

Background on Landscapes Landscape Decomposition Practical Implications

Conclusions & Future Work

Elementary Landscape Decomposition of Combinatorial Optimization Problems

LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE MÁLAGA

Francisco Chicano

Joint work with L. Darrell Whitley and Enrique Alba

September 2010

_					
Int	ro	du	oti	on	
		uu	LL		
		uu	Gu		

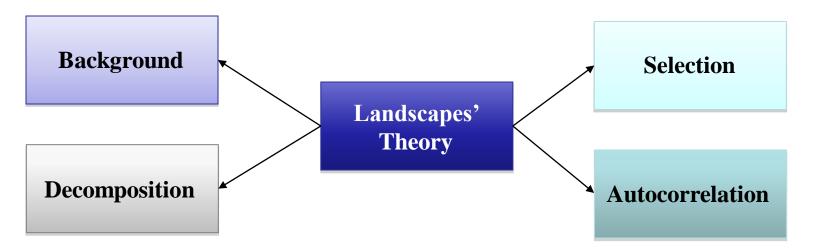
Practical Implications

Conclusions & Future Work

Motivation

Motivation

- Landscapes' theory is a tool for analyzing optimization problems
- Applications in Chemistry, Physics, Biology and Combinatorial Optimization
- Central idea: study the search space to obtain information
 - Better understanding of the problem
 - Predict algorithmic performance
 - Improve search algorithms



Landscape

Decomposition

Landscape Definition

Background on

Landscapes

Introduction

- A landscape is a triple (X,N, f) where
 - **X** is the solution space
 - > N is the neighbourhood operator
 - $\succ f$ is the objective function

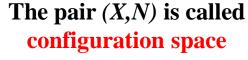
• The neighbourhood operator is a function $N: X \rightarrow \mathcal{P}(X)$

- Solution *y* is neighbour of *x* if $y \in N(x)$
- Regular and symmetric neighbourhoods
 - $d = |N(x)| \quad \forall x \in X$
 - $y \in N(x) \Leftrightarrow x \in N(y)$
- Objective function

 $f: X \to R \text{ (or } N, Z, Q)$

September 2010

Theory of Evolutionary Algorithms (Dagstuhl Seminar)

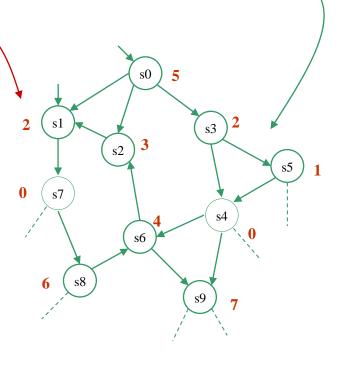


Conclusions

& Future Work

Practical

Implications



Background on

Landscapes

Introduction

Elementary Landscapes: Formal Definition

Landscape

Decomposition

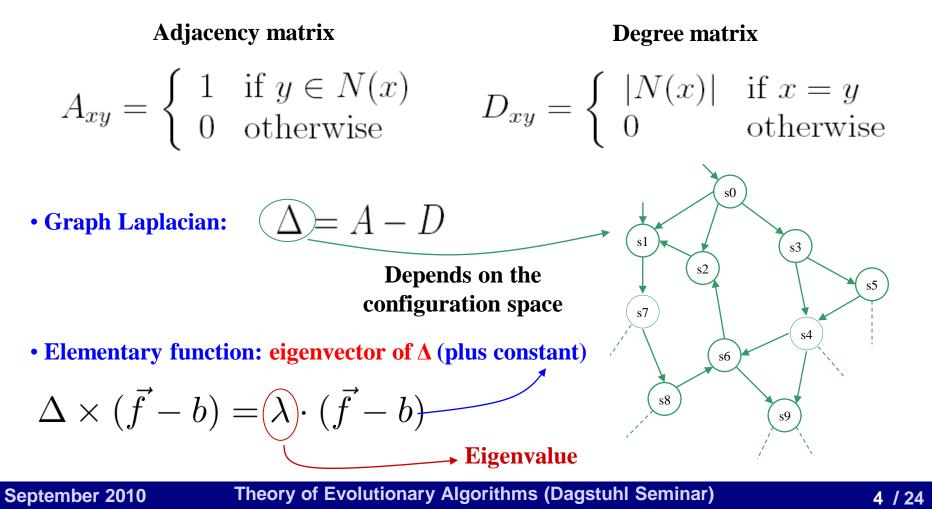
• An elementary function is an eigenvector of the graph Laplacian (plus constant)

