Introduction

Background on Landscapes

Applications

Conclusions & Future Work



# Elementary Landscape Decomposition of Combinatorial Optimization Problems





LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE MÁLAGA



DE MÁLAGA

### **Francisco Chicano**

#### Work in collaboration with L. Darrell Whitley

Background on Landscapes

Applications

Conclusions & Future Work

#### Motivation

# **Motivation**

- Landscapes' theory is a tool for analyzing optimization problems
- Peter F. Stadler is one of the main supporters of the theory

#### Towards a Theory of Landscapes

Peter F. Stadler

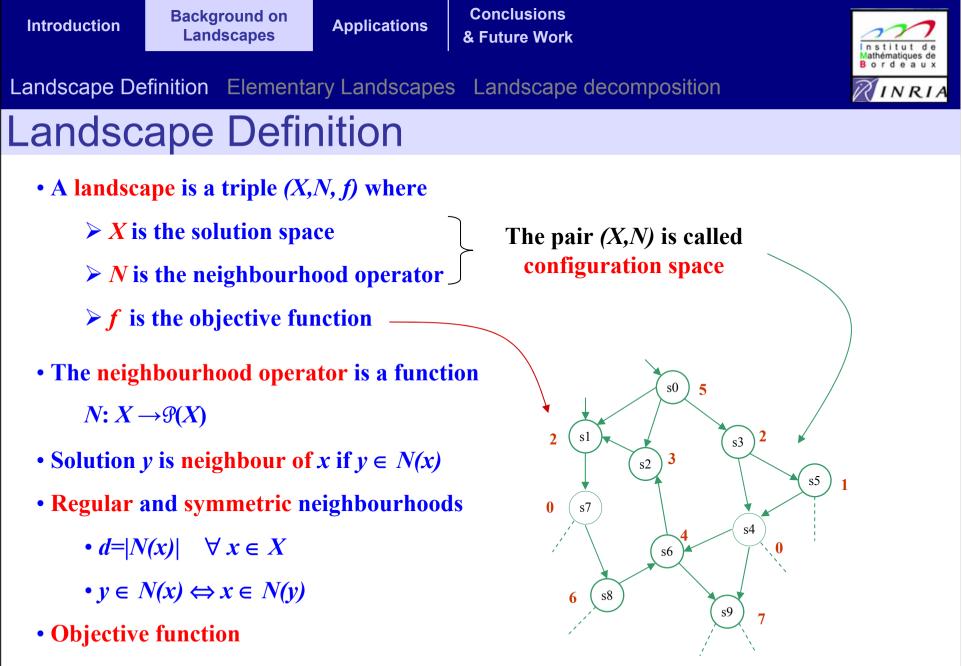
Institut für Theoretische Chemie, Universität Wien. Währingerstraße 17, A-1090 Wien, Austria

