MALLBA: Skeletons for Hybrid Methods in Combinatorial
Optimisation

Alba E., Cotta C., Diaz M., Soler E., Troya J.M.
Departamento de Lenguajes y Ciencias de la Computacion
Universidad de Malaga
{eat, ccottap, mdr, esc, troya}@lcc.uma.es

May 5, 2000

1 Introduction

In its broadest sense, hybridisation refers to the inclusion of problem-dependent knowledge in a
general search algorithm. Nowadays, it is a well-known fact that performing hybridisation is a must
in order to guarantee a ground-level quality of the results [16].

As shown in the optimisation-related literature, there exists a enormous amount of techniques
and mechanisms for carrying out hybridisation [8, 7, 15]. Nevertheless, it is possible to identify some
common underlying principles that allow classifying these mechanisms into two major categories

[3]:

1. Strong hybrids: algorithms in which knowledge has been included as specific non-conventional
problem representations and/or operators.

2. Weak hybrids: algorithms resulting from the combination of lower-lever hybrid algorithms.

Besides theoretical disquisitions assigning the same power to both classes [3, 5], weak hybridis-
ation can be approached as a “plus” for strong hybridisation, i.e., as a tool that can be put on top
of some preexisting strongly hybrid algorithms to improve their performance. This is the kind of
hybridisation in which we will concentrate.

The remainder of this work is organised as follows: first, we present some of the optimisation
problems we are interested in (Sect. 2). Then, some general considerations about the design of
skeletons for weak hybrid methods are introduced (Sect. 3). Subsequently, a proposal for hybrid
skeletons is outlined (Sect. 4) and exemplified (Sect. 5).

2 Problems

This section will describe in some detail the opimisation problems on which we will focus. These
problems are intended to be of practical importance and well-suited for the combination of different
search techniques.

!
AR RN b
1] 1) c 1)

Figure 1: Examples of Rectangular Cutting

Ts

M%H

Objects Minimal Surrcunding
Rectangle

Figure 2: Generalised Cutting Problem

2.1 Optimal Cutting Problems

Optimal cutting problems are defined as follows:

Let T = {Ty,---,T,,} be a set of n objects such that every T; C R? is a closed, connected
and bounded region. These objects can be translated but no rotated. The objective is finding an
allocation of objects in T', such that no T; and T} overlap and the area of the minimal rectangle
that contains all objects is minimal.

Because of their practical importance, a lot of work is done with respect to modeling, exact and
heuristic solutions. In general, optimal cutting problems belong to the NP-hard class, but in many
cases problems of medium size can be solved to optimality at an acceptable cost, especially when
all objects are rectangular (see Fig. 1).

State-of-the-art algorithms for solving optimal cutting problems include evolutionary algorithms
(EAs) [2] and simulated annealing [10] on the heuristic side, and branch and bound [11] with
Lagrangean-relaxation techniques on the exact side. The existence of both approaches, heuristic and
exact, makes this problem be very interesting from several perspectives, including benchmarking
and the design of hybrid approaches.

Real-world instances of optimal cutting problems are available. These correspond to a textile
manufacturer located at Mélaga, and involve highly complex, non-convex objects (see Fig. 2). Cur-
rently, the manufacturer approaches this problem by using human operators, and is very interested
in adding automatic functionality to the process, even allowing human operators for doing final
refinement of the results.

2.2 Radio-Link Frequency Assignment Problems

The goal in this problem is to make an assignation from a set of frequency values to a set of radio
links. This assignation must satisfy a set of constraints relating the number of different frequencies
used, internal domain constraints for every link, and a group of equality and inequality equations
among the frequencies assigned in the solution.

Formally, each link s € L = {1,2,3,---,n} is assigned a frequency value f; from a domain D;,
which is a subset of the set of all available frequency values. Typically, the domains have non-
null intersections. In one of the most widely used data sets (CELAR) there are 7 domains, each
containing between 6 and 50 frequency values.

For the particular problem types we are studying, there exists a large number of interference
constraints of the following types: for a given pair of links ¢ and j, it is necessary to satisfy that
|fi — fj| < eij or |fi — fj| = € for some frequency separation €;;. In the CELAR data set there are
between 200 and 500 equality constraints and 1000 to 5000 inequality constraints. The first type
of constraint is enough to make the problem NP-hard.

A given assignment is feasible if it satisfies all given constraints. An optimum is a feasible
assignment that minimises some objective function such as the distinct number of frequency values
used. Some problem instances have no feasible solutions. In such cases we should find an assignment
which satisfies as many constraints as possible. In some problems, each constraint is given a value
corresponding to its importance. The optimised function should ideally include terms which give a
higher weight to the higher priority constraints.