Practical

Implications

Conclusions

& Future Work



Background on

Landscapes

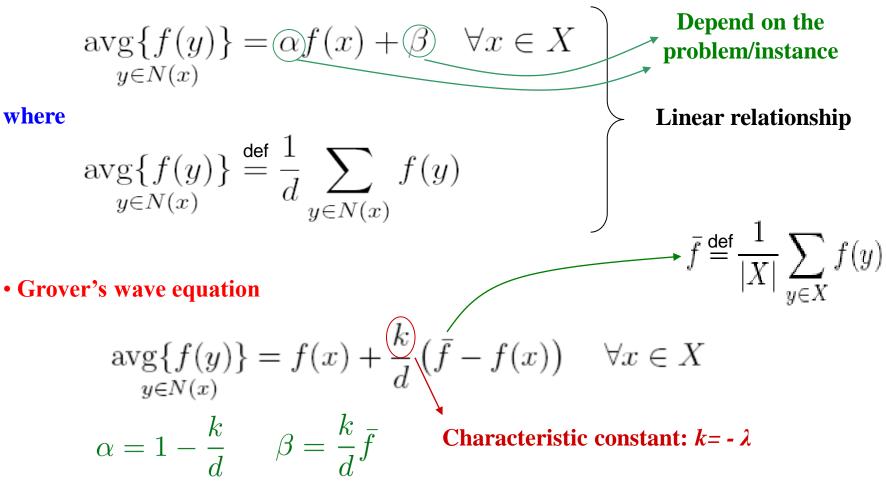
Introduction

Elementary Landscapes: Characterizations

Landscape

Decomposition

• An elementary landscape is a landscape for which



Practical

Implications

Conclusions

& Future Work

September 2010

Background on

Landscapes

Elementary Landscapes: Properties

Landscape

Decomposition

• Several properties of elementary landscapes are the following

$$f(x) < \min\left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\} \quad \text{ or } \quad f(x) > \max\left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\}$$

Practical

Implications

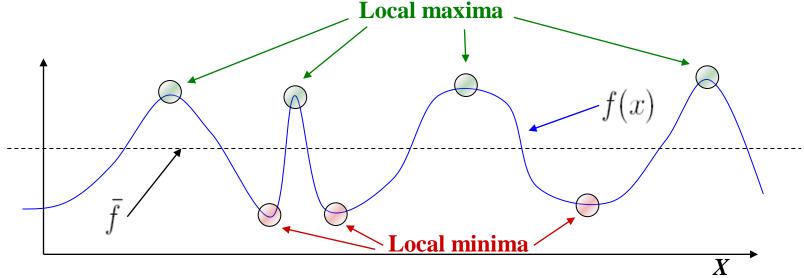
Conclusions

& Future Work

where $f(x) \neq \bar{f}$

Introduction

Local maxima and minima



Introd	uction
	uction

Background on Landscapes

Landscape **Decomposition**

Conclusions Practical Implications **& Future Work**

Landscape Definition Elementary Landscapes

Elementary Landscapes: Examples

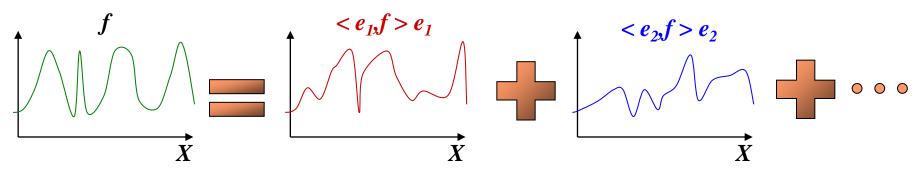
Problem	Neighbourhood	d	k
Summetrie TSD	2-opt	<i>n</i> (<i>n</i> -3)/2	<i>n</i> -1
Symmetric TSP	swap two cities	<i>n</i> (<i>n</i> -1)/2	2(<i>n</i> -1)
Antisymmetric TSP	inversions	<i>n</i> (<i>n</i> -1)/2	<i>n</i> (<i>n</i> +1)/2
	swap two cities	<i>n</i> (<i>n</i> -1)/2	2 <i>n</i>
Graph α-Coloring	recolor 1 vertex	(α-1) <i>n</i>	2α
Graph Matching	swap two elements	<i>n</i> (<i>n</i> -1)/2	2(<i>n</i> -1)
Graph Bipartitioning	Johnson graph	<i>n</i> ²/4	2(<i>n</i> -1)
NAES	bit-flip	n	4
Max Cut	bit-flip	n	4
Weight Partition	bit-flip	n	4

