. Genetic Algorithm can be used for optimization problems with



multiple parameters and multiple objectives. It is commonly used to tackle NP-
hard problems such as the DNA fragment assembly and the Travelling Salesman
Problem (TSP). NP-hard problems require tremendous computational resources
to solve exactly. Genetic Algorithms help to find good solutions in a reasonable
amount of time. Next, we present the sequential GA for the fragment assembly
problem. More details about the inner workings of the algorithm can be found
in [11].

1. Randomly generate the initial population of fragment orderings.
2. Evaluate the population by computing fitness.
3. while( NOT termination condition )

(a) Select fragment orderings for the next generation through ranking
selection

(b) Alter population by
i. applying the crossover operator
ii. applying the mutation operator
iii. re-evaluate the population.

3.1 Implementation Details

Let us give some details about the most important issues of our implementation.

Population Representation

We use the permutation representation with integer number encoding. A
permutation of integers represents a sequence of fragment numbers, where suc-
cessive fragments overlap. The population in this representation requires a list
of fragments assigned with a unique integer ID. For example, 8 fragments will
need eight identifiers: 0, 1, 2, 3, 4, 5, 6, 7. The permutation representation
requires special operators to make sure that we always get legal (feasible) so-
lutions. In order to maintain a legal solution, the two conditions that must
be satisfied are (1) all fragments must be presented in the ordering, and (2)
no duplicate fragments are allowed in the ordering. For example, one possible
ordering for 4 fragments is 3 0 2 1. It means that fragment 3 is at the first
position and fragment 0 is at the second position, and so on.

Population Size
We use a fixed size population to initialize random permutations.

Program Termination

The program can be terminated in one of two ways. We can specify the
maximum number of generations to stop the algorithm or we can also stop the
algorithm when the solution is no longer improving.



Fitness Function

A fitness function is used to evaluate how good a particular solution is. It
is applied to each individual in the population and it should guide the genetic
algorithm towards the optimal solution. In the DNA fragment assembly prob-
lem, the fitness function measures the multiple sequences alignment quality and
finds the best scoring alignment. Parsons, Forrest, and Burks mentioned two
different fitness functions [14].

Fitness function F'1 - sums the overlap score for adjacent fragments in a
given solution. When this fitness function is used, the objective is to maximize
such a score. It means that the best individual will have the highest score.

n—2
F1(l) = Y w- (flilfli +1)) (2)
i=0
Fitness function F'2 - not only sums the overlap score for adjacent fragments,
but it also sums the overlap score for all other possible pairs.

n—1ln—1

F2() = 3 il < w- (flilf1]) 3)

i=0 j=0

This fitness function penalizes solutions in which strong overlaps occur be-
tween non-adjacent fragments in the layouts. When this fitness function is used,
the objective is to minimize the overlap score. It means that the best individual
will have the lowest score.

The overlap score in both F'1 and F2 is computed using the semiglobal align-
ment algorithm.

Recombination Operator

Two or more parents are recombined to produce one or more offspring. The
purpose of this operator is to allow partial solutions to evolve in different indi-
viduals and then combine them to produce a better solution. It is implemented
by running through the population and for each individual, deciding whether
it should be selected for crossover using a parameter called crossover rate (P,).
A crossover rate of 1.0 indicates that all the selected individuals are used in
the crossover. Thus, there are no survivors. However, empirical studies have
shown that better results are achieved by a crossover rate between 0.65 and
0.85, which implies that the probability of an individual moving unchanged to
the next generation ranges from 0.15 to 0.35.

For our experimental runs, we use the order-based crossover (OX) and the
edge-recombination crossover (ER). These operator were specifically designed
for tackling problems with permutation representations.

The order-based crossover operator first copies the fragment ID between
two random positions in Parentl into the offspring’s corresponding positions.
We then copy the rest of the fragments from Parent2 into the offspring in the
relative order presented in Parent2. If the fragment ID is already present in the



offspring, then we skip that fragment. The method preserves the feasibility of
every string in the population.

