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• Landscapes’ theory is a tool for analyzing optimization problems

• Peter F. Stadler is one of the main supporters of the theory

• Applications in Chemistry, Physics, Biology and Combinatorial Optimization

• Central idea: study the search space to obtain information

• Better understanding of the problem

• Predict algorithmic performance

• Improve search algorithms
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• A landscape is a triple (X,N, f) where

X is the solution space

N is the neighbourhood operator

f is the objective function

Landscape Definition
Landscape Definition   Elementary Landscapes   Landscape decomposition

The pair (X,N) is called 
configuration space
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• The neighbourhood operator is a function

N: X →P(X)

• Solution y is neighbour of x if y ∈ N(x)

• Regular and symmetric neighbourhoods 

• d=|N(x)|    ∀ x ∈ X

• y ∈ N(x) ⇔ x ∈ N(y)

• Objective function

f: X →R (or N, Z, Q)
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• An elementary function is an eigenvector of the graph Laplacian (plus constant)

• Graph Laplacian: 

• Elementary function: eigenvector of Δ (plus constant)

Elementary Landscapes: Formal Definition
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• An elementary landscape is a landscape for which

where

• Grover’s wave equation

Elementary Landscapes: Characterizations

Linear relationship

Characteristic constant: k= - λ

Depend on the 
problem/instance
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• Some properties of elementary landscapes are the following

where

• Local maxima and minima

Elementary Landscapes: Properties
Landscape Definition Elementary Landscapes Landscape decomposition

X
Local minima

Local maxima
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Elementary Landscapes: Examples
Problem Neighbourhood d k

Symmetric TSP
2-opt n(n-3)/2 n-1
swap two cities n(n-1)/2 2(n-1)

Antisymmetric TSP
inversions n(n-1)/2 n(n+1)/2
swap two cities n(n-1)/2 2n

Graph α-Coloring recolor 1 vertex (α-1)n 2α
Graph Matching swap two elements n(n-1)/2 2(n-1)
Graph Bipartitioning Johnson graph n2/4 2(n-1)
NEAS bit-flip n 4
Max Cut bit-flip n 4
Weight Partition bit-flip n 4
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• What if the landscape is not elementary?

• Any landscape can be written as the sum of elementary landscapes

• There exists a set of eigenfunctions of Δ that form a basis of the function 
space (Fourier basis)

Landscape Decomposition
Landscape Definition Elementary Landscapes   Landscape decomposition

X X X
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• If X is the set of binary strings of length n and N is the bit-flip neighbourhood then a 
Fourier basis is

where

• These functions are known as Walsh Functions

• The function with subindex w is elementary with k=2 bc (w)

• In general, decomposing a landscape is not a trivial task → methodology required

Landscape Decomposition: Walsh Functions

Bitwise AND

Bit count function
(number of ones)
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Landscape Decomposition: Examples
Problem Neighbourhood d Components

General TSP
inversions n(n-1)/2 2
swap two cities n(n-1)/2 2

QAP swap two elements n(n-1)/2 3
Frequency Assignment change 1 frequency (α-1)n 2
Subset Sum Problem bit-flip n 2
MAX k-SAT bit-flip n k
NK-landscapes bit-flip n k+1

Radio Network Design bit-flip n
max. nb. of 
reachable 
antennae
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• Selection operators usually take into account the fitness value of the individuals

• We can improve the selection operator by selecting the individuals according to 
the average value in their neighbourhoods

New Selection Strategy
Selection Strategy   Autocorrelation
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• In elementary landscapes the traditional and the new operator are the same!

Recall that...

• However, they are not the same in non-elementary landscapes. If we have n
elementary components, then:

• The new selection strategy could be useful for plateaus
Elementary components

X

Minimizing
avg avg
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• Let {x0, x1, ...} a simple random walk on the configuration space where xi+1∈N(xi)

• The random walk induces a time series {f(x0), f(x1), ...} on a landscape.

• The autocorrelation function is defined as:

• The autocorrelation length is defined as:

• Autocorrelation length conjecture:

Autocorrelation
Selection Operator Autocorrelation
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The number of local optima in a search space is roughly Solutions 
reached from x0

after l moves
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• The higher the value of l the smaller the number of local optima and the better the 
performance of a local search method

• l is a measure of the ruggedness of a landscape

Autocorrelation Length Conjecture

Ruggedness
Nb. steps (config 1) Nb. steps (config 2)

% rel. error nb. steps % rel. error nb. steps
10 ≤ ζ < 20 0.2 50500 0.1 101395

20 ≤ ζ < 30 0.3 53300 0.2 106890

30 ≤ ζ < 40 0.3 58700 0.2 118760

40 ≤ ζ < 50 0.5 62700 0.3 126395

50 ≤ ζ < 60 0.7 66100 0.4 133055

60 ≤ ζ < 70 1.0 75300 0.6 151870

70 ≤ ζ < 80 1.3 76800 1.0 155230

80 ≤ ζ < 90 1.9 79700 1.4 159840

90 ≤ ζ < 100 2.0 82400 1.8 165610

Length

Angel, Zissimopoulos. Theoretical 
Computer Science 264:159-172
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• If f is a sum of elementary landscapes:

• For elementary landscapes:

• Using the landscape decomposition we can determine a priori the performance of 
a local search method

Autocorrelation and Landscapes
Fourier coefficients
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• Elementary landscape decomposition is a useful tool to understand a problem

• The decomposition can be used to design new operators

• We can exactly determine the autocorrelation functions

• It is not easy to find a decomposition in the general case

Conclusions

Future Work

• Methodology for landscape decomposition

• Search for additional applications of landscapes’ theory in EAs

• Design new operators and search methods based on landscapes’ information
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Thanks for your attention !!!
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