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Abstract—In this paper we study cellular evolutionary algo- other in the population). The influence of the selection roéth
rithms, a kind of decentralized heuristics, and the importance of neighborhood, and grid topology on the efficiency of cEAs in
the induced exploration/exploitation balance on different prob- comparison to other EAs have all been investigated in detail

lems. It is shown that, by choosing synchronous or asynchronous . . Lo
update policies, the selection pressure, and thus the explo-In (4], [5], [6], [7], and tested on different applications ihe

ration/exploitation tradeoff, can be influenced directly, without ~fields of combinatorial and numerical optimization.
using additional ad hoc parameters. Synchronous algorithms  Cellular EAs can be seen as stochastic cellular automata

of different neighborhood-to-topology ratio, and asynchronos (CAs) [8], [9] where the cardinality of the set of states isialg
update policies are applied to a set of benchmark problems. Our to the number of points in the search space. CAs, as well as

conclusions show that the update methods of the asynchronous EA I h “ llel” updat
versions, as well as the ratio of the decentralized algorithm, have CEAS, Usually assume synchronousr “parallel” update po-

a marked influence on its convergence and on its accuracy. licy, in which all the cells are formally updated simultanety.
However, this is not the only option available. Indeed, saive
|. INTRODUCTION works onasynchronou€As have shown that sequential upda-

This paper focusses on the class of algorithms called eellute policies have a marked effect on their dynamics (see e.g.
evolutionary algorithms (CEAs). We here present the canofil0], [11]). In addition, the shape of the structure in which
cal algorithm and suggest several variants targeted tcesoimdividuals evolve has a deep impact on the performanceeof th
complex problems accurately with a minimum customizatiocEA. The algorithm admits a specially easy modulation of its
effort. These techniques, also called diffusion or finerggd shape that can sharpen the exploration or the exploitatipa-c
models, have been popularized, among others, by early wdikties of the canonical technique, as shown in [7]. Thus, i
of Gorges-Schleuter [1] and Manderick and Spiessen [2]. The interesting to investigate asynchronous cEAs and noa+gq
basic idea behind their behavior is to add some structuredioaped cEAS, in order to analyze their problem solving ca-
the population of tentative solutions. The pursued effect pabilities, which is the subject of this paper.
to improve on the diversity and exploration capabilitiestaf This work is organized as follows. The next section contains
algorithm while still admitting an easy combination wittced some background on synchronous and asynchronous cEAs.
search and other search techniques to improve exploitatiorin Section Il we discuss the ability of cEAs for changing

The above mentioned structured models are based onhair behavior depending on the population shape. We briefly
spatially distributed population in which genetic opesai study in Section IV the theoretical behavior of the proposed
may only take place in a small neighborhood of each indalgorithms. In sections V and VI we deal with a set of
vidual. Usually, individuals are arranged on a regular gridenchmark problems with the goal of illustrating the actual
of dimensionsd = 1, 2, or 3. Cellular EAs are a kind computational power of these algorithms for optimization.
of decentralized EA model [3]. They are not just a parallétinally, section VIl offers our conclusions, as well as some
implementation of an EA,; in fact, although parallelism @bulcomments on future work.
be used to speed up the search, we do not address parallel
implementations in this work. However, it is worth remakin
that, although SIMD (single instruction stream - multipkgal A cEA starts with the cells (individuals) in a random state
streams) machine implementations were popular a decade agal proceeds by successively updating them using evolutio-
this is no longer true. nary operators, until a termination condition is met. Ut

Although fundamental theory is still an open research liree cell in a cellular EA means selecting two parents in the
for cEAs, they have been empirically reported as being lisefadividual's neighborhood (including the individual itBe
in maintaining diversity and promoting slow diffusion ofapplying genetic operators to them, and finally replacirg th
solutions through the grid. Part of their behavior is due tadividual if an offspring has a better fitness (or using aeot
a lower selection pressure compared to thgparimicticEAs replacement policy). The following pseudo-code is a higiel
(here panmictic means that any individual may mate with amlescription of the algorithm for a two-dimensional grid ofes

