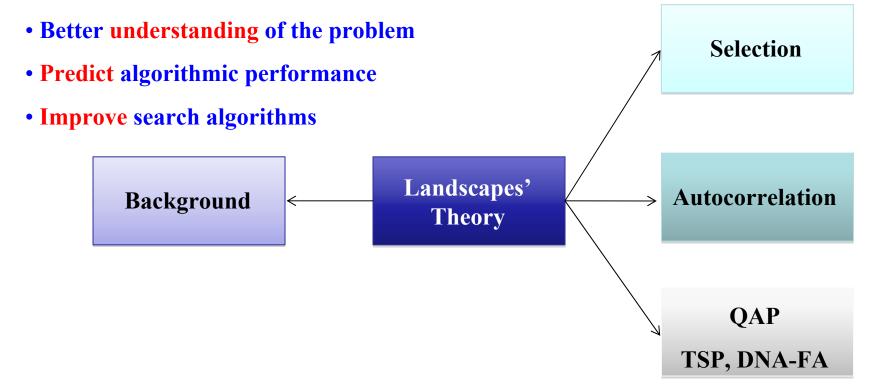
Background on

Landscapes

Introduction

Elementary Landscape Decomposition of the Quadratic Assignment Problem

Francisco Chicano, Gabriel Luque, and Enrique Alba



Motivation

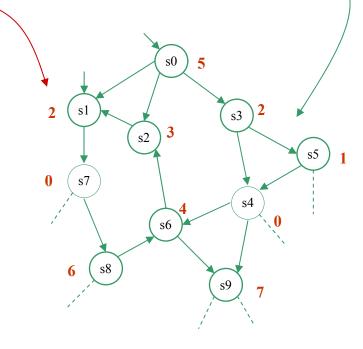
Introduction

Motivation

- Landscapes' theory is a tool for analyzing optimization problems
- Applications in Chemistry, Physics, Biology and Combinatorial Optimization
- Central idea: study the search space to obtain information

Landscape Definition

- A landscape is a triple (X,N, f) where
 - $\succ X$ is the solution space
 - \triangleright *N* is the neighbourhood operator
 - $\triangleright f$ is the objective function
- The neighbourhood operator is a function


$$N: X \to \mathcal{P}(X)$$

Introduction

- Solution y is neighbour of x if $y \in N(x)$
- Regular and symmetric neighbourhoods
 - $d=|N(x)| \quad \forall \ x \in X$
 - $y \in N(x) \Leftrightarrow x \in N(y)$
- Objective function

$$f: X \rightarrow R \text{ (or } N, Z, Q)$$

The pair (X,N) is called configuration space

Elementary Landscapes: Formal Definition

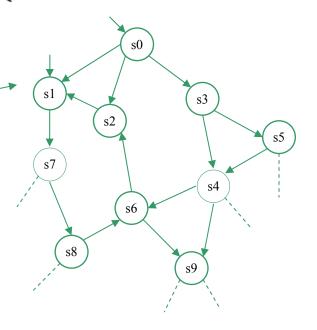
• An elementary function is an eigenvector of the graph Laplacian (plus constant)

Adjacency matrix

$$A_{xy} = \begin{cases} 1 & \text{if } y \in N(x) \\ 0 & \text{otherwise} \end{cases}$$

Degree matrix

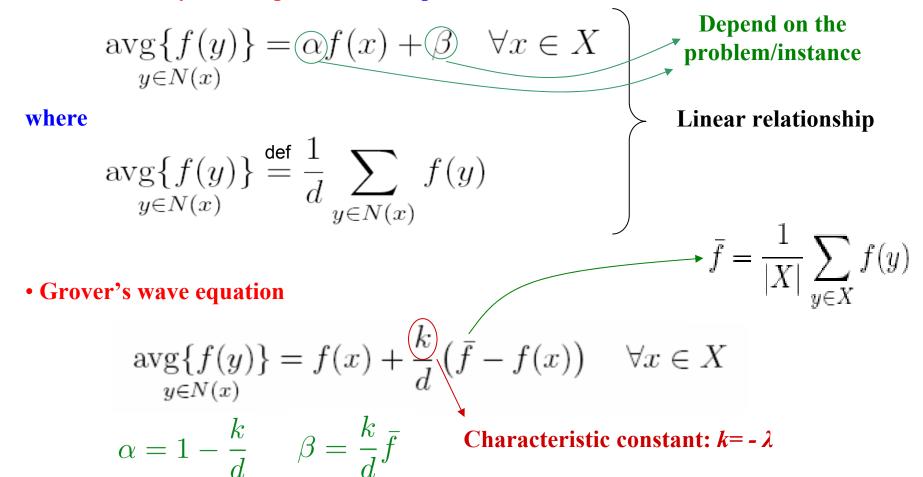
$$D_{xy} = \begin{cases} |N(x)| & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$