Santa Fe Institute. 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

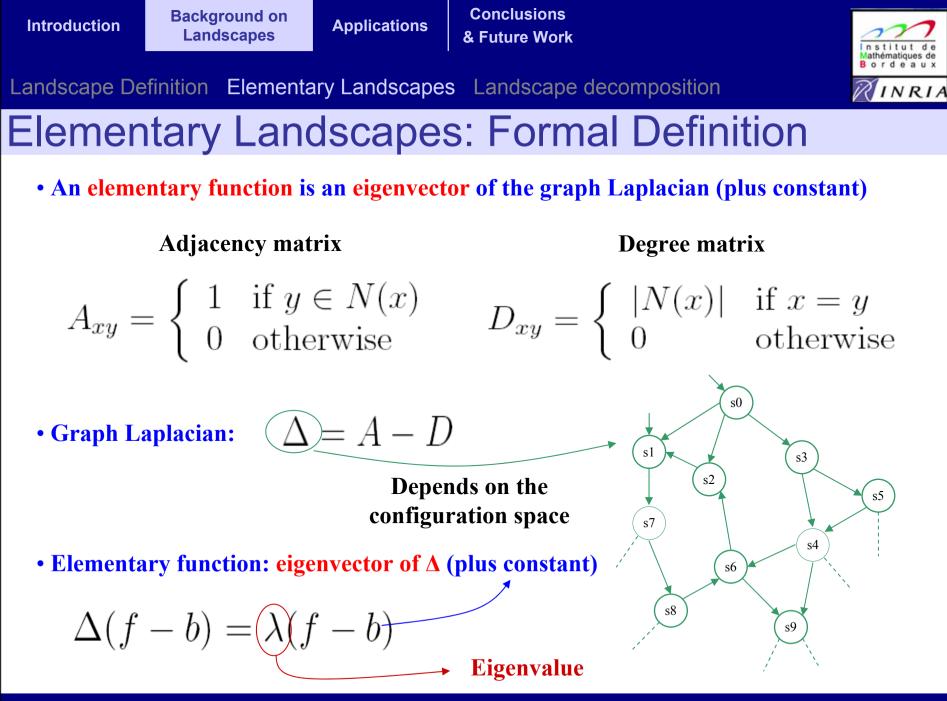


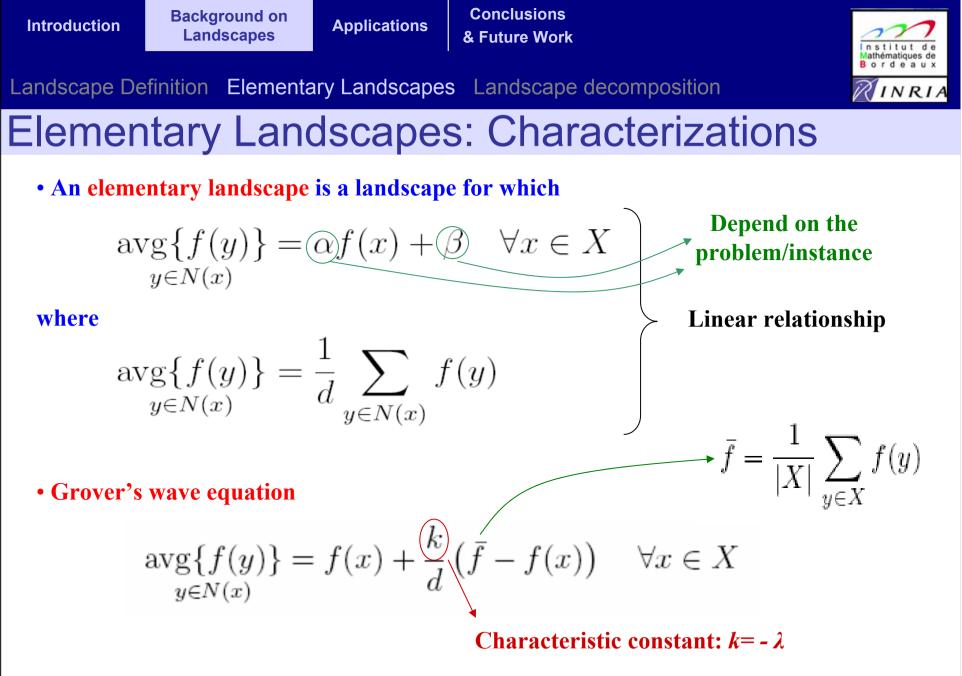
- Applications in Chemistry, Physics, Biology and Combinatorial Optimization
- Central idea: study the search space to obtain information
  - Better understanding of the problem
  - Predict algorithmic performance
  - Improve search algorithms

NRIA



 $f: X \to R \text{ (or } N, Z, Q)$ 





IntroductionBackground on<br/>LandscapesApplicationsConclusions<br/>& Future WorkLandscape DefinitionElementary LandscapesLandscape decomposition

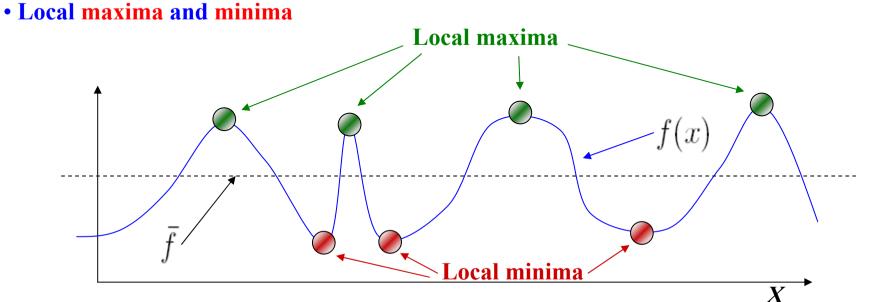


### **Elementary Landscapes: Properties**

• Some properties of elementary landscapes are the following

$$f(x) < \min \left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\} \quad \text{ or } \quad f(x) > \max \left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\}$$

