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Abstract

The comparison of protein structures is an important problem in bioinformatics.
As a protein biological role is derived from its three dimensional native state, the
comparison of a new protein structure (with unknown function) with other protein
structures (with known biological activity) can shed light into the biological role of
the former. Consequently, advances in the comparison (and clustering) of proteins
accordingly to their three dimensional configurations might also have an impact
on drug discovery and other biomedical research that relies on understanding the
inter-relations between structure and function in proteins.

The contributions on this paper are: First, we propose a generalization of the
Maximum Contact Map Overlap Problem (MAX-CMO) by means of fuzzy sets
and systems. The MAX-CMO is a model for protein structure comparison. In our
new model, Generalized Maximum Fuzzy Contact Map Overlap (GMAX-FCMO),
a contact map is defined by means of one (or more) fuzzy thresholds and one (or
more) membership functions. The advantages and limitations of our new model
are discussed. Second, we show how a fuzzy sets based metaheuristic can be used
to compute protein similarities based on the new model. Finally, we compute the
protein structure similarity of real-world proteins and show how our new model
correctly measures their (di)similarity.
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1 Introduction

The comparison of the 3D structures of protein molecules is a challenging
problem. The search for effective solution techniques for this problem, is justi-
fied because such tools aid scientists in the development of procedures for drug
design, in the identification of new types of protein architecture, in the orga-
nization of the known universe of protein structures and could assist in the
discovery of unexpected evolutionary and functional inter-relations between
them [14,15]. Good comparison techniques for protein structures could also be
used in the evaluation of ab-initio, threading or homology modelling structure
predictions. It would be safe to argue that the comparison of proteins’ struc-
tures, and their clustering accordingly to similarity, is a fundamental aspect
of today’s biomedical research.

There is no general agreement on which is the best similarity measure to use
and what computational method must be harnessed in order to produce the re-
quired measurement. Each measure is usually based on a particular biological
conception of structural similarity and they generally use different algorithmic
strategies. Methodologies based on dynamic programming [27], comparisons
of distance matrices [13], maximal common sub-graph detection [1], geomet-
rical matching [28], consensus shapes[9] and consensus structures[23] are but
a few of the available tools for structural comparison. In this context we had
recently proposed the application of a Universal Similarity Measure to com-
pare protein structures [19] which subsumes (under certain conditions) every
other possible similarity concept.

Most of the existing methods implicitly accept that a suitable scoring func-
tion can be defined for which optimum values correspond to the best possible
structural match between two proteins. It is implicitly assumed that, based on
these optimal matches, similarity between protein structures can be captured.

One of the latest approaches for structural matching was introduced in [11]
and extended in [6,7,17,21]. This method is based on the maximum overlap
(also called alignment) of contact maps. Although the problem of maximizing
the overlap between two contact maps was shown to be NP-hard [10,11,16]
good approximate algorithms exist. The current state of the art to obtain
single (sub)optimal maximum contact map overlaps is reported in [5] while
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(José L. Verdegay), ekb@nott.cs.ac.uk (Edmund Burke).
1 Research supported in part by Project TIC2002-04242-C03-02 from Spanish Min-
istry of Science and Technology and the British BBSRC/EPSRC Bioinformatics
initiative (42/BIO14458).

2



multiple (sub)optimal overlaps can be obtained with a memetic algorithm [17].

In [4], Bourne and Shindyallov say:

Consider a spectrum that at one end maximizes the geometric relationship
between two proteins and at the other provides the maximum amount of
biological significance in the alignment. Depending on the task at hand, you
may wish to be at one end of the spectrum or the other, or in the middle

and they go on saying:

An important consideration when using any structural alignment method is
to consider the nature of the problem you are trying to solve and to experi-
ment with a variety of methods

It is with this spirit in mind that we extended the standard contact map
definition and the associate MAX-CMO problem with the aid of fuzzy sets
and systems.