• Graph Laplacian:

$$\triangle = A - D$$

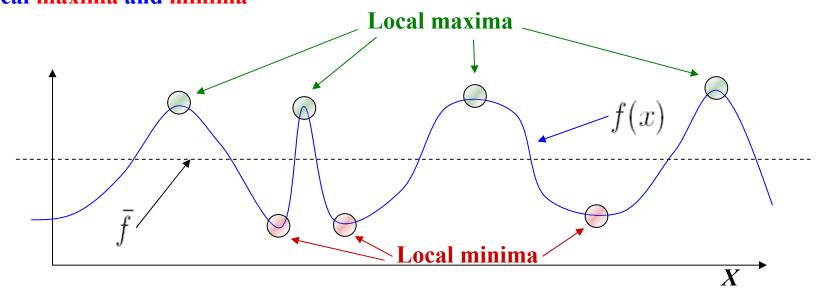
Depends on the configuration space

• Elementary function: eigenvector of Δ (plus constant)


$$\Delta \times (\vec{f} - b) = \lambda \cdot (\vec{f} - b)$$
 Eigenvalue

Elementary Landscapes: Characterizations

• An elementary landscape is a landscape for which


Elementary Landscapes: Properties

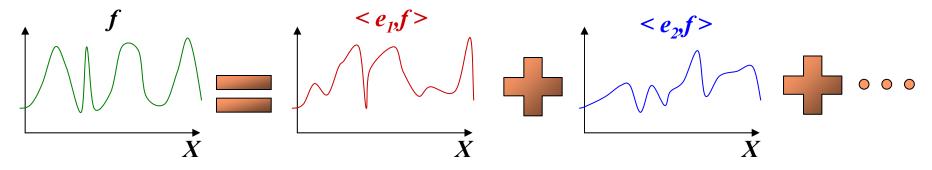
• Several properties of elementary landscapes are the following

$$f(x) < \min \left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\} \quad \text{ or } \quad f(x) > \max \left\{ \underset{y \in N(x)}{\operatorname{avg}} \{f(y)\}, \bar{f} \right\}$$

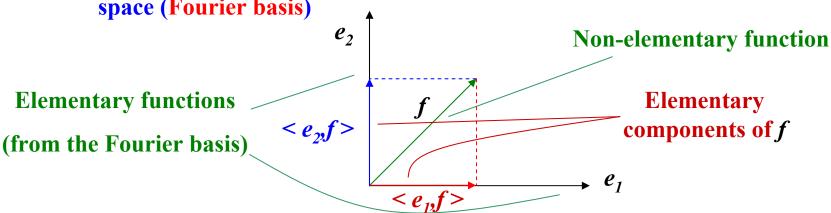
where
$$f(x) \neq \bar{f}$$

• Local maxima and minima

Landscape Definition Elementary Landscapes Landscape Decomposition


Elementary Landscapes: Examples

Problem	Neighbourhood	d	k
Symmotric TSD	2-opt	n(n-3)/2	<i>n</i> -1
Symmetric TSP	swap two cities	n(n-1)/2	2(<i>n</i> -1)
Antiques mantria TCD	inversions	n(n-1)/2	n(n+1)/2
Antisymmetric TSP	swap two cities	n(n-1)/2	2 <i>n</i>
Graph α-Coloring	recolor 1 vertex	(α-1)n	2α
Graph Matching	swap two elements	n(n-1)/2	2(<i>n</i> -1)
Graph Bipartitioning	Johnson graph	n²/4	2(<i>n</i> -1)
NEAS	bit-flip	n	4
Max Cut	bit-flip	n	4
Weight Partition bit-flip		n	4