The RLFAP is easily known to be NP-Complete and generates an enormous solution space.
For example, a particular problem with 50 frequency values and 200 links (the smallest problem in
CELAR) has an unconstrained search space of 502°°. The CELAR Problem 2 has 200 variables and
1235 constraints. It is known to have many feasible solutions and the optimum number of distinct
frequencies is 14.

Multiple heuristic and exact algorithms can be used to solve this problem. Besides, hybrid
combinations can be employed to solve instances drawn from real world benchmarks. Some of these
algorithms are evolutionary algorithms, tabu search, branch and bound, and other techniques.

2.3 Coalition Formation in Multi-Agent Systems

Coalition formation is a key problem in multi-agent systems. The goal in this problem is finding a
coalition structure maximising the value of the compounding coalitions. This is difficult to achieve
in practice because of the huge number of potential structures.

In many domains, self-interested agents can obtain a high profit by coordinating their activities
with other agents. Thus, it can be useful to automatise coordination activities by means of a
negotiation software representing each of the involved parts. this software must carry on three
activities:

o (Generation of the coalition structure, i.e., finding a complete, non-overlapping partitioning of
the set of agents.

o Optimise each coalition, i.e., assigning task to agents, taking into account resource constraints
and maximising the resulting profit.

o Divide the profit among the members of the coalition.

These three activities are strongly interrelated. For example, the internal optimisation of coali-
tions depends on the coalition structure.

Control Axis 4 Closed Open

Cooperative
Spatial Axis
+
Coercive Synchronous
Asynchronous
Temporal

Figure 3: Reference frame for classifying weak hybrid models.

This problem is very similar to the Set Covering Problem, although it must be taken into
account that determining the value/profit of a given subset is another optimisation problem itself.
For this reason, this problem is very well suited for hybrid approaches: both exact and heuristic
techniques have been applied to set covering. Furthermore, different techniques can be used to
optimise the coalition structure and the internal assignment of tasks respectively.

3 Skeletons for Hybrid Algorithms

This section will provide some general considerations about the design of algorithmic skeletons for
weak hybrid algorithms. In this sense, the structure of these algorithms is first studied. Then, issues
regarding the implementation of such skeletons, e.g., interoperability, internal-state manipulation,
etc., are analysed.

3.1 A Reference Frame for Weak Hybridisation

Weak hybrid algorithms can be classified using a three-dimensional orthogonal reference frame
composed of a control axis, a temporal axis and a spatial axis. The first axis references the
autonomy with which each algorithm performs its search. The second axis reflects the temporal
aspects of the interaction between algorithms. Finally, the third axis corresponds to the limitations
that each algorithm may have in its search space. When a weak hybrid model is mapped onto this
reference frame, each coordinate may take two values as shown in Fig. 3.

Each of these axes is described below in more detail.

3.1.1 Control Axis

The control axis determines whether the two search algorithms interact at the same level or, on
the contrary, they have a hierarchical relationship. The first situation corresponds to cooperative
models in which each algorithm autonomously performs its search and occasionally interchanges
information. The second situation describes coercive models in which an algorithm imposes how
the other one must search.

Cooperative models involve techniques with similar behaviour (in terms of execution time and
convergence speed), so they can effectively exchange useful information. Coercive models are usually
related to the use of an auxiliary technique as an embedded operator (e.g., a mutation operator in
a EA) that is given a starting point and/or a frame in which its search is to be done.

4

3.1.2 Temporal Axis

The temporal axis captures aspects concerning when interactions take place and which the behavior
of each algorithm is between such interactions. Two options are considered: synchronous and
asynchronous functioning. The first case includes those models in which an algorithm waits for the
other one at a synchronisation point (often the termination of the latter) before continuing. The
second case takes place when the algorithms do not wait for each other.

These two situations are very well exemplified in models that use a complex search technique
as one of the internal search operators. The higher-level algorithm may invoke this operator and
wait for the results (synchronous functioning) or continue its search, processing the results as they
are received (asynchronous functioning). The second option may be appropriate when this hybrid
operator is very complex and time-consuming [6]. Models in which the initialisation function uses
solutions provided by another algorithm are clear examples of synchronous functioning too'.

3.1.3 Spatial Axis

The spatial axis allows classifying weak hybrid models from the point of view of the search space
each algorithm considers. Hence, open and closed models can be distinguished. No restriction is
imposed on the search space in open models, i.e., each algorithm can theoretically reach any point of
the search space. In closed models, the exploration is restricted to a certain subspace. Notice that
this restriction is not related to feasibility constraints since infeasible solutions do not really belong
to the search space in purity. On the contrary, this is a working characteristic of the algorithm,
which is expected to perform better in this way.