Maximum contact map overlaps in their basic definition are “sanitized” math-
ematical constructs that may, sometimes, leave out important features of pro-
tein topological fingerprints for the sake of mathematical solvability. As an
example consider the uncertainties derived from errors in the determination
of the atomic Cartesian coordinates by X-Ray Crystallography or NMR. Ex-
perimental errors range from 0.01 Å to 1.27 Å which is close the value of some
co-valent bonds [22]. This type of uncertainties cannot be handled with the
standard model. Moreover, crisp contact maps are computed based on only
one preferred threshold value and they loose all the information related to
contacts at alternative thresholds. That is, contact maps can only provide a
coarse approximation to protein’s true topological features.

In order to solve the problems associated with standard contact maps we
adopted a fuzzified version that includes two distinct thresholds: one to capture
short-distance features while the other one represents long-distance patterns.
Moreover, unlike MAX-CMO our similarity distance is normalized. Fuzzy con-
tact maps lead to the formulation of a more general combinatorial problem
called General Maximum Fuzzy Contact Map Overlap Problem.

This new model and its associated combinatorial problem allow the end-user,
i.e. the biologist, to capture a variety of protein’s topological features and the
uncertainties related to their experimental determination. The biologist can
choose on what region of the Bourne and Shindyallov spectrum he/she wants
to work: at one end of the spectrum where exact and (almost) optimal solutions
can be computed from a mathematical viewpoint (i.e. crisp MAX-CMO)
all the way up to the other end of the spectrum where more biologically
meaningful solutions could obtained.
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This article is organized as follows: First we describe the standard (i.e. crisp)
model of contact maps and the Maximum Contact Map Overlap Problem in
the context of protein structure comparison. Our contributions start in section
3 with a generalization of contact maps and the introduction in section 4 of
the GMAX-FCMO problem. Section 5 describes a fuzzy based metaheuristic,
FANS, which can solve GMAX-FCMO. In section 6 we show how GMAX-
FCMO and FANS are used to measure protein similarity. The paper concludes
in section 7 where future work is suggested.

2 Protein Structure Comparison by Contact Map Overlaps

A protein is a complex molecule composed by a linear arrangement of amino
acids. Each amino acid is a multi-atom compound. Usually, only the “residue”
part of these amino acids are considered when studying protein structures for
comparison purposes. Thus a protein’s primary sequence is usually though-of
as composed of “residues”. Under specific physiological conditions, the linear
arrangement of residues will fold and adopt a complex three dimensional shape.
The shape thus adopted is called the native state (or tertiary structure) of
the protein. In its native state, residues that are far away along the linear
arrangement may come into proximity in three dimensional space in a fashion
similar to what occurs with the extremes of a sheet of paper when used to
produce complex origami shapes. This is illustrated in figures 1(a) and (b). The
proximity relation between residues in a protein is captured by a mathematical
construct called a contact map. In (c) the contact map for the proximity
relation in (b) is depicted as a graph.

(a) (b) (c)

Fig. 1. Illustrations of (a) an unfolded protein, (b) a protein after folding, and (c)
a contact map graph of the final folding.

2.1 The Standard (crisp) Contact Map

The contact map [24,8,25] is a concise representation of a protein’s native
three-dimensional structure. Formally, a map is specified by a 0-1 matrix S,
with entries indexed by pairs of protein residues, such that
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Si,j =





1 if residue i and j are in contact

0 otherwise
(1)

Residues i and j are said to be in “contact” if their Euclidean distance is at
most < (measured in Angstroms) in the protein’s native fold. Oftentimes <
is called the “threshold” of the contact map (usual values for < are between
2 and 9 Å). The graphical representation of the contact map for the fold in
Fig.1(b) is shown also in Fig.2 as a dot-matrix representation.

   

Fig. 2. A dot-matrix representation for the contact map of the fold in Fig.1(b).

Contact maps might be calculated by taking into account the distance of
the Cα atoms of the residues under consideration, or the minimum distance
between any two atoms belonging to those residues. In some cases, contact
maps are computed based on the distances between the centers of mass of
the side chains of residues. The contact map captures the three dimensional
structure of proteins and certain structural features are conspicuous when the
contact map is represented graphically. Consider for example a contact map
represented as a white-black dot-matrix. If the protein structure associated
to a given contact map contained α−helices, then wide bands on its main
diagonal will be visible. On the other hand, if β − sheets were present in the
protein structure, these will show as bands parallel or perpendicular to the
diagonal.