Landscape Definition Elementary Landscapes Landscape Decomposition

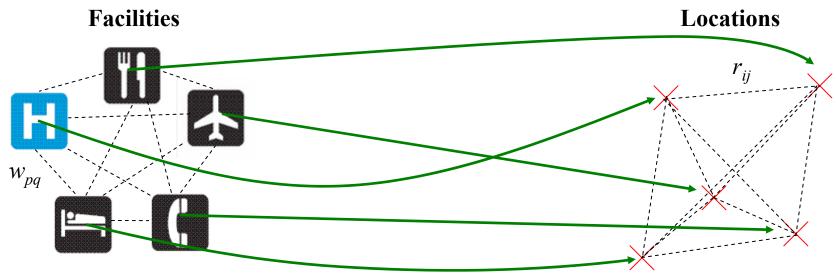
Landscape Decomposition

- What if the landscape is not elementary?
- Any landscape can be written as the sum of elementary landscapes

• There exists a set of eigenfunctions of Δ that form a basis of the function space (Fourier basis)

Landscape Definition Elementary Landscapes Landscape Decomposition

Landscape Decomposition: Examples


Problem	Neighbourhood	d	Components
General TSP	inversions	n(n-1)/2	2
General 13P	swap two cities	n(n-1)/2	2
Subset Sum Problem	bit-flip	n	2
MAX k-SAT	bit-flip	n	k
NK-landscapes	bit-flip	n	<i>k</i> +1
Radio Network Design	bit-flip	n	max. nb. of reachable antennae
Frequency Assignment	change 1 frequency	(α-1) <i>n</i>	2
QAP	swap two elements	n(n-1)/2	3

Definition Decomposition

Introduction

Quadratic Assignment Problem: Definition

• A QAP instance is composed of *n* facilities and *n* locations

- A distance r_{ij} is specified between each pair of locations
- A flow w_{pq} is specified between each pair of facilities
- The problem consists in assigning the facilities to the locations minimizing cost

$$f(x) = \sum_{i,j=1}^{n} r_{ij} w_{x(i)x(j)}$$
 where x is a permutation (solution)

q

Definition Decomposition

Quadratic Assignment Problem: Decomposition

• Auxiliary φ functions

$$\phi_{(i,j),(p,q)}^{\alpha,\beta,\gamma,\varepsilon,\zeta}(x) = \begin{cases} \alpha & \text{if } x(i) = p \land x(j) = q \\ \beta & \text{if } x(i) = q \land x(j) = p \\ \gamma & \text{if } x(i) = p \oplus x(j) = q \\ \varepsilon & \text{if } x(i) = q \oplus x(j) = p \\ \zeta & \text{if } x(i) \neq p, q \land x(j) \neq p, q \end{cases}$$

• The Ω functions are defined after the φ functions

$$\Omega^1_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{n-3,1-n,-2,0,-1}_{(i,j),(p,q)}$$

$$\Omega^{2}_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{n-3,n-3,0,0,1}_{(i,j),(p,q)}$$

$$\Omega^{3}_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{2n-3,1,n-2,0,-1}_{(i,j),(p,q)}$$

Characteristic constant

p

$$k_1 = 2n$$

$$k_2 = 2(n-1)$$

$$k_3 = n$$

Background on Landscapes

QAP

Practical Implications

Conclusions & Future Work

p

Definition Decomposition

Quadratic Assignment Problem: Decomposition

• Auxiliary φ functions

$$\phi_{(i,j),(p,q)}^{\alpha,\beta,\gamma,\varepsilon,\zeta}(x) = \begin{cases} \alpha & \text{if } x(i) = p \land x(j) = q \\ \beta & \text{if } x(i) = q \land x(j) = p \end{cases} \begin{bmatrix} \\ \gamma & \text{if } x(i) = p \oplus x(j) = q \\ \varepsilon & \text{if } x(i) = q \oplus x(j) = p \\ \zeta & \text{if } x(i) \neq p, q \land x(j) \neq p, q \end{cases}$$