IntroductionBackground on
LandscapesLandscape
DecompositionPractical
ImplicationsConclusions& Future Work

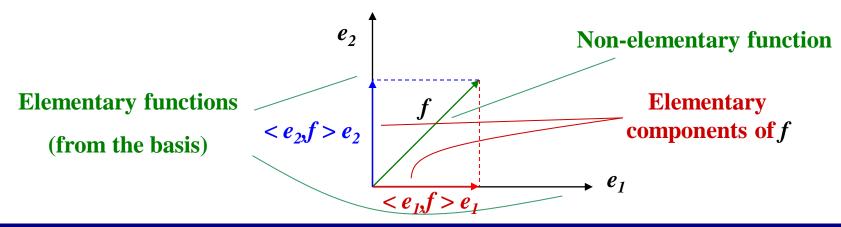
Overview Methodology FAP QAP Examples

Landscape Decomposition: Overview

- What if the landscape is not elementary?
- Any landscape can be written as the sum of elementary landscapes



• There exists a set of eigenfunctions of Δ that form a basis of the function space



September 2010

IntroductionBackground on
LandscapesLandscape
DecompositionPractical
ImplicationsConclusions
& Future Work

Overview Methodology FAP QAP Examples

Landscape Decomposition: General Approach

- How to decompose a function into elementary landscapes?
- Computing $\langle e_i, f \rangle e_i$ for a basis $\{e_1, e_2, ..., e_{|X|}\}$
- We need a basis

Walsh functions (in binary strings with bit-flip neighborhood)

$$\{\psi_w\} \quad w \in \{0,1\}^n$$
$$\psi_w(x) = \frac{1}{2^n} (-1)^{\sum_{i=1}^n w_i x_i}$$

• We need to compute $\langle e_{ix}f \rangle$ which requires a sum of |X| elements in general

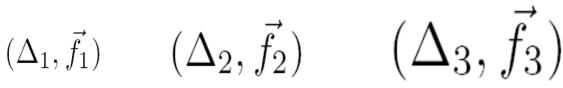
$$\langle \psi_w, f \rangle = \sum_{x \in X} \psi_w(x) f(x)$$

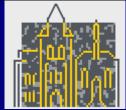


• Methodology for the decomposition that does not require a basis

Select small instances of the problem

Explicitly compute the Laplacian matrix and represent the objective function as a vector

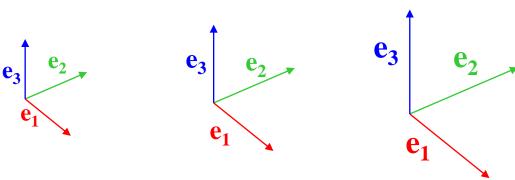




Overview Methodology FAP QAP Examples

Landscape Decomposition: Methodology (II)

Find an orthonormal basis of the vector space that are eigenvectors of the Laplacian



Find the coordinates of the objective function in the basis

$$\left\langle \vec{e_{i}}, \vec{f_{1}} \right\rangle \quad \left\langle \vec{e_{i}}, \vec{f_{2}} \right\rangle \quad \left\langle \vec{e_{i}}, \vec{f_{3}} \right\rangle$$

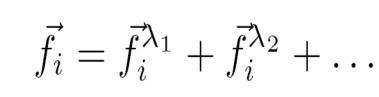
IntroductionBackground on
LandscapesLandscape
DecompositionPractical
ImplicationsConclusions& Future Work