2.2 Maximum (crisp) Contact Map Overlap Formulation

Protein similarity can be computed by aligning the two contact maps of a pair
of proteins. An alignment of two proteins is a pairing of amino acids between
them. For example, Figures 3(a) and 4(a) show the structures of two related
proteins taken from the Protein Data Bank (PDB)[2]. These proteins share a 6
helices structural motif. Figures 3(b) and 4(b) display the contact map of the
proteins as a graph in which each contact between two residues corresponds
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to an edge. Figure 5 shows a candidate alignment between the contact maps
of these protein structures.

The alignment between two contact maps is an assignment of residues in the
first contact map to residues on the second contact map. Residues that are
thus aligned are considered equivalent. Further, consider a pair of contacts,
one from each protein. We say that such a pair of contacts is equivalent if the
pairs of residues that define the end-points of these contacts are equivalent. In
the Max CMO problem, the value of an alignment between a pair of proteins
is the number of equivalent contacts between these proteins. This number is
called the overlap of the contact maps and the goal is to maximize this value.
That is, the larger that value the more similar the two proteins are considered.

(a) (b)

Fig. 3. Native structure (a) for protein 1ash taken from the PDB [2] and its contact
map (b).

(a) (b)

Fig. 4. Native structure (a) for protein 1hlm taken from the PDB [2] and its contact
map (b).
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Fig. 5. A potential alignment (of value 162) for the contact maps of similar proteins
1ash and 1hlm. The optimal alignment based on the crisp model has a value of 279.

3 The New Generalized Fuzzy Contact Maps

Under the standard model, a crisp Euclidean distance threshold is used to
decide whether two residues are in contact or not. In order to produce a more
flexible framework for protein similarity we resort to a richer concept of contact
and contact maps. These are described next.

3.1 Introducing Fuzzy Contact Maps

Using a membership function µ() we define fuzzy contacts as those made by
two residues that are “roughly” at a distance <. An example of a membership
function µ(), which establishes the level of contact between two residues, is
depicted in Fig.6. Formally, a fuzzy contact is defined by:

Fi,j = µ([i, j],<) (2)

where [i, j] stands for the Euclidean distance between residues i and j, and
< is the threshold as for the crisp contacts. The standard, i.e. crisp, contact
map is just a special case of the fuzzy contact map when a user-defined α-cut
is specified. In the example in Fig. 6, setting α = 1 turns the fuzzy contact
map into the standard crisp contact map.
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α

0

1

< <+ γ

Fig. 6. Membership function for the fuzzy set of residues whose inter distance is “at
most < plus tolerance γ Å”. An α-cut is also displayed. When α = 1 a standard
(i.e. crisp) contact map is obtained.

3.1.1 Discussion on Fuzzy Contact Maps

The reader must note that different biological structural features might be
better captured by changing the meaning of “contact”. While this cannot be
done under the standard model, the generalized fuzzy version allows the user
to do precisely that by readily changing the shape and parameters of the
membership function µ().

Figure 7 shows three alternative meanings for “contact” as realized by three
different membership functions. Recall that each panel in the figure is a fuzzy
contact map in which a colored dot appears for each pair of residues such
that Fi,j > 0 (i.e. the support of the corresponding fuzzy set). The leftmost
membership function is simply one that corresponds to the standard contact
map. The rightmost µ() defines a contact map that contains those same con-
tacts that appear under the standard model plus some new contacts. The new
contacts are those formed by residues that are located at a slightly bigger
distance than the preferred threshold <. In turn, the membership function in
the middle panel defines a new contact map where two residues are deemed
to be in contact if they are located “at < Å away with symmetric tolerance
γ”, that is, at a slightly smaller or slightly bigger distance.

