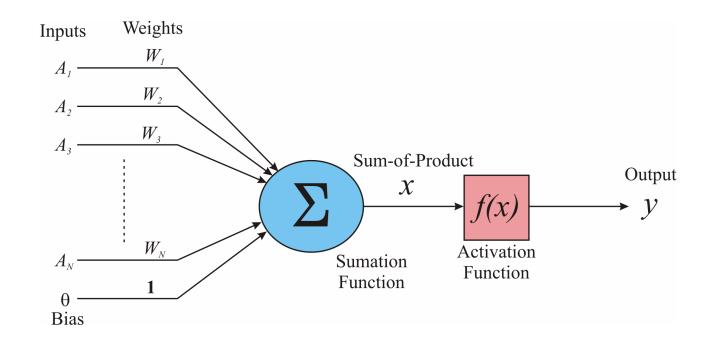


Conclusions & Future Work

Training Neural Networks with GA Hybrid Algorithms

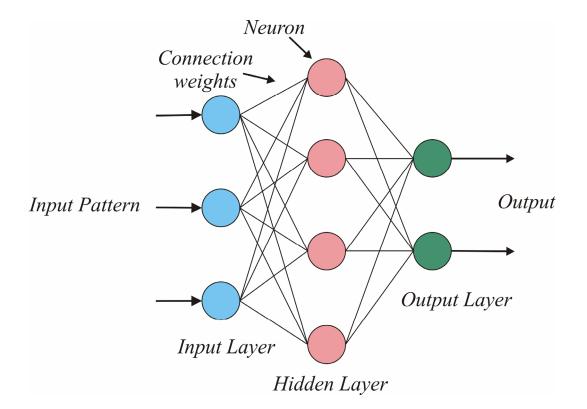

Enrique Alba and <u>J. Francisco Chicano</u>

ANNs Algorithms Experiments Conclusions & Future Work

Artificial Neural Networks

• An ANN is a structured pool of Artificial Neurons:

- The architecture determines how the neurons are connected:
 - Feedforward networks (used here)
 - Recurrent networks


ANNs Algorithms

Experiments

Conclusions & Future Work **Genetic and Evolutionary Computation COnference 2004**

Multilayer Perceptron

• We use Multilayer Perceptrons

• Parameters: number of layers, neurons per layer, activating functions

- Algorithms
- Experiments
- **Conclusions & Future Work**

Training

- The training process consists in adjusting the network weights:
 - Supervised learning
 - Non-supervised learning
- Supervised training process consists in adjusting the weights to get the desired output for the present input patterns
- To measure de quality of the network several options exist:
 SEP

$$SEP = 100 \cdot \frac{o_{max} - o_{min}}{P \cdot S} \sum_{p=1}^{P} \sum_{i=1}^{S} (t_i^p - o_i^p)^2$$

• CEP: percentage of incorrectly classified patterns

ANNs Algorithms BP LM Hybrids Experiments

Conclusions & Future Work **Genetic and Evolutionary Computation COnference 2004**

Backpropagation

• BP is a gradient-based method

$$E = \sum_{p=1}^{P} \sum_{i=1}^{S} (t_i^p - o_i^p)^2$$

InitializeWeights; while not StopCriterion do for all i,j do $w_{ij} := w_{ij} - \eta \frac{\partial E}{\partial w_{ij}};$ endfor; endwhile;

ANNs Algorithms BP

LM

Hybrids

Experiments

Conclusions & Future Work

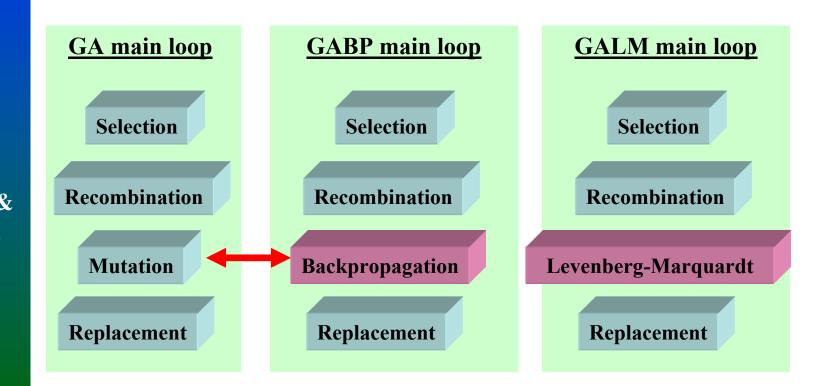
Levenberg-Marquardt

• LM is a "quasi" second order method

variable parameter Jacobian

$$\Delta \mathbf{w} = -\left[\mu I + \sum_{p=1}^{P} J^{p}(\mathbf{w})^{T} J^{p}(\mathbf{w}) \right]^{-1} \nabla E(\mathbf{w})$$

InitializeWeights; while not StopCriterion do Calculates $e^{p}(w)$ for each pattern; e1 := $\sum_{p=1}^{P} e^{p}(w)^{T} e^{p}(w)$; Calculates $J^{p}(\mathbf{w})$ for each pattern; repeat Calculates $\Delta \mathbf{w}$; e2 := $\sum_{p=1}^{P} \mathbf{e}^{p} (\mathbf{w} + \Delta \mathbf{w})^{T} \mathbf{e}^{p} (\mathbf{w} + \Delta \mathbf{w});$ if (e1 <= e2) then $\mu := \mu * \beta;$ endif; until (e2 < e1); $\mu := \mu/\beta;$ $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w};$ endwhile;