• The Ω functions are defined after the φ functions

$$\Omega^1_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{n-3,1-n,-2,0,-1}_{(i,j),(p,q)}$$

$$\Omega^{2}_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{n-3,n-3,0,0,1}_{(i,j),(p,q)}$$

$$\Omega^{3}_{(i,j),(p,q)} \stackrel{\text{def}}{=} \phi^{2n-3,1,n-2,0,-1}_{(i,j),(p,q)}$$

Characteristic constant

$$k_1 = 2n$$

$$k_2 = 2(n-1)$$

$$k_3 = n$$

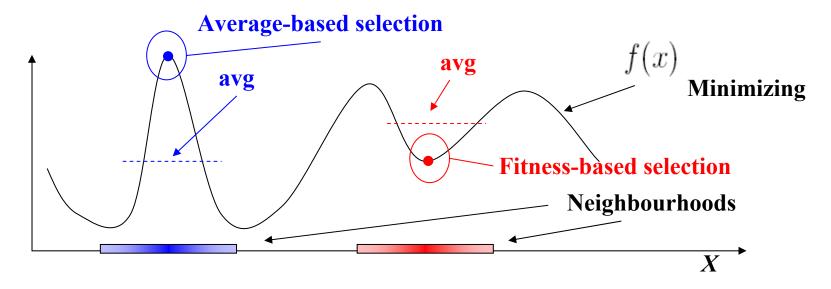
Definition Decomposition

Introduction

Quadratic Assignment Problem: Decomposition

• Using the swap neighborhood, the fitness function can be decomposed into three elementary components:

$$f_{c1}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} \frac{\Omega_{(i,j),(p,q)}^{1}(x)}{2n} \qquad \qquad k_{1} = 2n$$


$$f_{c2}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} r_{ij} w_{pq} \frac{\Omega_{(i,j),(p,q)}^{2}(x)}{2(n-2)} \qquad \qquad k_{2} = 2(n-1)$$
Kronecker's delta
$$f_{c3}(x) = \sum_{\substack{i, j, p, q = 1 \\ i \neq j \\ p \neq q}}^{n} r_{ij} w_{pq} \frac{\Omega_{(i,j),(p,q)}^{3}(x)}{n(n-2)} + \sum_{i,p=1}^{n} r_{ii} w_{pp} \delta_{x(i)}^{p} \qquad k_{3} = n$$

$$f(x) = f_{c1}(x) + f_{c2}(x) + f_{c3}(x)$$

Selection Strategy Autocorrelation Subproblems

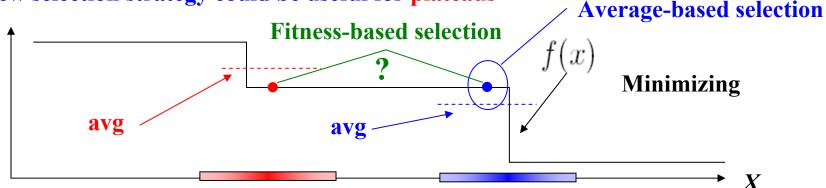
New Selection Strategy

• Selection operators usually take into account the fitness value of the individuals

• We can improve the selection operator by selecting the individuals according to the average value in their neighbourhoods

Selection Strategy Autocorrelation Subproblems

New Selection Strategy


• In elementary landscapes the traditional and the new operator are the same!

Recall that...
$$\operatorname{avg}\{f(y)\} = \alpha f(x) + \beta \quad \forall x \in X$$

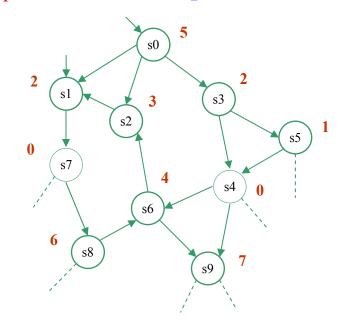
$$y \in N(x)$$

• However, they are not the same in non-elementary landscapes. If we have *n* elementary components, then:

$$\arg\{f(y)\} = \alpha_0 + \alpha_1 f(x) + \sum_{i=2} \alpha_i f_i(x) \quad \forall x \in X$$
 Elementary components