3.2 Generalizing Fuzzy Contact Maps

The fuzzy contact maps defined above can be further generalized by removing
the constraint (in the original model) of having only one threshold < as a
reference distance. That is, we can extend our model in two ways:

• 1-threshold fuzzy contact maps are generalized to n−threshold fuzzy con-
tact maps: this is motivated by the fact that different contact patterns
may arise simultaneously at different euclidean distances, e.g., the average
inter-residue distances within α-helices are different than those present in a
β−sheet or loop.
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R− γ R R + γ

1

R R + γ

1

(a) (b) (c)

Fig. 7. Three different meaning for “contact”. In the figures R = 10Å, γ = 1.2Å.
The fuzzy contact maps displayed are for protein 1AA9.

• 1-membership function fuzzy contact maps are generalized to m−membership
function contact maps: the rationale behind this extension to the model is
that different meanings for “contact” could be simultaneously needed by
the biologist. A 1-membership function contact map (either crisp or fuzzy)
cannot capture this need.

Under General Fuzzy Contact Maps, the standard crisp contact maps (with
one threshold and a default membership function) are readily included at one
extreme of the spectrum of potential maps.

The formal definition of a General Fuzzy Contact is given by:

Fi,j = max{µ1([i, j],<1), µ2([i, j],<2), . . . , µm([i, j],<n)} (3)

with the contact map C defined as:

Cr×r = (Fi,j) with 0 ≤ i, j ≤ r (4)

That is, up to n different thresholds and up to m different semantic inter-
pretations of “contact” are used to define the r × r contact map being r the
number of residues in the protein. Please note that in general n and m could
form any order relationship, that is, n < m, n ≤ m,n = m,n ≥ m or n > m.

9



3.3 A 2−Threshold, 2−Membership Functions Fuzzy Contact Map Example

As a particular example consider a 2-thresholds, 2-membership functions fuzzy
contact map intended to simultaneously highlight short and long structural
patterns. The membership functions µ1, µ2 for short and long patterns are
defined in such a way that they do not overlap and with <1 < <2. Each entry
in the fuzzy contact map will be either of type short or long with Fi,j ∈ [0, 1]
indicating just how short or how long (with respect to the corresponding
thresholds) that entry is.

(a) (b) (c)

Fig. 8. Different contact map models for protein 1AAG. In (a) standard contact map
with < = 6.5Å, (b) 1-threshold Fuzzy Contact Map with < = 6.5Å and µ() as in
7(c), and (c) 2-thresholds Fuzzy Contact Map with <1 = 6.5Å, <2 = 10.0Å,γ = 1.2Å
and µ1(), µ2() as in 7(c)

We computed three different contact maps for protein 1AA9. These are shown
in Fig. 8 where the parameters used to create them are also described. The
first contact map uses the standard model, the second is a generalized con-
tact map with one threshold and one membership function, and the third is a
2-thresholds, 2-membership functions fuzzy contact map. A simple visual in-
spection shows that the resulting patterns are different across the models and
that the more general model in 8(c) presents a richer set of features. Moreover,
the identity of the contact (i.e. from which membership function it arises) is
color coded adding another information dimension to our model.

3.4 Discussion on the Generalized Fuzzy Contact Maps

The n−threshold m−membership functions fuzzy contact maps are a powerful
tool to exploit models of contact maps that span the Bourne and Shindyallov
spectrum. In the simplest case of a 1-threshold with 1-membership function
having α − cut = 1.0, the standard crisp contact map model is obtained. On
the other hand, as different thresholds are added and various “meanings” are
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attached to the contact concept (by means of a variety of membership func-
tions) richer and richer models are obtained. The proposed model empowers
the end user with the ability to select how much “biology” to include in the
mathematical construct. Moreover, this is done accordingly to the task at hand
and not to some arbitrary mathematical constraint.

4 The Generalized Maximum Fuzzy Contact Map Overlap Prob-
lem

The new contact map model introduced in section 3 is not only a good tool
to visually inspect protein structures but, it can also be used to measure
the similarity between a pair of proteins. In order to achieve this, we ex-
tend the maximum (crisp) contact map overlap problem in such a way that
the additional information contained in the generalized fuzzy contact maps
could be used. When using general fuzzy contact maps, protein similarity is
measured by solving the Generalized Maximum Fuzzy Contact Map Overlap
Problem (GMAX-FCMO).