Edge recombination preserves the adjacencies that are common to both par-
ents. This operator is appropriate because a good fragment ordering consists
of fragments that are related to each other by a similarity metric and should
therefore be adjacent to one another. Parsons [15] defines edge recombination
operator as follows:

1. Calculate the adjacencies.
2. Select the first position from one of the parents, call it s.
3. Select s" in the following order until no fragments remain:

(a) s" adjacent to s is selected if it is shared by both parents.
(b) s’ that has more remaining adjacencies is selected.

(¢) s’ is randomly selected if it has an equal number of remaining adja-
cencies.

Mutation Operator

This operator is used for the modification of single individuals. The reason
we need a mutation operator is for the purpose of maintaining diversity in the
population. Mutation is implemented by running through the whole population
and for each individual, deciding whether to select it for mutation or not, based
on a parameter called mutation rate (P,,). For our experimental runs, we use
the swap mutation operator. This operator randomly selects two positions
from a permutation and then swaps the two fragment positions. Since this
operator does not introduce any duplicate number in the permutation, the
solution it produces is always feasible. Swap mutation operator is suitable for
permutation problems like ordering fragments.

Selection operator

The purpose of the selection is to weed out the bad solutions. It requires a
population as a parameter, processes the population using the fitness function,
and returns a new population. The level of the selection pressure is very impor-
tant. If the pressure is too low, convergence becomes very slow. If the pressure
is too high, convergence will be premature to a local optimum.

In this work, we use ranking selection mechanism [19], in which the GA first
sorts the individuals based on the fitness and then selects the individuals with
the best fitness score until the specified population size is reached. Note that
the population size will grow whenever a new offspring is produced by crossover
or mutation. The use of ranking selection is preferred over other selections such
as fitness proportional selection [6].



4 DNA Fragment Assembly Problem using the
Parallel GA

This section introduces the parallel model that we use in the experiments dis-
cussed in the next section. The first part of this section describes the parallel
model of GA, while the second part presents the software used to implement
that model.

4.1 Parallel Genetic Algorithm

A parallel GA (PGA) is an algorithm having multiple component GAs, regard-
less of their population structure. A component GA is usually a traditional GA
with a single population. Its algorithm is augmented with an additional phase
of communication code so as to be able to convey its result and receive results
from the other components [2].

Figure 2: Graphical representation of the parallel dGA

Different parallel algorithms differ in the characteristics of their elementary
heuristics and in the communication details. In this work, we have chosen a kind
of decentralized distributed search because of its popularity and because it can
be easily implemented in clusters of machines. In this parallel implementation
separate subpopulations evolve independently in a ring with sparse exchanges
of a given number of individuals with a certain given frequency (see Figure 2).
The selection of the emigrants is through binary tournament [6] in the genetic
algorithms, and the arriving immigrants replace the worst ones in the population
only if the new ones is better than this current worst individuals.

Before moving on to Section 5 in which we analyze the effects of several
configurations of migration rates and frequencies, we introduce MALLBA which
we used in this work and where all our programs can be found.

4.2 The MALLBA Project

The MALLBA research project [1] is aimed at developing a library of algo-
rithms for optimization that can deal with parallelism in a user-friendly and, at
the same time, efficient manner. Its three target environments are sequential,
LAN and WAN computer platforms. All the algorithms described in the next



section are implemented as software skeletons (similar to the concept of soft-
ware pattern) with a common internal and public interface. This permits fast
prototyping and transparent access to parallel platforms.

MALLBA skeletons distinguish between the concrete problem to be solved
and the solver technique. Skeletons are generic templates to be instantiated by
the user with the features of the problem. All the knowledge related to the solver
method (e.g., parallel considerations) and its interactions with the problem are
implemented by the skeleton and offered to the user. Skeletons are implemented
by a set of required and provided C++ classes that represent an abstraction of
the entities participating in the solver method:

e Provided Classes: They implement internal aspects of the skeleton in
a problem-independent way. The most important provided classes are
Solver (the algorithm) and SetUpParams (setup parameters).

e Required Classes: They specify information related to the problem.
Each skeleton includes the Problem and Solution required classes that
encapsulate the problem-dependent entities needed by the solver method.
Depending on the skeleton other classes may be required.