where  $f(x) \neq \bar{f}$ 



Background on Landscapes

Introduction

Applications

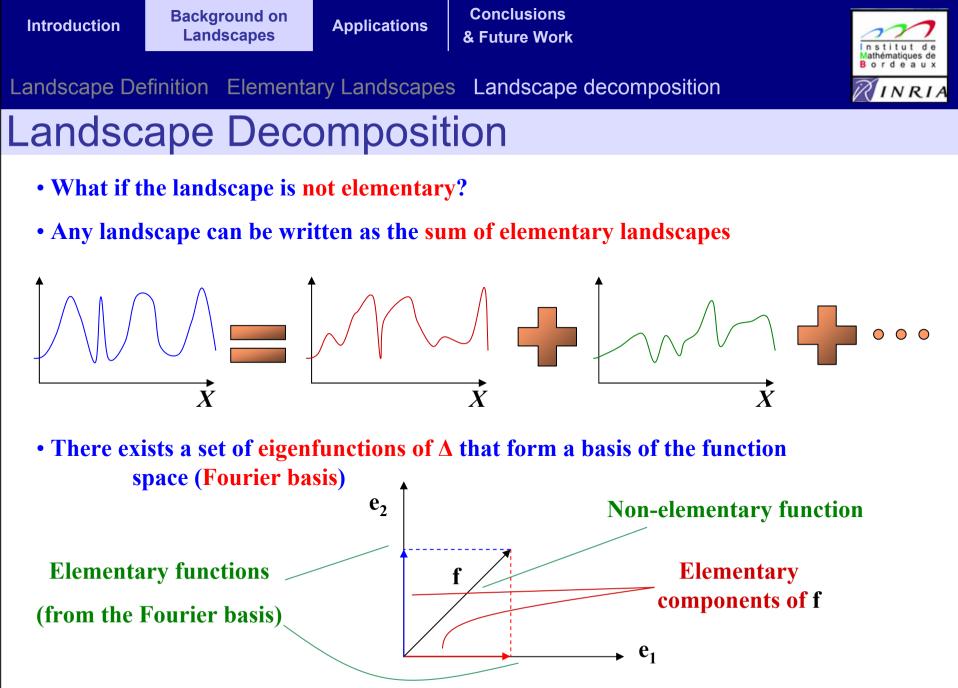
Conclusions & Future Work

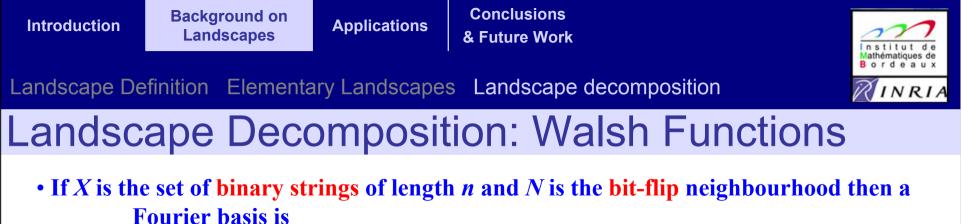


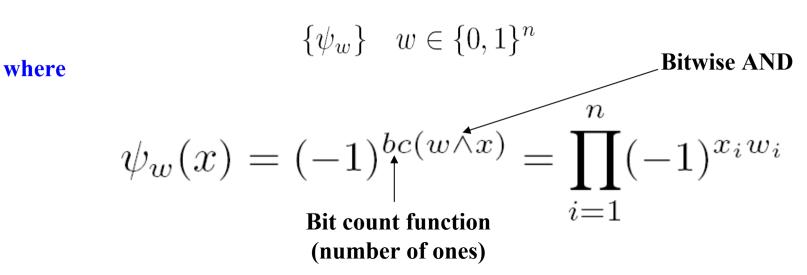
Landscape Definition Elementary Landscapes Landscape decomposition