Models performing local search via an improvement heuristic (e.g., hill climbing in Miihlenbein’s
parallel genetic algorithm [13]) are examples of open hybrid methods; any point of the search space
could be reached after local search (of course, subject to the particulars of the fitness landscape
[9]). On the other hand, the globally optimal forma completion described by Radcliffe and Surry
[14] is a closed technique since exploration is restricted to a certain hyperplane of the search space.

3.2 Skeletons or Meta-Skeletons?

As mentioned above, there exist at least 8 different models for performing weak hybridisation.
Moreover, each model admits a high number of variants depending on the particular search algo-
rithms being hybridised. A question arises immediately: is it possible to define a general skeleton
comprising all these variants? the answer is “no” and “yes”.

We cannot define a general skeleton in the well-defined sense in which skeletons are defined
for genetic algorithms, dynamic programming, etc. There is no underlying high-level common
pseudo-code for all possible variants?.

However, we can consider the possibility of defining a Meta-Skeleton for combining prefilt skele-
tons. To do this some requirements must be given:

e Each skeleton must offer a set of connectors to the exterior world. Each of these connectors
will provide read/write/read&write access to two kind of internal objects:

— Information objects: these objects represent the internal state of the algorithm. Their
number and type are clearly dependent of the algorithm considered.

In any case, issues regarding synchronism/asynchronism in LANs or WANSs should be carefully studied [1].
2The term “high-level” is very important here. We could define a skeleton for a Turing Machine that obviously
could be instantiated as desired. However we do not consider this possibility as of any utility for most users in general.

Final User

Skeleton Designer Instantiation Interface

Library of Algorithmic

@ @
C oot dination Interface
\ Skeletons

Communication Interface

—

;‘@. - e o Physical Infrastructure

Figure 4: Architecture of the library.

— Control objects: these objects are used for modifying the internal execution state. There
exist at least two major classes of control objects:

* Synchronisation objects: intended for defining breakpoints, critical sections, etc.

* Resume objects: intended for breaking the execution path of the algorithms. There
always exist two of these objects: restart (resumes execution from the beginning)
and terminate (finishes the execution of the algorithm).

e The user must specify two components of the meta-skeleton:

1. The way in which the connectors of the algorithms combined are accessed and/or mod-
ified. This is the body of the meta-skeleton, e.g., expressed as an algorithm in C++.

2. The connectors that the resulting hybrid algorithm will offer for subsequent hybridisa-
tion.

The definition and use of this meta-skeleton has advantages and disadvantages. On the positive
side, it is very flexible and provides the user with full-power for defining all aspects of the interaction
between algorithms. On the negative side, the design of such a system can be overwhelming for a
novice user.

An alternative to meta-skeletons exists, i.e., defining as many skeletons as possible combinations
of algorithms exists. Since this is clearly unaffordable, should this option be chosen the following
steps would be required:

e Identifying the models to be implemented: already done in the project proposal, memetic
algorithms [12] and dynastically optimal recombination [4].

e Coming up with a tradeoff between the flexibility /applicability of the skeleton and the com-
plexity of filling it for a novice.

This alternative does simplify the design of the skeletons, but still some tools for controlling
skeletons are needed, even when these are not offered to the final user but just to the skeleton
designer(s).

To sum up, let us consider an updated version of the library architecture (Fig. 4) in which we
have added a new character: the skeleton designer. The question is: which is the profile of the final
user (or team of users)? More precisely, will it be close to the skeleton designer? Before answering
to this latter question consider that it can be reformulated in two ways:

1. Will the skeleton designer play a prominent role as a final user? or

2. Will it be usual for the team of users in need of a weak hybrid to include a member with
skeleton-design skills?

It is difficult to give the ultimate answer to this question. Nevertheless, it is important to
consider that, whatever this answer is, there exists a common set of services that must be provided
with independence of who will use them, i.e., the control objects plus access to the internal state
of a skeleton. Hence, a working plan could be designing these services and use them initially just
at the design level. A further optional step can be the design of a fully functional meta-skeleton.

4 A Proposal for the Inter-Skeleton Interface

Each skeleton must provide a method GetState () returning an instance of class State. This class
handles all requests for consulting/modifying the internal state of an algorithm. A generic interface
for this class would include:

e Save(String filename): the state is stored in a file.

e Load(String filename): the state is retrieved from a file. The algorithm can be subse-
quently restarted from this state.

e ConnectorList GetConnectorList(): this method returns a list of all connectors available
in the state of the current algorithm, along with their type and access mode.

e Bool AdquireConnector(String connectorName, ConnectorAccess accessType, Connector
&connector): this method requests access (for reading, writing or both) to a connector.

e ReleaseConnector (Connector c¢): this method releases access to a connector.
Connector is an abstract class including two virtual methods:

e ConnectorType Type(): this method returns the type of connector (dataConnector, controlConnec

e ConnectorAccess Access(): this method returns the allowed access mode (read, write,
readWrite).