Therefore, the user of a MALLBA skeleton only needs to implement the
particular features related to the problem. This speeds considerably the cre-
ation of new algorithms with minimum effort, especially if they are built up as
combinations of existing skeletons (hybrids).

The infrastructure used in the MALLBA project is made of communica-
tion networks and clusters of computers located at the Spanish universities of
Malaga, La Laguna and UPC in Barcelona. These nodes are interconnected by
a chain of Fast Ethernet and ATM circuits. The MALLBA library is publicly
available at http://neo.lcc.uma.es/mallba/easy-mallba/index.html.

By using this library, we were able to perform a quick coding of algorithmic
prototypes to cope with the inherent difficulties of the DNA fragment assembly
problem.

5 Experimental Results

A target sequence with accession number BX842596 (GI 38524243)
was used in this work. It was obtained from the NCBI web site
(http://www.ncbi.nlm.nih.gov). It is the sequence of a Neurospora crassa
(common bread mold) BAC, and is 77,292 base pairs long. To test and an-
alyze the performance of our algorithm, we generated two problem instances
with GenFrag [5]. The first problem instance, 842596_4, contains 442 fragments
with average fragment length of 708 bps and coverage 4. The second prob-
lem instance, 842596_7, contains 733 fragments with average fragment length of
703 bps and coverage 7.

We evaluated each assembly result in terms of the number of contigs assem-
bled and the percentage similarity of assembled regions with the target sequence.
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Since we obtain fragments from a known target sequence, we can compare our
assembled consensus sequence with the target.

We use a sequential GA and several distributed GAs (having 2, 4, and 8
islands) to solve this problem. Since the results of the GA vary depending on
the different parameter settings, we begin this section by discussing how the
parameters affect the results and the performance of the GA. We then elabo-
rate on how these parameters are used for solving the DNA fragment assembly
problem.

5.1 Analysis of the Algorithm

We studied the effects of the fitness function, crossover operator, population
size, operator rates and migration configuration for the distributed GA (dGA).
In our analysis we perform different runs of the GA in the following manner:
change one GA parameter of the basic configuration while keeping the other
parameters to the same value. The basic setting uses F1 (Eq. 2) as fitness
function and the order-based crossover as recombination operator. The whole
population is composed of 512 individuals. In dGA, each island has a population
of 512/n, where n is the number of islands. Migration occurs in a unidirectional
ring manner, sending one single randomly chosen individual to the neighbor
subpopulation. The target population incorporates this individual only if it is
better than its presently worst solution. The migration step is performed every
20 iterations in every island in an asynchronous way. All runs were performed
on a Pentium 4 at 2.8 GHz linked by a Fast Ethernet communication network.
Our parameter values are summarized in Table 1. We performed 30 independent
runs of each experiment.

Independent runs 30

Popsize 512

Fitness function F1

Crossover 0X (0.7)
Mutation Swap (0.2)
Cutoff 30

Migration frequency 20

Migration rate 1

Instance 38524243 _4.dat

Table 1: Basic Configuration

5.1.1 Function Analysis

We begin our study with the choice of the fitness function because it is one of the
most important steps in applying a genetic algorithm to a problem. Especially
in this problem, choosing an appropriate fitness function is an open research line,
since it is difficult to capture the dynamics of the problem into a mathematical
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function. The results of our runs are summarized in Table 2. The table shows the
fitness of the best solution obtained (b), the average fitness found (f), average
number of evaluations (e), and average time in seconds (). Recall that F1
is a maximization function while F2 is a minimization one. Our conclusion is
that, while F2 takes longer than F1, both functions need the same number of
evaluations to find the best solution (differences are not statistically significants
in sequential and distributed (n = 2) versions). This comes as no surprise,
since F2 has a quadratic complexity while the complexity of F1 is linear. In
fact, this amounts to an apparent advantage of F1, since it provides a lower
complexity compared to F2 while needing a similar effort to arrive to similar
or larger degrees of accuracy. Also, when distributed (n = 4 or n = 8) F1 does
allow for a reduction in the effort, while F2 seems not to profit from a larger
number of machines.