Recall that a contact map Cr×r can be graphically represented either as a
dot-matrix (like in Fig. 8) or as graphs (like in Fig. 3). When working and
reasoning in terms of “overlaps” it is easier to use the later representation.
Under the standard model (i.e. MAX-CMO) the value of an overlap gives a
measure of the similarity of two proteins. Please note that in this case the
overlap value is not a normalized similarity measure. That is, if for example
the overlap value of proteins A and B is 100 and that of C and D is also
100, it does not follow from that information that A is as similar to B as
C is to D. The reason for that is that A and B could be 120 residues long
each while C and D 200 and 400 residues long respectively. In that case we
could certainly argue that an overlap value of 100 in the A,B case is a rather
accurate assessment of their similarity while for C and D it is not.

Figure 9(a) shows an overlap between the contact maps of protein P1 and P2.
The overlap or alignment is represented by the red lines. The value of that
alignment is 2. This number is reached by counting the number of size 4 cycles
made up by a contact in P1 (in blue), a red edge , a contact in P2 (in blue)
and a second red edge.

In Fig.9(b) the same connectivity structure is maintained but the contacts
arise from two different membership functions, i.e. the meaning of contact
differ. The contacts arising from the first membership function are drawn
in green and the ones arising from the second membership function in blue.
Under the generalized overlap model, aligning residues in P1 to residues in
P2 as in Fig.9(a) would constitute a “semantic mismatch” as green and blue
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(a) (b)

Fig. 9. An example of an overlap between two contact maps. In (a) the contact maps
(represented as graphs rather than dot-matrices) are crisp. In (b) the contact maps
are generalized fuzzy ones, the different edge colors represent different membership
functions.

contacts come from different membership functions and hence they should not
be aligned. On the other hand, the alignment in (b) preserves the semantic
meaning of the contacts. That is, under the GMAX-FCMO problem we need
not only to maximize the overlap value (i.e. number of size 4 cycles) but it is
also necessary to preserve the semantic meaning of the contacts that are thus
aligned. We formally define the new problem next.

Given:

• two proteins P1, P2 with r1, r2 residues each and (without loss of generality)
r1 ≤ r2.

• two 2-threshold, 2-membership functions contact maps C1 = (c1
i,j), C2 =

(c2
i,j)

• two matrices T1 = (t1i,j), T2 = (t2i,j) indicating the type or meaning of each
contact 2 .

we define an overlap as a (partial) ordered mapping σ : r1 7→ r2 such that if
i, j ∈ r1, i < j then σ(i) < σ(j).

A cycle s is defined as a quaternion (i, j, σ(i), σ(j)). The contribution of the

2 T i matrices are used to simplify the explanation. From an implementation view-
point all the information, i.e. membership values and types, could be stored in the
same contact map.
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cycle s to the value of the overlap is given by:

P (s) = (c1
i,j ∗ c2

σ(i),σ(j)) ∗ (t1i,j ~ t2σ(i),σ(j))

The operator a ~ b returns 1 iff a = b and -1 otherwise. The first term of P is
simply the product of the membership value of a contact in the first protein
structure by the membership value of a contact in the second protein. The
second term is the compatibility term which measures whether the contacts
arise from the same membership function or not (i.e. whether their semantic
meanings match). In the GMAX-FCMO we seek to maximize the sum of the
contributions of every compatible cycle s induced by the overlap σ. Please
note that these definitions are easy to use with m−membership functions and
n−thresholds fuzzy contact maps.

The Generalized Maximum Fuzzy Contact Map Overlap thus requires that a σ
be found such that it maximizes the sum of the contributions of the compatible
cycles.

Once an optimal overlap has been found, it must then be normalized. That
is, if the optimal overlap for proteins P1, P2 is opt the similarity is defined as:

SIM(P1, P2) =
opt

MAX{selfSim(P1), selfSim(P2)} (5)

where SelfSim(Pk) =
∑rk−1

i=1

∑rk

j=i+1(C
k
i,j)

2 stands for the self-similarity of a
protein measured through the corresponding fuzzy contact map (i.e. the sum
of the squared fuzzy contact map entries in the matrix’s top triangle). The
idea behind this calculation is to overlap a protein with itself 3 to obtain
an upper bound for the value of similarity. The normalization thus is done
using the maximum of the self-similarities of fuzzy contact maps C1 and C2.
The reader should note that were the two contact maps crisp maps, then the
normalization could be simply done based on the maximum of the sizes of the
two contact maps.