### **Elementary Landscapes: Examples**

| Problem              | Neighbourhood     | d        | k        |
|----------------------|-------------------|----------|----------|
|                      | 2-opt             | n(n-3)/2 | n-1      |
| Symmetric TSP        | swap two cities   | n(n-1)/2 | 2(n-1)   |
| Antisymmetric TSP    | inversions        | n(n-1)/2 | n(n+1)/2 |
|                      | swap two cities   | n(n-1)/2 | 2n       |
| Graph α-Coloring     | recolor 1 vertex  | (α-1)n   | 2α       |
| Graph Matching       | swap two elements | n(n-1)/2 | 2(n-1)   |
| Graph Bipartitioning | Johnson graph     | n²/4     | 2(n-1)   |
| NEAS                 | bit-flip          | n        | 4        |
| Max Cut              | bit-flip          | n        | 4        |
| Weight Partition     | bit-flip          | n        | 4        |







- These functions are known as Walsh Functions
- The function with subindex w is elementary with k=2 bc (w)
- In general, decomposing a landscape is not a trivial task  $\rightarrow$  methodology required

| Intro |             | - 4 - |     |
|-------|-------------|-------|-----|
| Intre | <b>NOLL</b> | CTIC  | hh. |
|       | Juu         | GUIG  |     |

Background on Landscapes

Applications

Conclusions & Future Work



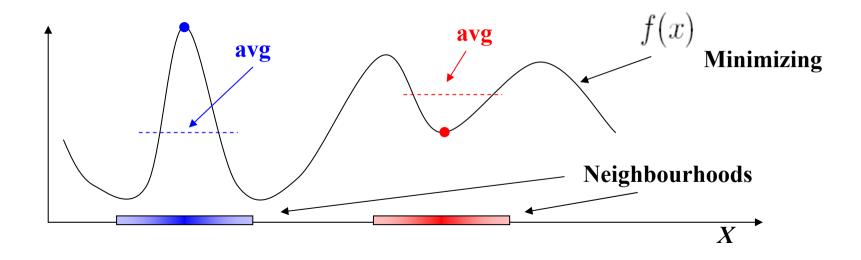
Landscape Definition Elementary Landscapes Landscape decomposition

### Landscape Decomposition: Examples

| Problem              | Neighbourhood d    |          | Components                           |
|----------------------|--------------------|----------|--------------------------------------|
| General TSP          | inversions         | n(n-1)/2 | 2                                    |
|                      | swap two cities    | n(n-1)/2 | 2                                    |
| QAP                  | swap two elements  | n(n-1)/2 | 3                                    |
| Frequency Assignment | change 1 frequency | (α-1)n   | 2                                    |
| Subset Sum Problem   | bit-flip           | n        | 2                                    |
| MAX k-SAT            | bit-flip           | n        | k                                    |
| NK-landscapes        | bit-flip           | n        | k+1                                  |
| Radio Network Design | bit-flip           | n        | max. nb. of<br>reachable<br>antennae |



• Selection operators usually take into account the fitness value of the individuals



• We can improve the selection operator by selecting the individuals according to the average value in their neighbourhoods



# **New Selection Strategy**

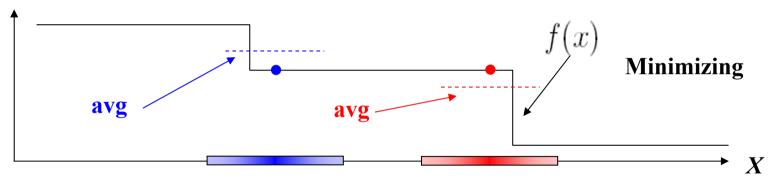
• In elementary landscapes the traditional and the new operator are the same!

Recall that... 
$$\operatorname{avg} \{ f(y) \} = \alpha f(x) + \beta \quad \forall x \in X$$
  
 $y \in N(x)$ 

• However, they are not the same in non-elementary landscapes. If we have *n* elementary components, then:

$$\operatorname{avg}_{y \in N(x)} \{f(y)\} = \alpha_0 + \alpha_1 f(x) + \sum_{i=2}^n \alpha_i f_i(x) \quad \forall x \in X$$
  