[ F1i F2 |
[ b f e t b f e t |

Sequential 26358 24023 808311 56 55345800 58253990 817989  2.2e+403
98133 86490 711168 25 58897100 61312523 818892 1.1e+03
75824 66854 730777 14 66187200 68696853 818602  5.4e+402
66021 56776 537627 6.3 | 77817700 79273330 817638  2.7e+402

LAN

585
([
[C SN )

Table 2: Results with F1 and F2 fitness functions

The number of contigs is used as the criterion to judge the quality of the
results. As it can be seen in Table 3, F1 performs better than F2 since it
produces fewer contigs.

[ F1 Contig | F2 Contig |

Sequential 6 8
n=2 6 7
LAN n=4 6 6
n=23_8 6 7

Table 3: Function Analysis 3: Best Contigs

5.1.2 Crossover Operator Analysis

In this subsection we analyze the effectiveness of two recombination operators:
the order-based crossover and the edge recombination. Table 4 summarizes the
results obtained using these operators. A close look at the columns devoted to
running times reveals that ER is slower than the OX operator. This is due to
the fact that ER preserves the adjacency present in the two parents, while OX
does not. Despite the theoretical advantage of ER over OX, we noticed that the
GA performs equally with the order-based crossover operator as with the edge
recombination, since it computes higher fitness scores for two out of two cases
for the two operators (recall that F1 is a maximization function). OX operator
is much faster at an equivalent accuracy.
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| oX [ ER ]

[ b f e t ] b f e t |
Sequential 26358 24023 808311 56 26276 23011 801435 2.01e3
n=2 98133 86490 711168 25 99043 84238 789585 1.1e3
LAN n=4 75824 66854 730777 14 73542 65893 724058 5.3e2
n=3_8 66021 56776 537627 6.3 62492 53628 557128 1.9e2

Table 4: Crossover Operator Analysis

5.1.3 Population Size Analysis

In this subsection we study the influence of the population in our algorithms.
Table 5 shows the average fitness score and the average time for several pop-
ulation sizes. As can be seen in the table, small population sizes lead to fast
convergence to low average fitness values. The best average fitness in our exper-
iments is obtained with a population of 512 individuals. For population sizes
larger than 512 the execution time is increased while the average fitness does
not improve. This observation leads us to believe that a population size of 512
might be optimal.

Seq. LAN
Popsize n=1 n=2 | n =4 n=3=8
f t f t ] f t ] f t
128 8773 1.7 53876 11 16634 3 23118 3.5
256 7424 0.01 76447 29 44846 7 21305 1.9
512 24023 56 86490 25 66854 14 56776 6.3
1024 21012 60 76263 30 60530 13 47026 7.1
2048 23732 67 54298 32 49049 14 32494 3.3

Table 5: Population Size Analysis

5.1.4 Operator Rate Analysis

We now proceed to analyze the effects of the operator rates in the GA behavior.
Table 6 summarizes the results using different combinations of crossover rates
(P.) and mutation rates (P,,). Our findings show that the fitness values tend
to increase as the crossover and mutation rate increase. The mutation operator
is very important in this problem, since when the algorithm does not apply
mutation (P,, = 0.0), the population converges too quickly and the algorithm
yields very bad solutions.