As the compatibility term in P (s) can take negative values, it is unknown at
present where the approach in [5] can be use to solve GMAX-FCMO. That
is why we present next a fuzzy sets based metaheuristic that can reliably
compute SIM(P1, P2).

3 In this case, we consider the function σ as the identity function.
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5 Fuzzy Adaptive Neighborhood Search for GMAX-FCMO

The Fuzzy Adaptive Neighborhood Search (FANS) [3,26,18] metaheuristic is
a fuzzy sets based extension to the classical Variable Neighborhood Search
(VNS)[12]. Both FANS and VNS are local search methods in which the neigh-
borhood used to sample the solution space (e.g. the space of all possible over-
laps or alignments) is systematically and dynamically adjusted during the
search process. The motivation for the systematic change of neighborhood is
to allow the local search to proceed beyond a local optimum. As local opti-
mae are function of the neighborhood employed, vigorously changing the move
operator allows to bypass poor optimae.

In contrast with VNS, FANS provides a second method to escape local optimae
and continue the search in promising regions of the search space. To achieve
this a fuzzy objective function is used. The objective function defines which
of the neighboring solutions to the current best are deemed “acceptable” for
further exploration. In the current implementation of FANS neighboring so-
lutions are explored one at a time and as soon as an acceptable one is found
the search continues from that one.

FANS has been extensively tested on a variety of domains (e.g. [3,26]) and
found particularly efficient in the protein structure prediction problem [18].
We briefly describe next the basic components of FANS for solving the GMAX-
FCMO problem.

5.1 Solution Representation

An overlap for GMAX-FCMO is represented as an integer vector σ of size
r1, where r1 is the size of the shortest protein. A value σ[i] = i′ means that
residue i in the first protein is aligned with residue i′ in the second one. If σ is
a partial mapping then some of the positions in the vector might be undefined.
An undefined alignment is represented as -1.

5.2 Neighborhood Operators

A neighborhood operator assigns to a given overlap σ a set of alternative
overlaps: N(σ) = {σ′, such that σ′ is a valid overlap}. FANS defines three
neighborhood operators which are applied on a randomized basis (with equal
chances) to the current best solution:

• N1(σ): inserts a random alignment into the overlap σ.
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f(x∗)γ
0

1

Fig. 10. Fuzzy Valuation used in FANS. The cost of a reference solution f(x∗)
provides a measure to control the acceptance of neighborhood solutions.

• N2(σ): inserts two random alignments into the overlap σ.
• N3(σ): changes the alignments in σ to the left or right.

Once one of the above neighborhoods is selected it is applied k times to a
solution. Initially k = 3.

5.3 Adapting k

The length of the search done with each neighborhood is governed by the
parameter k. If after a while the three neighborhoods fail to return an accept-
able solution then k is decremented by 1. As the search progresses, the value
of k decreases, turning the search into a more exploitative one. In this way,
the search starts doing more exploration (performing several changes in the
current solution) then exploitation.

5.4 Fuzzy Objective Function Valuation

The fuzzy valuation used here is based on the overlap value of the current
solution. The “acceptability” of a neighbor solution is measured in terms of
the relation between its cost and that of the current solution. In this particular
implementation we employ the fuzzy objective function as in Fig. 10. The
reader must note that our definitions allow the algorithm to transit to solutions
with worst overlap values than the current reference solution.

6 Using GMAX-FCMO and FANS to Measure the Similarity of
Protein Structures

The formulation of GMAX-FCMO and its solution with FANS allow us to
compute the similarities that exist among a given set of protein structures. In
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this section we show the robustness of the proposed method by testing it on
three well known data sets. In [20] we used these same data sets to test the
so called “Universal Similarity Metric” for protein structures.