ANNs
Algorithms
BP
LM
LM
Kybrids
Experiments
Conclusions &
Future Work

Hybrid Algorithms

- Hybridization: Inclusion of problem knowledge into the algorithm
- Two possible classes of hybrid algorithms:
 - Strong: Specific representation and operators
 - <u>Weak</u>: Combination of several algorithms (cooperation)

Results

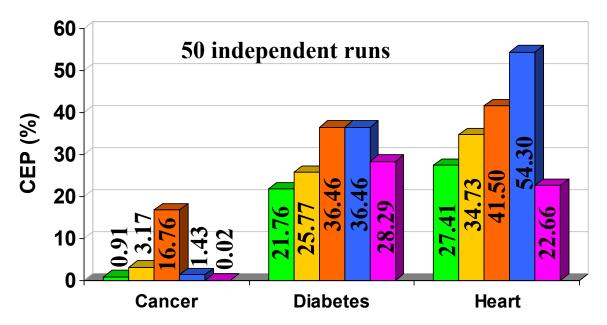
Conclusions & Future Work

Experiments

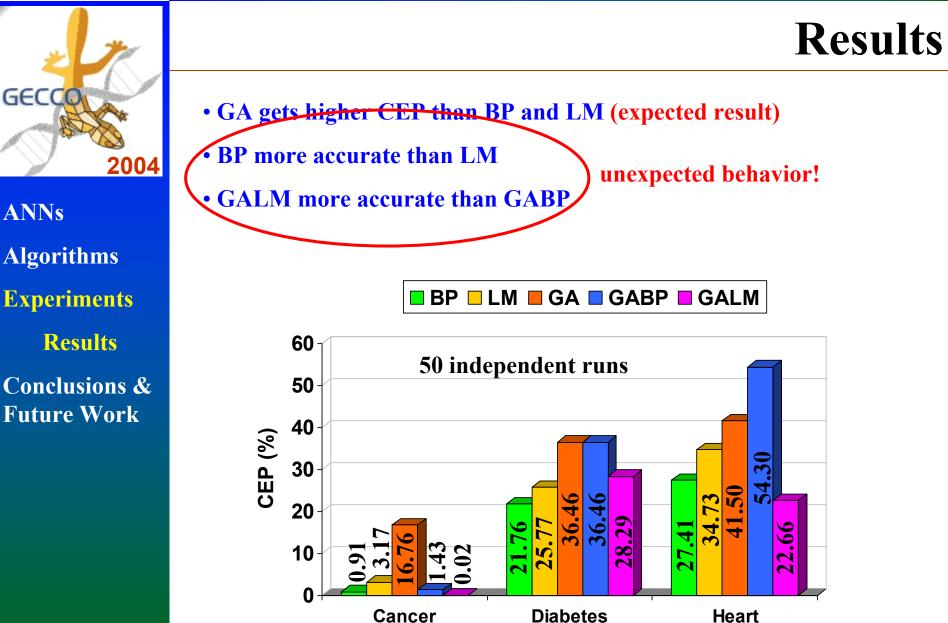
• Three classification problems from PROBEN1 benchmark

	Inputs	Outputs	Patterns
Cancer	9	2	699
Diabetes	8	2	768
Heart	35	2	920

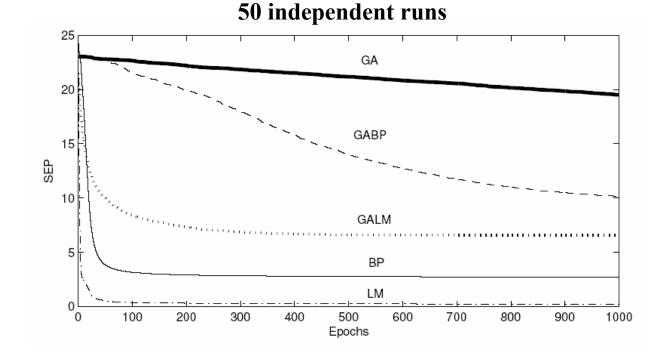
- Multilayer perceptrons with one output neuron per class
 - Six neurons in the hidden layer
 - Sigmoid activating function
 - In GA and hybrids, fitness = the inverse of SEP
 - Pattern sets: Training (75%) and Test (25%)



Conclusions & Future Work


Results

- GA gets higher CEP than BP and LM (expected result)
- BP more accurate than LM
- GALM more accurate than GABP



ANNs Algorithms Experiments Results

Conclusions & Future Work

Results

- LM is the fastest algorithm in minimizing the SEP
- GA evolution is accelerated with the inclusion of BP and LM
- BP and LM over-train the ANN to the used pattern set

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- BP and LM outperform GA
- Hybrid algorithms outperform pure ones
- GALM hybrid found the best CEP (known to our knowledge) for Cancer (0.02%) and Heart (22.66%)

Future Work

- Study other algorithms for these problems (ES, ESBP, ESLM)
- Solve additional instances (Gene, Soybean, Thyroid, ...)

Conclusions & Future Work

THE END

Thanks for your attention !!!