Now, DataConnector is another abstract class from which several classes can be derived:
IntegerDataConnector, RealDataConnector,... Each of these will include methods for retriev-
ing/setting the value of the connector.

On the other hand, ControlConnectors comprise SynchronisationConnectorsand ResumeConnectors
The former encapsulate typical structures such as locks, barriers, etc. As to the latter, they refer
to certain execution points from which the algorithm can be forced to resume.

Every connector will be associated with an internal object. The number, type, access, etc. of
this object are algorithm-dependent.

5 Example: Branch&Bound Connectors

Below is a possible list of connectors offered by a B&B algorithm (minimisation is assumed without
loss of generality) :

e initialProblem: IntegerListDataConnector // definition of the initial problem
to be solved.

e currentUpperBound: RealDataConnector // cost of the best solution found so far.

e currentLowerBound: RealDataConnector // cost of the best subproblem in the queue.

e bestSolution: IntegerListDataConnector // best solution found so far.

e currentSubProblem: IntegerListDataConnector // subproblem to be examined.

e openSubProblems: QueueDataConnector // queue of pending suproblems.

e searchStrategy: IntegerDataConnector // strategy for examining pending subproblems.

e emptyQueue: LockSynchronisationConnector // synchronisation point at the end of
B&B main cycle.

e restart: ResumeConnector // resume point: reinitialisation.

e terminate: ResumeConnector // resume point: termination.

References

[1] E. Alba and J.M. Troya. Analyzing synchronous and asynchronous parallel distributed genetic
algorithms. Future Generation Computer Systems, 2000. forthcoming.

[2] Th. Back. FEwvolutionary Algorithms in Theory and Practice. Oxford University Press, New
York, 1996.

[3] C. Cotta. A Study of Hybridization Techniques and their Application to the Design of Evolu-
tionary Algorithms. PhD thesis, University of Malaga, 1998. In Spanish.

[4] C. Cotta, E. Alba, and J.M. Troya. Utilising dynastically optimal forma recombination in
hybrid genetic algorithms. In A.E. Eiben, Th. Back, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving From Nature V, volume 1498 of Lecture Notes in Computer
Science, pages 305-314. Springer-Verlag, Berlin, 1998.

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Cotta, E. Alba, and J.M. Troya. On the computational power of adaptive systems. Com-
puters and Artificial Intelligence, 19(2), 2000. Forthcoming.

C. Cotta, J.F. Aldana, A.J. Nebro, and J.M. Troya. Hybridizing genetic algorithms with
branch and bound techniques for the resolution of the tsp. In D.W. Pearson, N.C. Steele, and
R.F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms 2, pages 277-280, Wien
New York, 1995. Springer-Verlag.

C. Cotta and J.M. Troya. A hybrid genetic algorithm for the 0-1 multiple knapsack problem.
In G.D. Smith, N.C. Steele, and R.F. Albrecht, editors, Artificial Neural Nets and Genetic
Algorithms 3, pages 251-255, Wien New York, 1998. Springer-Verlag.

H.-L. Fang, P. Ross, and D. Corne. A promising hybrid ga/heuristic approach for open shop
scheduling problems. In Proceedings of the 11th European Conference on Artificial Intelligence,
pages 590-594. John Wiley and Sons, 1994.

T.C. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University
of New Mexico, 1995.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simmulated annealing.
Science, 220(4598):671-680, 1983.

E.L. Lawler and D.E. Wood. Branch and bounds methods: A survey. Operations Research,
4(4):669-719, 1966.

P. Moscaté. On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms. Technical Report #826, Caltech Concurrent Computation Program, 1989.

H. Miihlenbein. Parallel genetic algorithms, population genetics and combinatorial optimiza-
tion. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 416-421, San Mateo, CA, 1989. Morgan Kaufmann.

N.J. Radcliffe and P.D. Surry. Fitness variance of formae and performance prediction. In
L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms 3, pages 51-72, San
Mateo CA, 1994. Morgan Kauffman.

J.M. Varanelli and J.P. Cohoon. Population-oriented simulated annealing: A ge-
netic/thermodynamic hybrid approach to optimization. In L.J. Eshelman, editor, Proceedings
of the Sixzth International Conference on Genetic Algorithms, pages 174-181, San Mateo CA,
1995. Morgan Kauffman.

D.H. Wolpert and W.G. Macready. No free lunch theorems for search. Technical Report
SFI-TR-95-02-010, Santa Fe Institute, 1995.