The Chew-Kedem Data Set:

This data set was used in [9] to evaluate a new method for measuring consensus
shapes. These are 32 medium size proteins of 5 different families: globins (1eca,
5mbn, 1hlb, 1hlm, 1babA, 1ithA, 1mba, 2hbg, 2lhb, 3sdhA, 1ash, 1flp, 1myt, 1lh2,
2vhb), alpha-beta (1aa9, 1gnp, 6q21, 1ct9, 1qra, 5p21), tim-barrels (6xia, 2mnr,
1chr, 4enl), all beta (1cd8, 1ci5, 1qa9, 1cdb, 1neu, 1qfo) and alpha (1cnp,1jhg).

Skolnick Data Set: This data set was used in various recent papers related
to structural comparison of proteins[17,6,7,21]. We selected here only 32 of
these proteins: 1ntr, 1nat, 1qmp, 1rn1, 3chy, 4tmy, 1bo0, 1dbw,1byo, 1baw, 1kdi,
1nin, 1pla, 2b3i, 2pcy, 2plt,3ypi, 8tim, 1tmh, 1tre, 1tri, 1ydv, 1hti, 1amk, 1awz,
1b9b, 1btm, 1bcf, 1b7i, 1dps, 1fha, 1rcd, 1ier.

Leluk-Konieczny-Roterman data set: This is a small data set recently
employed in [23] to test a new similarity measure based on geometric param-
eters of polypeptide chains: 1aat,1azx,2ach,7api,1ova,2ant.

Our new results will be assessed based on these three sets and in reference to
results previously reported in [20].

6.1 The GMAX-FCMO Similarity Measure Protocol

The following protocol was used to compute the similarity of protein structures
based on the proposed model and algorithm. The reader must note that this
protocol is generic in the sense that it can be applied not only to the data sets
used here but to any set of proteins.

(1) Extract from each pdb file the first chain. If other than chain ‘A’ is used
from the pdb file this is shown in the text as pdb accession number and
a letter, e.g. 1babB. A script to extract the first chain from a given pdb
can be found in http://www.cs.nott.ac.uk/˜nxk/protocol.html .

(2) Produce a generalized fuzzy contact map for each of the pdb files in the
dataset. The thresholds are fixed to R1 = 6.5 and R2 = 10, using γ = 1.5.
The membership function employed appears in Fig. 7(b). The distances
are measured from the Cα atoms.

(3) For each pair of generalized fuzzy contact maps c1, c2 compute its sim-
ilarity, SIM(c1, c2), through solving the Generalized Maximum Fuzzy
Contact Map Overlap Problem as per Eq.5.
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(4) Eq.5 is computed with FANS. The algorithm is executed with three dif-
ferent random seeds, leading to three values of similarity for every pair.

(5) With the resulting pairwise similarity matrix apply a clustering technique
to visualize the data.

6.2 Normalized Similarity Matrix and Cluster

We applied the protocol described above to the Chew-Kedem data set first.
For each one of the three runs of FANS we obtained a normalized similarity
matrix for the data set. Two of the three similarity matrices are shown in
tables 1, 2, 3 and 4 where the first two contain the best similarities obtained
with the randomized search algorithm. In turn, the third and fourth similarity
tables show the smallest values found with the FANS and they are included
here for comparison purposes (see below).

We fed these similarity matrices obtained after solving the GMAX-FCMO
to an “off-the-shelf” clustering method (step five in the protocol) to visually
inspect the results. More specifically, we run the clustering server located in
http://www2.biology.ualberta.ca/jbrzusto/cluster.php . The web-server exe-
cutes a combinatorial hierarchical clustering process that begins with each
structure in a cluster. When more than one cluster exist then they are com-
bined in a pairwise fashion, i.e., the two closest cluster are combined into a
new one. Then an inter-cluster distance is calculated between the new cluster
and the pre-existing ones. The inter-cluster distance was calculated as the un-
weighted arithmetic average distance (i.e. GMAX-FCMO distances) between
a protein structure in one cluster and a protein structure in a second cluster.

The clusters obtained are shown in Fig. 11. Two different trees are displayed,
the first corresponding to tables 1 and 2 and the second to tables 3 and 4.
Symbols were attached to the protein names to show more clearly how GMAX-
FCMO and FANS can correctly classify the proteins accordingly to their fam-
ilies. Moreover, for the Chew-Kedem data set our results are of comparable
quality to those described in [17,20].