Elementary components

• The new selection strategy could be useful for plateaus





#### Selection Operator Autocorrelation

# Autocorrelation

- Let  $\{x_0, x_1, ...\}$  a simple random walk on the configuration space where  $x_{i+1} \in N(x_i)$
- The random walk induces a time series  $\{f(x_0), f(x_1), ...\}$  on a landscape.
- The autocorrelation function is defined as:

$$r(s) = \frac{\langle f(x_t)f(x_{t+s})\rangle_t - \langle f\rangle^2}{\langle f^2 \rangle - \langle f \rangle^2}$$

• The autocorrelation length is defined as:

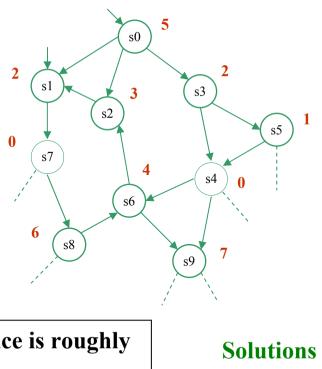
$$l = \sum_{s=0}^{\infty} r(s)$$

• Autocorrelation length conjecture:

The number of local optima in a search space is roughly  $M \approx |X|/|X(x_0, l)|$ 

Solutions reached from x<sub>0</sub> after *l* moves

13 / 17



Introduction

Background on Landscapes

Applications

Conclusions & Future Work

Selection Operator Autocorrelation



## **Autocorrelation Length Conjecture**

- The higher the value of *l* the smaller the number of local optima and the better the performance of a local search method **Angel Zissimonoulos**. Theoretical
- *l* is a measure of the ruggedness of a landscape

Angel, Zissimopoulos. Theoretical Computer Science 264:159-172

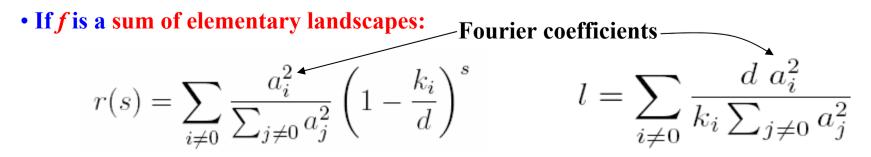
| Length | Ruggedness           | Nb. steps (config 1) |           | Nb. steps (config 2) |           |
|--------|----------------------|----------------------|-----------|----------------------|-----------|
|        |                      | % rel. error         | nb. steps | % rel. error         | nb. steps |
|        | $10 \le \zeta < 20$  | 0.2                  | 50500     | 0.1                  | 101395    |
|        | $20 \le \zeta < 30$  | 0.3                  | 53300     | 0.2                  | 106890    |
|        | $30 \le \zeta < 40$  | 0.3                  | 58700     | 0.2                  | 118760    |
|        | $40 \le \zeta < 50$  | 0.5                  | 62700     | 0.3                  | 126395    |
|        | $50 \le \zeta < 60$  | 0.7                  | 66100     | 0.4                  | 133055    |
|        | $60 \le \zeta < 70$  | 1.0                  | 75300     | 0.6                  | 151870    |
|        | $70 \le \zeta < 80$  | 1.3                  | 76800     | 1.0                  | 155230    |
|        | $80 \le \zeta < 90$  | 1.9                  | 79700     | 1.4                  | 159840    |
|        | $90 \le \zeta < 100$ | 2.0                  | 82400     | 1.8                  | 165610    |





#### Selection Operator Autocorrelation

### **Autocorrelation and Landscapes**



• For elementary landscapes:

$$r(s) = \left(1 - \frac{k}{d}\right)^s \qquad \qquad l = \frac{d}{k}$$

• Using the landscape decomposition we can determine *a priori* the performance of a local search method

Introduction

**Conclusions & Future Work** 

Background on Landscapes

Applications

Conclusions & Future Work

Institut de Mathématiques de Bordeaux

# **Conclusions & Future Work**

### Conclusions

- Elementary landscape decomposition is a useful tool to understand a problem
- The decomposition can be used to design new operators
- We can exactly determine the autocorrelation functions
- It is not easy to find a decomposition in the general case

### **Future Work**

- Methodology for landscape decomposition
- Search for additional applications of landscapes' theory in EAs
- Design new operators and search methods based on landscapes' information

# Elementary Landscape Decomposition of Combinatorial Optimization Problems



Thanks for your attention !!!