Il. SYNCHRONOUS ANDASYNCHRONOUS EEAS



HEI GHT xW DTH and for formally simultaneous update of all 1ll. NEw CEA VARIANTS BASED ON A MODIFIED RATIO

the cells. In fact, true simultaneous update could be peddr  after explaining our basic algorithm and the asynchronous
in a parallel computer, but usually this is simulated by gsin yariants in the previous section, we now proceed to characte
sequential machine and a second array to hold the updated celize the population grid itself. For this goal, we use the-“ra
dius” definition given in [7], which is refined from the semina
one appeared in [6] to account for non square grids. The grid
is considered to have a radius equal to the dispersion*of

Algorithm 1 Pseudocode of a synchronous cGA

1: proc Steps_Up(cga Algorithm parameters in ‘cga’
1Y 1% plcg g p g

2: while not Stop_Condition() do points in a circle centered i(ﬁ,_y) (Eq. 1). This definition
3:  for x — 1 to WIDTH do always assigns different numerical values to differentigyri

4: for y < 1 to HEIGHT do

5: n_list«— Get_Neighborhood(cga,position(x,y));

6: parents<—Local_Select(n_list); . =\2 =Y

7 aux_indive—Recombination(cga.Pc,parents); rad = Z (xl — x) + Z (yl — y) (1)

8: aux-indive—Mutation(cga.Pm,aux_indiv); n* ’

9: aux-indiv«Local_Search(cga.Pl,aux_indiv); n* n*

10: Evaluate_Fitness(aux_indiv); _ 21‘:1 Lo _ Zi:l Yi

11: Insert_If Better(position(x,y),aux-indiv,cga,aux_pop); T = nc Y= n*

12: end for L. i i

13:  end for Although it is called a “radius”yad measures the disper-
14f €82.POp<— aux-pob; sion of n* patterns. Other possible measures for symmetrical
15: Update_Statistics(cga); . . .

16: end while topologies would allocate the same numeric value to differe
17: end_proc Steps-Up; topologies (which is undesirable). Two examples are thiusad

of a circle surrounding a rectangle containing the topaology

or anasymmetry coefficienThe definition (1) does not only
Cells can be updatedynchronouslyor asynchronouslyIn  characterize the grid shape but it also can provide a radius
synchronous (parallel) update all the cells change thatest \,5ue for the neighborhood. As proposed in [6], the grid-

simultaneously, while in asynchronous, or sequential t§day_nejghborhood relationship can be quantified by the ratio
cells are updated one at a time in some order. There exist M@@¥veen their radii (Eq. 2).

ways for sequentially updating the cells of a cEA (an excglle
discussion of asynchronous update in cellular automatahwh ratioepa =
are essentially the same system as a cEA, is available iy [10] TadTopotogy
We consider four asynchronous update methdoed line When solving a given problem with a constant number
sweep(LS), fixed random sweefFRS), new random sweep of individuals @ = n*, for making fair comparisons) the
(NRS), anduniform choice(UC). topology radius will increase as the grid gets thinner (Elgj.
i ) . . Since the neighborhood is kept constant in size and shape
« Infixed line sweegLS), the simplest method, thegrid  yq,ghout this paper (we always use linears —L5—, Fig. 1a),

cells are updated sequentially, 2, . . ., n) line after line. the ratio becomes smaller as the grid gets thinner.
o In fixed random sweepFRS), the next cell to be up-
dated is chosen with uniform probability without re- rad,

lacement; this will produce a certain update sequence 00000 eesee
pie ' P P q 00000 eeeee

J Lk m D H rad;
(c1,¢5,-- -, ), wherech means that cell number is O 00000 00060000

7’adNeigh,bm“hood (2)

) Cn Ceee
updated at timey and (4, k,...,m) is a permutation of 00000 00000 00000000
the n cells. The same permutation is then used foral OO0 00 00000 00000000
update CyCIeS ra(/lhm”5 = % =0.8944 rady>rad, then ratio,<ratio,

« The new random sweemethod (NRS) works like FRS,
except that a new random cell permutation is used for
each sweep through the array. Fig. 1. (a) Radius of neighborhood L5. (B 5=25 and 3x 825 grids;