5.1.5 Migration Policy Analysis

We finish this analysis by examining the effects of the migration policy. More
precisely, we study the influence of the migration rate (rate) and the migration
frequency (freq). The migration rate indicates the number of individuals that
are migrated, while the migration frequency represents the number of iterations
between two consecutive migrations. These two values are crucial for the cou-
pling between the islands in the dGA. Table 7 summarizes the results using
different combinations of these parameters. Upon examining the average fitness

13



Seq. LAN

Pc-Ppm n = 1 n =2 | n=4 | n =38

b f t b f t | b f t | b f t
0.3-0.0 8842 7817 0 12539 9148 0.2 11500 8775 0.1 10284 7932 0.01
0.3-0.1 15624 12223 33 91989 61549 16 51109 43822 8 34645 29582 3.6
0.3-0.2 22583 17567 33 90691 70342 15 70608 59581 8.1 50336 41728 3.6
0.3-0.3 27466 20476 33 96341 77048 15 78339 66137 7.8 59242 51174 3.6
0.5-0.0 8908 7620 0 28485 12981 0.5 13629 10236 0.2 12788 8522 0.03
0.5-0.1 18103 12600 45 83121 61355 20 54930 47894 11 40523 31871 4.9
0.5-0.2 22706 19038 44 95352 77583 20 73333 62963 11 53326 45378 5
0.5-0.3 28489 23180 45 101172 84300 22 80102 70013 11 59946 53567 5
0.7-0.0 9157 7459 0 28221 12540 0.6 14702 11099 0.2 16089 8935 0.05
0.7-0.1 17140 14065 56 86284 67225 27 59714 50899 14 39862 33719 6.3
0.7-0.2 26358 24023 56 98133 86490 25 75824 66854 14 66021 56776 6.3
0.7-0.3 28359 25026 56 104641 84065 28 84732 71897 14 63482 53212 6.1
1.0-0.0 8692 7505 0 21664 14561 1.1 26294 12888 0.4 16732 9897 0.11
1.0-0.1 19485 16242 74 90815 71252 35 67067 55713 19 42650 33783 7.9
1.0-0.2 27564 22881 74 103231 81300 35 81417 71963 20 56871 50154 8.4
1.0-0.3 33071 27500 74 107148 88653 36 88389 74048 18 66588 58556 8.5

Table 6: Operator Rate Analysis (P.-Py,)

column (f), we observe that a lower value of migration rate (rate = 1) is better
than a higher value. A high coupling among islands (a low value of migration
frequency) is not beneficial for this problem. The optimum value of migration
frequency is 20, since if we still increase this value (resulting in a looser coupling
among islands) the average fitness decreases.

LAN
freg-rate n =2 | n =4 | n =238
b f [ b f [ b f

5-1 99904 76447 75317 62908 52127 35281
5-10 61910 37738 68703 55071 56987 52128
5-20 92927 72445 72029 66368 59473 54312
20-1 98133 86490 75824 66854 66021 56776
20-10 82619 45375 70497 57898 53941 48968
20-20 89211 74236 72170 65916 59324 53352
50-1 95670 70728 77024 65257 64612 55786
50-10 92678 41465 66046 51321 59013 51842
50-20 95374 76627 72540 62371 59923 52650

Table 7: Migration Policy Analysis (freg-rate)

5.2 Analysis of the Problem

In this section we report the results aimed at solving the problem as accurately
and efficiently as possible.

From the previous analysis, we conclude that the best settings for our prob-
lem instances of the fragment assembly problem is a population size of 512
individuals, with F1 as fitness function, OR as crossover operator (with prob-
ability 1.0), and with a swap mutation operator (with probability 0.3). The
migration in dGAs occurs in a unidirectional ring manner, sending one single
randomly chosen individual to the neighbor sub-population. The target popu-
lation incorporates this individual only if it is better than its presently worst
solution. The migration step is performed every 20 iterations in every island in
an asynchronous way. A summary of the conditions for our experimentation is
found in Table 8.
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Independent runs 30
Popsize 512
Fitness function F1
Crossover OR (1.0)
Mutation Swap (0.3)
Cutoff 30
Migration frequency 20
Migration rate 1

Table 8: Parameters when heading and optimum solution of the problem

Table 9 shows all the results and performance with all data instances and
algorithms described in this chapter. We discuss some of the results found
in the table. First, for both instances, it is clear that the distributed version
outperforms the serial version. The distributed algorithm yields better fitness
values and is faster than the sequential GA. Let us now go in deeper details on
these claims.