Overview Methodology FAP QAP Examples

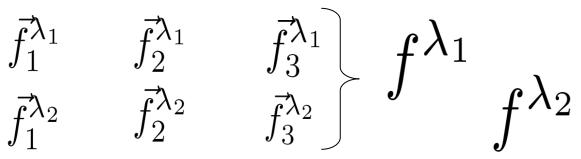
Landscape Decomposition: Methodology (III)

e₃

Sum the components with the same eigenvalue to compute the elementary landscape decomposition



For each component find a generalization of the function



Overview Methodology FAP QAP Examples

Landscape Decomposition: Methodology (& IV)

Check that the generalizaed functions are elementary

$$avg\{f^{\lambda_i}(y)\} = \alpha f^{\lambda_i}(x) + \beta$$
$$y \in N(x)$$

Check if the sum of the generalized functions is the objective function

$$f \stackrel{?}{=} \sum_{i} f^{\lambda_i}$$

Introduction Background on Landscape Decomposition Practical Implications & Future Work

Overview Methodology FAP QAP Examples

Landscape Decomposition: FAP

• Using the one-change neighborhood, the fitness function can be decomposed into two elementary components:

$$f_{2r} = \frac{1}{r} \sum_{\substack{i,j=1\\i\neq j}}^{n} \sum_{\substack{p,q=1\\p,q=1}}^{r} w_{i,j}^{p,q} \phi_{i,j,r-2}^{p,q} \qquad k_1 = 2r$$

$$f_r = -\frac{1}{r} \sum_{\substack{i,j=1\\i\neq j}}^{n} \sum_{\substack{p,q=1\\p,q=1}}^{r} w_{i,j}^{p,q} \phi_{i,j,-2}^{p,q} + \sum_{i=1}^{n} \sum_{\substack{p=1\\p=1}}^{r} w_{i,i}^{p,p} \varphi_{i,i}^{p,p} \qquad k_2 = r$$

$$f(x) = f_{2r}(x) + f_r(x)$$

Overview Methodology FAP QAP Examples

Background on

Landscapes

Introduction

Landscape

Decomposition

• Using the swap neighborhood, the fitness function can be decomposed into three elementary components:

Practical

Implications

Conclusions

& Future Work

$$f_{c1}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} r_{ij} w_{pq} \frac{\Omega_{(i,j),(p,q)}^{1}(x)}{2n} \qquad k_{1} = 2n$$

$$f_{c2}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} r_{ij} w_{pq} \frac{\Omega_{(i,j),(p,q)}^{2}(x)}{2(n-2)} \qquad k_{2} = 2(n-1)$$
Kronecker's delta
$$f_{c3}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} r_{ij} w_{pq} \frac{\Omega_{(i,j),(p,q)}^{3}(x)}{n(n-2)} + \sum_{i,p=1}^{n} r_{ii} w_{pp} \delta_{x(i)}^{p} \qquad k_{3} = n$$

$$f(x) = f_{c1}(x) + f_{c2}(x) + f_{c3}(x)$$

Introduction

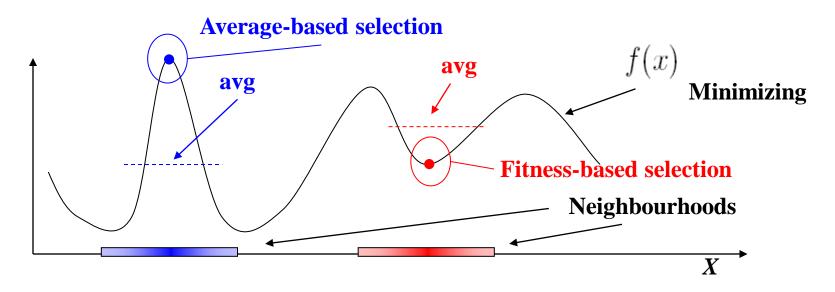
Background on Landscapes Landscape Decomposition PracticalConclusionsImplications& Future Work