« In uniform choice(UC), the next cell to be updatedapproximately equal number of individuals with two differeatios

is chosen at random with uniform probability and with i ) o )
replacement. This corresponds to a binomial distribution Aft€r presenting this characterization of the radius and
for the update probability. topology by means of a ratio value, the main question still

remains to be posed: what is the importance of such a ratio

A time stepis defined as updating times sequentially, measure? The answer comes when we get into the actual
which corresponds to updatirl the n cells in the grid for meaning of the ratio, i.e., reducing the ratio means redyitia
LS, FRS, and NRS, and possibly less thadifferent cells in global selection intensity on the population (see nextisext
the UC method, since some cells might be updated more thtans promotingexploration This is expected to allow for a
once in a single time step. It should be noted that, with thégher diversity in the genotype that could improve the itasu
exception of fixed line sweep, the other asynchronous upglatin difficult problems (like in multimodal or epistatic tagk©n
policies are stochastic, representing an additional sowoffc the other hand, the search performed inside each neightxdrho
non-determinism besides that of the genetic operators. is guiding theexploitationof the algorithm. We study in this

() (b)



paper how the ratio affects the search efficiency over atyarie 1
of domains. Changing the ratio during the search is a unique 091
feature of cEAs that can be used to shift from exploration to 5 %%
exploitation at a minimum complexity without introducings § 074
another new algorithm family in the literature. £ 06+
Many other techniques for managing the exploration/exploi S 05+
tation tradeoff are possible. Among them, it is worth to make 2 0.4+
a special mention to heterogeneous EAs [12] [13], in which é 03
algorithms with different features run in separate subjmpu @ 904
tions and collaborate in order to avoid premature convergen 044 I (%521 §2§ § 22;
A different alternative is usingMlemetic Algorithmg14], in 0 S
which local searchis combined with the genetic operators in 0 4 8 12 16 20 24 28 32 3B/ 40

order to promote local exploitation. N. of Generations

Fig. 2. Growth curves of the best individual for two cEAs witfferent

neighborhood and population shapes, but similar ratio galdde graph
IV. SELECTION PRESSURE GRID SHAPE, AND TIME represents the proportion of population consisting of bedividual as a

function of time
Selection pressure is related to the concepttakeover

time, which is the time it takes for a single best individual 17 e D008 (g pop) r
to colonize the whole population with copies of itself under oe e o (e pop)
the effects of selection only [15]. Shorter takeover timesam 5 08+ ratio 0.047 (16x25 pop) P
a stronger selection. ‘éo.r N
We plot in figures 2, 3, and 4 the takeover times for some £ os;
synchronous and asynchronous cEAs. For that, we only main- g4 '/
tain selection active, and we also use binary tournament. No 5 | /
mutation neither crossover are applied during the evatutio 2 S
Initially, we place only one optimal individual in a random 8o
location of the grid, and we let it be selected and copied unti P oz Ly
it takes over all the grid positions. The axes of the graphics 0Af
represent the proportion of the best individual in the papoh ot ‘ ‘
(X axis), and the number of generations or time steps (Y axis) 10° 0 of Generaﬁgr'fs 10°

Algorithms with similar ratio show a similar selection
pressure, as stated in [5]. In Fig. 2 we plot such a similar , _ _ _ ,
behavior for two algorithms with different neighborhooddani % % | ECE et 0o i v T RERtEe (0 Mvan values
population radii, but having two similar ratio values. Theses over 100 runs. The graph represents the proportion of ptpnlaonsisting
plotted are those using a L5 neighborhood wittlB2ax 32  of bestindividual as a function of time. Horizontal axis idagarithmic scale
population, and a compact2l —C21— neighborhood with a
population of64 x 64 individuals. In the C21 neighborhood
a central cell is surrounded by two cells in all directions,
including the diagonals, and the four corner cells are ctit ou 08f

1

0.9r

Hence, it may be interesting to see how the shape of the %07
grid influences the search of the algorithm. The selection  Sgsl
pressure for different cEAs using L5 neighborhood ahd D—gios /
possible grid shapes are plotted in Fig. 3 for a population 2
of 1024 individuals. Note that the selection pressure ieduc o ;
in synchronous rectangular grids falls under the curve for a 50-3’ ’ — synchronous
synchronous square gridX x 32 population), which means 0.2 uniform choice
that thinner grids favor a more explorative style of search. ol T neswep
If we now keep the shape of the grid constant (say a o ‘ ‘ “panmieRe
square) but we allow the cell update mode to change, we 0 10 2 rime Steps - 40 %

observe a similar effect on the selection pressure. In fiaid,

found that the global selection pressure induced by th@wari Fig. 4. Takeover times with tournament selection using a L§hi@rhood
asynchronous policies falls between the low synchroneni [i in a 32 x 32 grid. Mean values over 100 runs. The graph represents the
and the high panmictic bound (see Fig. 4 and [16]). Thu%r,oportlon of population consisting of best individual afuaction of time

by varying the update policies it is possible to influence the

explorative or exploitative character of the search.