For the first problem instance, the parallel GAs sampled less points in the
search space than the serial one, while for the second instance the panmictic
algorithm is mostly similar in the required effort with respect to the parallel
ones.

Increasing of the number of islands (and CPUs) results in a reduction in
search time, but it does not lead to a better fitness value. For the second
problem instance, the average fitness was improved by a larger number of islands.
However, for the first problem instance, we observed a reduction in the fitness
value as we increased the number of CPUs. This counterintuitive result clearly
states that each instance has a different number of optimum number of islands
from the point of view of the accuracy.

The best tradeoff is for two islands (n = 2) for the two instances, since this
value yields a high fitness at an affordable cost and time.

[ 385242434 I 385242437 ]
[ b f e t ] b f e t
Sequential 33071 27500 810274 74 78624 67223 502167 120

n=2 107148 88653 733909 36 156969 116605 611694 85
LAN n=4 88389 74048 726830 18 158021 120234 577873 48
n =38 66588 58556 539296 8.5 159654 119735 581979 27

Table 9: Results of Both Problem Instances

Table 10 gives the speed-up results. As it can be seen in the table, we always
obtain an almost linear speedup for the first problem instance. For the second
instance we also have a good speedup with a low number of islands (two and
four islands); eight islands make the efficiency decrease to a moderate speedup
(6.42).

Finally, Table 11 shows the global number of contigs computed in every
case. This value is used as a high-level criterion to judge the whole quality
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l 38524243 4 385242437
[ nCPUs 1CPU  Speedup | n CPUs 1 CPU  Speedup |
n=2 36.21 72.07 1.99 85.37 160.15 1.87
LAN n=4 18.32 72.13 3.93 47.78 168.20 3.52
n=2~8 8.52 64.41 7.56 26.81 172.13 6.42

Table 10: Speed-up

of the results since, as we said before, it is difficult to capture the dynamics
of the problem into a mathematical function. These values are computed by
applying a final step of refinement with a greedy heuristic regularly used in this
application [11]. We have found that in some (extreme) cases it is possible that
a solution with a better fitness than other one generates a larger number of
contigs (worse solution). This is the reason for still needing research to get a
more accurate mapping from fitness to contig number. The values of this table
confirm again that all the parallel versions outperform the serial versions, thus
advising the utilization of parallel GAs for this application in the future.

[ 38524243_4 | 38524243.7 |
Sequential 5 4
n=2 3 2
LAN n=4 4 1
n=23_8 4 2

Table 11: Final Best Contigs

6 Conclusions

The DNA fragment assembly is a very complex problem in computational bi-
ology. Since the problem is NP-hard, the optimal solution is impossible to find
for real cases, except for very small problem instances. Hence, computational
techniques of affordable complexity such as heuristics are needed for this prob-
lem.

The sequential Genetic Algorithm we used here solves the DNA fragment
assembly problem by applying a set of genetic operators and parameter settings,
but does take a large amount of time for problem instances that are over 15k
base pairs. Our distributed version has taken care of this shortcoming. Our test
data are over 77K base pairs long. We are encouraged by the results obtained
by our parallel algorithms not only because of their low waiting times, but also
because of their high accuracy in computing solutions of even just 1 contig.
This is noticeable since it is far from triviality to compute optimal solutions for
real-world instances of this problem.

We plan to analyze other kinds of distributed algorithms created as exten-
sions of the canonical GA skeleton used in this chapter. To curb the problem
of premature convergence for example, we propose a restart technique in the
islands. Another interesting point of research would be to incorporate different
algorithms in the islands, such as greedy or simulated annealing, and to study
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the effects this could have on the observed performance.
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