Overview Methodology FAP QAP Examples

Landscape Decomposition: Examples

Problem	Neighbourhood	d	Components
Conorol TSD	inversions	<i>n</i> (<i>n</i> -1)/2	2
General TSP	swap two cities	<i>n</i> (<i>n</i> -1)/2	2
Subset Sum Problem	bit-flip	n	2
MAX k-SAT	bit-flip	n	k
NK-landscapes	bit-flip	n	<i>k</i> +1
Radio Network Design	bit-flip	n	max. nb. of reachable antennae
Frequency Assignment	change 1 frequency	(α-1) <i>n</i>	2
QAP	swap two elements	n(n-1)/2	3

• Selection operators usually take into account the fitness value of the individuals



• We can improve the selection operator by selecting the individuals according to the average value in their neighbourhoods

• In elementary landscapes the traditional and the new operator are (almost) the same!

Recall that...
$$\operatorname{avg} \{ f(y) \} = \alpha f(x) + \beta \quad \forall x \in X$$

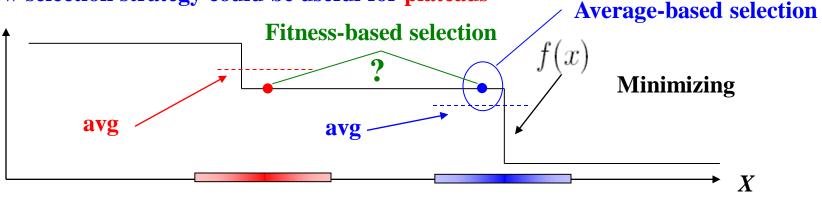
 $y \in N(x)$

• However, they are not the same in non-elementary landscapes. If we have *n* elementary components, then:

$$\operatorname{avg}\{f(y)\} = \alpha_0 + \alpha_1 f(x) + \sum_{i=2}^n \alpha_i f_i(x) \quad \forall x \in X$$

$$\underbrace{\forall x \in X}_{\text{Elementary components}}$$

• The new selection strategy could be useful for plateaus



Autocorrelation

- Let $\{x_0, x_1, ...\}$ a simple random walk on the configuration space where $x_{i+1} \in N(x_i)$
- The random walk induces a time series $\{f(x_0), f(x_1), ...\}$ on a landscape.
- The autocorrelation function is defined as:

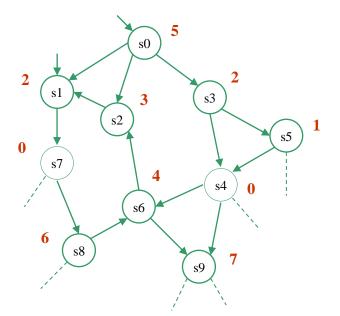
$$r(s) = \frac{\langle f(x_t) f(x_{t+s}) \rangle_{x_0,t} - \langle f \rangle^2}{\langle f^2 \rangle - \langle f \rangle^2}$$

• The autocorrelation length and coefficient:

$$l = \sum_{s=0}^{\infty} r(s)$$
 $\xi = \frac{1}{1 - r(1)}$

• Autocorrelation length conjecture:

The number of local optima in a search space is roughly $M\approx |X|/|X(x_0,l)|$



Solutions reached from x₀ after *l* moves

Introduction	Background on	Landscape	Practical
	Landscapes	Decomposition	Implications

Selection Strategy Autocorrelation

Autocorrelation Length Conjecture

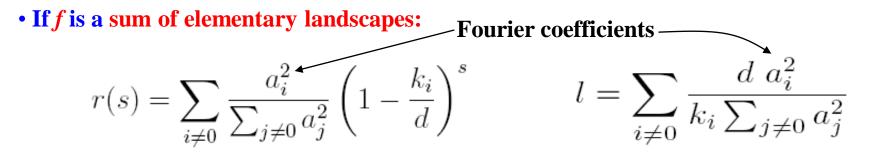
- The higher the value of l and ξ the smaller the number of local optima
- *l* and ξ is a measure of ruggedness