V. TESTSUITE B. Multimodal Problem Generator (P-PEAKS)

In this section we present the set of problems chosenThe P-PEAKS problem [19] is a multimodal problem ge-
for the experimental study. The benchmark is represeetativerator. A problem generator is an easily parameterizaisle t
because it contains many different interesting featuresdan Wwhich has a tunable degree of epistasis, thus admitting to
optimization, such as epistasis, multimodality, deceptass, derive instances with growing difficulty at will. Also, ugira
and problem generators. These are important ingredientspii®blem generator removes the opportunity to arbitrardgdy
any work trying to evaluate algorithmic approaches with théne algorithms to a particular problem, therefore allayvin
objective of getting reliable results, as stated by Whitlegle larger fairness when comparing algorithms. With a problem
in [17]. generator we evaluate our algorithms on a high number of

We experiment with the massively multimodal deceptivéandom problem instances, since a different instance iedol
problem (MMDP), and the multimodal problem generatggach time the algorithm runs, then the predictive power ef th
P-PEAKS, which are included in the set of problems studig@sults for the problem class as a whole is increased.
in [7]; next we will extend this basic two-problem benchmark The idea of P-PEAKS is to generaterandom/N -bit strings
with error correcting code design (ECC), and maximum ciftat represent the location &f peaks in the search space. The
of a graph (MAXCUT). The choice of this set of problems iditness value of a string is the number of bits the string has in
justified by both their difficulty and their application doms common with the nearest peak in that space, dividedVbfas
(telecommunications, combinatorial optimization, et@his Shown in Eq. 4). By using a small/large number of peaks we
gives us a high level of confidence in the results, although tRan get weakly/strongly epistatic problems. In this paper w
evaluation of conclusions will result more laborious thaithw have used an instance &f = 100 peaks of lengthV = 100
a smaller test suite. bits each, which represents a medium/high epistasis I&}el [

The selected problems are explained in subsections V-At§e maximum fitness value for this problemlis).

V-D. We include the explanations in this paper to make it . 1 . -
self-contained and to avoid the typical small lacks thati¢ou fp-ppaxs(r) = max {N — HammingD(&, Peak:)} ~ (4)

preclude other researchers from reproducing the results. C. Error Correcting Code Design Problem (ECC)

A. Massively Multimodal Deceptive Problem (MMDP) The ECC problem was presented in [20]. We will consider a

The MMDP is a problem that has been specifically design%?fee'tume(”’ M, d), wheren is the length of each codeword

to be difficult for an EA [18]. It is made up df deceptive sub- n_ur_nber of b'tS)M IS _the number of codeword_s, ands the
problems §;) of 6 bits each one, whose value depends on t inimum I-_|amm_|ng d'Star?CE between any pair of codewords.
number of onesunitation) a binary string has (see Fig. 5). It is ur objective will b? to find a.code which has a value fo.r
easy to see (graphic of Fig. 5) that these subfunctions have as large as possible (reflecting greater tolerance to noise

global maxima and a deceptive attractor in the middle poin?‘.nd errors), given prev!ous!y f|xeq va!ges fmrand M. The .
problem we have studied is a simplified version of that in

[20]. In our case we search half of the codewordl/Q) that

Unitati Subfi " 1 Massively Multimodal Deceptive Problem B} .
I BT will compose the code, and the other half is made up by the
1 0.000000 3 o complement of the codewords computed by the algorithm.
i 822823‘; 3 - The fitness function to be maximized is:
4 0360384 2o 1
5 0.000000 ? oo fece = —— ®)
3 1.000000 C T Uaallen T -2
> 2 4
i=1 j=1,i#j