We conducted additional experiments of our new approach with the Skolnick
and Leluk-Konieczny-Roterman data sets. The results obtained here are in
close agreement to those given by state of the art structural comparison tech-
niques[20,17,5]. Due to space limitations we include here only the compari-
son between the Universal Similarity Metric and the GMAX-FCMO Metric
on the Skolnick data sets (the smaller Leluk-Konieczny-Roterman cluster is
not shown). The clusters obtained are jointly shown in Fig. 12. A detailed
analysis of the two clusters shows the correct assessment of similarity that
our new method achieves. That is, proteins are almost perfectly clustered to-
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Fig. 11. Clustering Chew-Kedem data set proteins based on their similarity: using
tables 1 and 2 in (a) and tables 3 and 4 in (b)

gether accordingly to the families to which they belong: (1)Flavodoxin-like
CheY-related(1ntr, 1nat, 1qmp, 1rn1, 3chy, 4tmy, 1bo0, 1dbw), (2) Plasto-
cyanin (1byo, 1baw, 1kdi, 1nin, 1pla, 2b3i, 2pcy, 2plt), (3) TIM-Barrel (3ypi,
8tim, 1tmh, 1tre, 1tri, 1ydv, 1hti, 1amk, 1awz, 1b9b, 1btm) and (4) Ferratin
like (1bcf, 1b7i, 1dps, 1fha, 1rcd, 1ier). The whole set of results is publicly
available at http://decsai.ugr.es/˜dpelta/GMAXFCMO/index.html

These results clearly indicate that solving the GMAX-FCMO, even with a
simple heuristic like FANS, allows to obtain a correct biological ranking of
similarities between protein structures. The clusters thus obtained replicate
correctly the composition of the families in the Chew-Kedem, Skolnick and
Leluk-Konieczy-Roterman data sets.

It is also important to remark that although FANS is a stochastic algorithm,
the normalized measures of similarities we obtain are robust. That is, although
the similarity tables arise from 3 different runs of the algorithm, the resulting
clusters are very similar.
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Fig. 12. Comparison of the clusters obtained with the Universal Similarity Metric
of [20] (a) and GMAX-FCMO (b) for the Skolnick data set.

7 Conclusions

The improvement of modelling and algorithmic techniques for the comparison
of protein structures is a worth-while exercise. The correct assessment of pro-
tein structure similarities could have impact on a large number of proteomic
activities.

In this paper we propose, first, a generalization of contact maps and we define
the Generalized Fuzzy Contact Map. In this generalized version one (or more)
fuzzy thresholds and one (or more) membership functions are used to specify
the cut-off distances needed to compute the map and also the meaning of con-
tact. This contribution by itself is a step forward in our modelling capabilities
as it allows the biologist to include as little or as much domain knowledge as
he/she may want.

Next we extended the Maximum Contact Map Overlap Problem (MAX-CMO)
by means of fuzzy sets and systems. Our extended setting, Generalized Max-
imum Fuzzy Contact Map Overlap Problem (GMAX-FCMO), allows for a
more biological formulation of the optimisation problem which is ultimately
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used to compute a normalized similarity measure (the original MAX-CMO is
not normalized). We also discussed the advantages and limitations of our new
models.

We also show that a simple and efficient fuzzy sets based metaheuristic (FANS)
can be used to solve GMAX-FCMO.

The paper’s last contribution was to show how (using GMAX-FCMO and
FANS through a step-by-step protocol) to correctly measure the similarity
between proteins of well known data sets. In turn, these similarity matrices
induce correct clusterings of the protein structures.

7.1 Future Work

One of the main avenues for future work would be to investigate whether the
approach described by [5], which was originally defined for the standard crisp
MAX-CMO model, could be extended to the GMAX-FCMO model. Although
there is strong evidence that would sugest that this model is also NP-hard, its
formal complexity needs to be evaluated. We are currently running a larger
set of experiments to try to assess any weaknesses in the method which could
have gone undetected. We are implementing a public web-server with all the
tools described in this paper. The software used to compute the similarity in
Eq. 5 is available from the authors.
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