Angel, Zissimopoulos. Theoretical Computer Science 263:159-172 (2001)

gth					
	Duggodnogg	SA (configuration 1)		SA (configuration 2)	
oefficient	Ruggedness	% rel. error	nb. of steps	% rel. error	nb. of steps
	$9.5 \le \xi < 9.0$	0.2	50,500	0.1	101,395
	$9.0 \le \xi < 8.5$	0.3	53,300	0.2	106,890
	$8.5 \le \xi < 8.0$	0.3	58,700	0.2	118,760
	$8.0 \le \xi < 7.5$	0.5	62,700	0.3	126,395
	$7.5 \le \xi < 7.0$	0.7	66,100	0.4	133,055
	$7.0 \le \xi < 6.5$	1.0	75,300	0.6	151,870
	$6.5 \le \xi < 6.0$	1.3	76,800	1.0	155,230
	$6.0 \le \xi < 5.5$	1.9	79,700	1.4	159,840
	$5.5 \le \xi < 5.0$	2.0	82,400	1.8	165,610

Selection Strategy Autocorrelation

Autocorrelation and Landscapes



• Summing all the squared coefficients with the same k_i:

$$r(s) = \sum_{i} W_i \left(1 - \frac{k_i}{d} \right)^s \qquad \xi = \frac{d}{\sum_{i} W_i k_i} \qquad l = d \sum_{i} \frac{W_i}{k_i}$$

where

$$W_i = \frac{\overline{f_{ci}^2} - \overline{f_{ci}}^2}{\overline{f^2} - \overline{f}^2}$$

Selection Strategy Autocorrelation

Autocorrelation for FAP and QAP

- Using the landscape decomposition we can compute l and ξ

$\xi = \frac{n(r-1)}{r(2-W_2)} \qquad FAP \\ l = \frac{n(r-1)(1+W_2)}{2r}$

• W_2 can be computed in polynomial time, $O(n^4r^4)$

QAP

$$\xi = \frac{n(n-1)}{(4-2W_3)n - 4W_2} \qquad l = \frac{(1+W_3)(n-1) + W_2}{4}$$

- W_2 and W_3 computed in $O(n^8) \rightarrow O(n^2)$ (optimal complexity)
- We computed l and ξ for all the instances in the QAPLIB

Intro d	uction

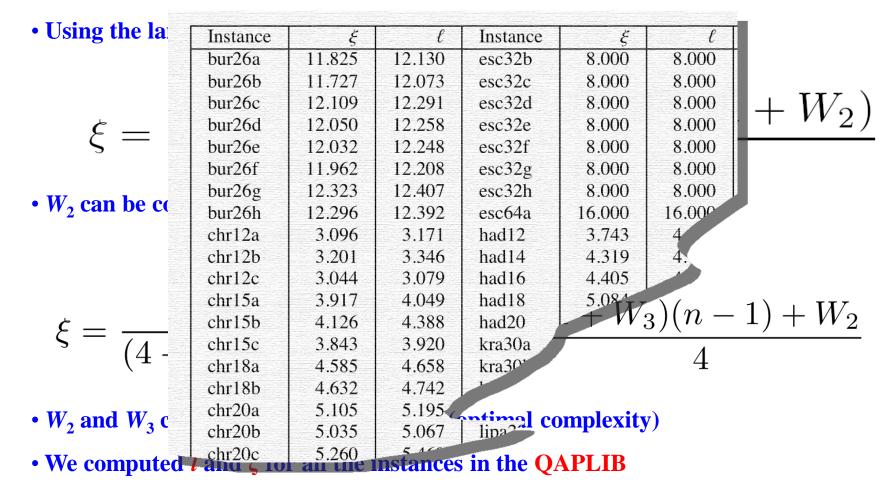
Background on Landscapes

Landscape Decomposition Practical Implications

Conclusions & Future Work

Selection Strategy Autocorrelation

Autocorrelation for FAP and QAP



Introduction

Background on Landscapes

Landscape **Decomposition**

Conclusions Practical Implications

& Future Work

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Elementary landscape decomposition is a useful tool to understand a problem
- The decomposition can be used to design new operators and search algorithms
- We can exactly determine the autocorrelation functions
- We propose a methodology for the decomposition

Future Work

- Search for additional applications of landscapes' theory in EAs
- Design new operators and search methods based on landscapes' information
- Analyze other problems

Elementary Landscape Decomposition of Combinatorial Optimization Problems

Thanks for your attention !!!

September 2010 Theory of Evolutionary Algorithms (Dagstuhl Seminar)