Fig. 5. Basic deceptive bipolar function;§ for MMDP ) )
where d,; represents the Hamming distance between code-

In MMDP each subproblens; contributes to the fitness Wordsé and; in the codeC (made up ofM codewords, each
value according to itsnitation (Fig. 5). The global optimum ©f 1ength »). We consider in the present paper an instance
has a value ofc and it is attained when every subproblenf’hére M = 24 andn = 12. The search space is of size
is composed of either zero or six ones. The number of loc I4096 2/ which is approximatelyi0%7. The optimum solu-

optima is quite large 22%), while there are only2* global B B .
solutions. Therefore, the degree of multimodality is reged = 24 andn = 12 has afitness value 610674 [21].

by thek parameter. We use here a considerably large instarge Maximum Cut of a Graph (MAXCUT)

of k£ = 40 subproblems. The instance we try to maximize for 1o maxcuT problem looks for a partition of the set
solving the problem is shown in Eq. 3, and its maximum valu& vertices /) of a weighted graptG = (V, E) into two

tion for

is equal tok. disjoint subsetd/, and V; so that the sum of the weights of
k the edges with one endpoint Iy and the other one ifi; is
fumpp(3) = Zfitnesss,. (3) maximized. For encoding the problem we use a binary string
i=1 (z1,x2,...,2,) Of lengthn where each digit corresponds to



a vertex. If a digit is 1 then the corresponding vertex is ih seteps to obtain the optimum value (if obtained) and the v ra
Vy; if it is O then the corresponding vertex is in Sgt. The (percentage of successful runs). Therefore, we are anglyzi

function to be maximized [22] is:

n—1 n
Furaxcur(D) :Z Z wij - e (1 —a;) +2;- (1—2;)] (6) expected efficacy, respectively.
i=1 j=i+1 TABLE Il

Note thatw;; contributes to the sum only if nodesind; are MMDP PROBLEM WITH A MAXIMUM OF 1000GENERATIONS

in different partitions. While one can generate differemidam

graph instances to test the algorithm, here we have used th‘J‘ Algorithm [ Avg. Solution (best=20)] Avg. Generations[ Hit Rate |
w . . - Square 19.813 214.18 57%
case “cut20.09”, with20 vertices and a probability d.9 of Rgctangma, 19.824 236.10 5802
having an edge between any two randomly chosen vertices ’C‘grfow ig-gg gig-g; g;gf
The maximum fitness value for this instanceb&740064. FRS 19.601 209.94 1%
NRS 19.536 152.93 28%
VI. EXPERIMENTAL ANALYSIS uc 19.615 295.72 36%

Although a full-length study of the problems presented
in the previous section is beyond the scope of this work, TABLE IV

we present results comparing synchronous and asynchronous p.peAKSpROBLEM WITH A MAXIMUM OF 100 GENERATIONS
cEAs, and also cEAs having different values of the ratio, .
always with a constant neighborhood shape (L5). Note that [A9orthm

[ Avg. Solution (best=1)] Avg. Generations| Hit Rate

o . . S 1.0 51.84 100%
it is not our aim here to compare cEAs performance with Rectangular 1o 203 | 1o0%
state-of-the-art algorithms and heuristics for combiriato [lgrrow 1.0 53.94 100‘;;0
. .. . . 1.0 34.75 100%

and numerical optimization. To this end, we should at !eas't FRS 10 3839 | 100%
tune the parameters and include local search capabiliies i | NRs 1.0 38.78 100%
uc 1.0 40.14 100%

the algorithm, which is not the case. Thus, the results only
pertain to the relative performance of the different cEA ated
methods and ratios among themselves. TABLE V

Here we present the results of solving several problems ECCPROBLEM WITH A MAXIMUM OF 500 GENERATIONS
using JCell v1.0, our custom optimization program written
in Java, with three different static ratios, and the fournasy LAlGorthm

[ Avg. Solution (best=0.0674) Avg. Generations[ Hit Rate

. . . S 0.0670 93.92 85%
chronous update modes previously described. The configuriigecanguiar 0 061 o335 | suos
tion of the algorithm is detailed in Table I, while the static | Narrow 0.0673 104.16 94%

. . LS 0.0672 79.66 89%
ratios used are shown in Table II. FRS 0.0672 82.38 90%
NRS 0.0672 79.46 89%
TABLE | uc 0.0671 87.27 86%
PARAMETERIZATION USED IN THE ALGORITHM
Population Size 400 Individuals TABLE VI

Selection of Parents Binary Tournament + Binary Tournament MAXCUT PROBLEM WITH A MAXIMUM OF 100 GENERATIONS

Recombination DPX, pc = 1.0

:E::(tjil\\ll:gtﬁllofength Elt-FIIp, pm =1/L [ Algorithm T Avg. Solution (best=56.74)] Avg. Generations| Hit Rate |

Replacement — Repif Better Rectanguiar S6.74 1005 | 100%

e . . . . 0

Stop Condition Find Optimum or Max Number of Steps Narrow 56.74 11.88 100%

LS 56.74 9.46 100%

FRS 56.74 9.69 100%

NRS 56.74 9.55 100%

TABLE I uc 56.74 9.58 | 100%

STUDIED RATIOS

the final distance to the optimum (especially interestingmvh
the optimum is not found), the effort of the algorithm, arsl it

From the inspection of these tables some conclusions can

Name (shape of population) Value of ratio 3 . )
Square (20 x 20 individuals) [ 0.11 be clearly drawn. First, the studied asynch_ronous algmsth
Rectangular (10 x 40 individuals) | 0.075 tend to need a smaller number of generations than the syn-
Narrow (4 x 100 individuals) | 0.031 chronous ones to locate an optimum, in general. Moreover,

We show in the following tables the results for the problemharacter ‘+' stands for significant values, while

referring to tables in Appendix wheretests are reported
-’ mean

before mentioned: MMDP (Table 1ll), P-PEAKS (Table IV),no significance), the reader will confirm that the differesice
ECC (Table V), and MAXCUT (Table VI). We have performedamong asynchronous and synchronous algorithms are istatist
100 independent runs for any algorithm and for every problecally significant, thus indicating that the asynchronousioms

in the test-suite. In these tables we report the averageeof fyerform more efficiently with respect to cEAs with different
final best fithess on every run, the average number of timgtic ratios. This result conforms to our study of Sectign |



since asynchronous algorithms have a smaller takeover timEAs are very efficient optimization techniques, that could
There are however punctual exceptions, like in MMDP. be further improved by being hybridized with local search
Conversely, if we pay attention to the success (hit) rate,téchniques [23]. The results on the test problems largely
can be concluded that the synchronous policies with chgngiconfirm, with some small exceptions, that the solving dbsit
ratios outperform the asynchronous algorithms (except fosing the various update/ratio modes are directly linked to
ECC): slightly in terms of the average final fitness, and tyeartheir induced selection pressures, showing that expioitat
in terms of probability of finding a solution (i.e., frequgnaf plays an important role. It is clear that the role of explonat
optimum location). might be more important on even harder problem instances,
Another interesting result is the fact that we can define twaut this aspect can be addressed in our algorithms by using
classes of problems: those solved by any method to optiynalihore explorative settings, as well as by using different cEA
(100% hit rate) and those in which no 100% rate is achievedsitategies at different times during the search dynanyig2d4].
all. The former ones seem to be suitable for cEAs directly, In summary, we have found asynchronous algorithms to
while the later ones need some help, e.g., by including lods¢ numerically more efficient (faster) than synchronoussone
search. (with statistically significance) for P-PEAKS, ECC, and MAX
In order to summarize the large set of results and get so@&T, but not for MMDP. On the other hand, synchronous
useful conclusions we present a ranking with the best algalgorithms outperform asynchronous ones in terms of the hit
rithms by following three different metrics: average bestfi rate for our benchmark, which could be a very important
solution, average number of generations on success, andidsue for many applications. As a future work, it would be
rate. Table VIl shows the three mentioned rankings. Thesgeresting to give a unified study of the different selattio
rankings have been computed by adding the position (framtensities and their influence in the resolution of eactblam
better to worse: 1, 2, 3 ...) that algorithms are allocatedtfe considered for the analysis.
previous results presented from Table 1ll to Table VI, aecor
ding to the three criteria.

TABLE VII APPENDIX
RANKING OF THE ALGORITHMS In this appendix we show a statistical comparison of the
Avg. Solution Avg. Generations Hit Rate studied algorithms by performingtests on the results of all

1 Narrow 7 1INRS 8 1Narrow 71 the algorithms. Tables VIII to Xl contain the values of our
2 Rectangular 9 2LS 10 2 Rectangular 9 iati H i ;
5 FRS o  3FRS 11 2rRS ° statistical comparison in terms of the solut_|0ns found dred t
4 NRS 10 4uc 16 4NRS 11 number of generations. No tables are provided for thosescase
s ﬂ 2233};29”'” 2 dare e in which the optimum is found every run (MAXCUT and
7 Square 12 7Narrow 27 5LS 12 P-PEAKS). On the following tables, statistical significanc

(5% level) is shown by using symbol ‘+', while absence of
As we would expect after the previous comments, accordigttistical significance is marked with *-".
to the average final best fitness and hit rate criteria, syn-
chronous algorithms with narrow and rectangular ratiosirare
general more accurate than all the asynchronous ones for our

TABLE VIl
P-VALUES OF THE AVG. FITNESS FORMMDP

test prqblemg, with a noticeable leading position for narr_o [Algorithm  JSquare[Rectangular[Narrow [LS[FRS[NRS[UC]|

population grids. On the other hand, asynchronous versions Square . - T+ + +] +

clearly outperform any of the synchronous algorithms imter ﬁgfrtgxg“'ar - M . i i i I

of the average number of generations, with a trend towards LS + + +| o] = -] -

NRS as being the best ranked flavor of cEA for our test suite. RS T M i e e
uc + + + =] | | e

VIl. CONCLUSIONS
In the first part of this paper we have described several
asynchronous update policies for the population of a cEA, TABLE IX
followed by some ratio policies, all of them inducing a P-VALUES OF THE GENERATIONS FORMMDP

different kind of search in the cEA. One can tune the selactio
intensity of a cEA by choosing the update policy and/or

[Algorithm  [Square[Rectangular[Narrow [LS[FRS[NRS[UC]|

grid ratio without having to deal with additional numerical 222?59% ° 1 e
parameter settings. This is a clear advantage of the digasit fg”ow i - M jr -
proposed in this study. FRS _ _ 0 0 Y i

In the second part of the paper we have applied our extended SES - - - N *

CEAs to a set of test problems. Although our goal has not
been that of obtaining solvers able to compete with state-of
the-art specialized heuristics, the results point in tleatse:



TABLE X

5
P-VALUES OF THE GENERATIONS FORP-PEAKS [51
[Algorithm JSquare[Rectangular[Narrow [LS[FRS[NRS[UC]|
Square . + ++| |+ + [6]
Rectangular + . +| 4|+ 4+ +
Narrow + + o +| +| 4| +
LS + + +| o +| +| +
FRS + + +H A+ e —| +
NRS + + + A+ = e +
uc + + 4]+ 4] . (7]
TABLE XI
P-VALUES OF THE AVG. FITNESS FORECC [8]
[Algorithm  JSquare[Rectangular[Narrow [LS[FRS[NRSJUC]|
Square ° — +1 =1 =1 -1 =
Rectangular — . - = =] -] -
Narrow + — ol —| —| —| +
LS — — —| o — - - [l
FRS — - —| =] o —| —
NRS - — - = - o —
uc — — +| = =] —| e [10]
TABLE XII (11]
P-VALUES OF THE GENERATIONS FORECC
[Algorithm  JSquare[Rectangular[Narrow [LS[FRS[NRSJUC]| [12]
Square . — ++ +| +| +
Rectangular — . +| +| 4| 4| +
Narrow + + o +| + +| + [13]
LS + + +| o —| —| +
FRS + + + = o |+
NRS + + + =] - o + 14
ucC + + ++H] H] ] e (14]
15
TABLE XIlI [15]
P-VALUES OF THE GENERATIONS FORMAXCUT
[16]
[Algorithm  [Square[Rectangular[Narrow [LS[FRS[NRS[UC]|
Square . — -+ 4| 4| +
Rectangular — . —| +| 4| 4| +
Narrow - — o +| +| 4| + [17]
LS + + +| o —| —| —
FRS + + +| = o —| —
NRS + + +| - - o — (18]
uc + + + =] =] | e
[19]
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