• The new selection strategy could be useful for plateaus

Autocorrelation


- Let $\{x_0, x_1, ...\}$ a simple random walk on the configuration space where $x_{i+1} \in N(x_i)$
- The random walk induces a time series $\{f(x_0), f(x_1), ...\}$ on a landscape.
- The autocorrelation function is defined as:

$$r(s) = \frac{\langle f(x_t)f(x_{t+s})\rangle_t - \langle f\rangle^2}{\langle f^2\rangle - \langle f\rangle^2}$$

• The autocorrelation length and coefficient:

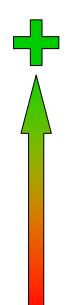
$$l = \sum_{s=0}^{\infty} r(s)$$
 $\xi = \frac{1}{1 - r(1)}$

• Autocorrelation length conjecture:

The number of local optima in a search space is roughly

$$M \approx |X|/|X(x_0, l)|$$

Solutions reached from x_0 after l moves


Autocorrelation Length Conjecture

- The higher the value of l and ξ the smaller the number of local optima
- l and ξ is a measure of ruggedness

Angel, Zissimopoulos. Theoretical Computer Science 263:159-172 (2001)

Length
Coefficient

Introduction

Duggodnoss	SA (configuration 1)		SA (configuration 2)	
Ruggedness	% rel. error	nb. of steps	% rel. error	nb. of steps
$10 \le \zeta < 20$	0.2	50,500	0.1	101,395
$20 \le \zeta < 30$	0.3	53,300	0.2	106,890
$30 \le \zeta < 40$	0.3	58,700	0.2	118,760
$40 \le \zeta < 50$	0.5	62,700	0.3	126,395
$50 \le \zeta < 60$	0.7	66,100	0.4	133,055
$60 \le \zeta < 70$	1.0	75,300	0.6	151,870
$70 \le \zeta < 80$	1.3	76,800	1.0	155,230
$80 \le \zeta < 90$	1.9	79,700	1.4	159,840
$90 \le \zeta < 100$	2.0	82,400	1.8	165,610

Fourier coefficients

Selection Strategy Autocorrelation Subproblems

Autocorrelation and Landscapes

• If f is a sum of elementary landscapes:

$$r(s) = \sum_{i \neq 0} \frac{a_i^2}{\sum_{j \neq 0} a_j^2} \left(1 - \frac{k_i}{d} \right)^s \qquad l = \sum_{i \neq 0} \frac{d a_i^2}{k_i \sum_{j \neq 0} a_j^2}$$

$$l = \sum_{i \neq 0} \frac{d a_i^2}{k_i \sum_{j \neq 0} a_j^2}$$

• Summing all the squared coefficients with the same k;

$$r(s) = \sum_{i} W_i \left(1 - \frac{k_i}{d} \right)^s \qquad \xi = \frac{d}{\sum_{i} W_i k_i} \qquad l = d \sum_{i} \frac{W_i}{k_i}$$

$$\xi = \frac{d}{\sum_{i} W_i k_i}$$

$$l = d \sum_{i} \frac{W_i}{k_i}$$

where

$$W_i = \frac{\overline{f_{ci}^2} - \overline{f_{ci}}^2}{\overline{f^2} - \overline{f}^2}$$

Autocorrelation for QAP

Using the landscape decomposition we can compute *l* and ξ

$$\xi = \frac{n(n-1)}{(4-2W_3)n - 4W_2}$$

$$l = \frac{(1+W_3)(n-1)+W_2}{4}$$

• The bounds for these parameters are:

$$\frac{n-1}{4} \le \xi \le \frac{n-1}{2}$$

$$\frac{n-1}{4} \le l \le \frac{n-1}{2}$$

- We designed an $O(n^2)$ algorithm for this computation (optimal complexity)
- We computed l and ξ for all the instances in the QAPLIB

Autocorrelation for QAP

Using the landscape decomposition we can compute *l* and ξ

$$\xi = \frac{1}{(4 - 1)^2}$$

The bounds f

$$\frac{n}{4}$$

- We designed
- We computed

Instance	ξ	ℓ	Instance	ξ	ℓ	
bur26a	11.825	12.130	esc32b	8.000	8.000	1) 1
bur26b	11.727	12.073	esc32c	8.000	8.000	1 1/ + 1
bur26c	12.109	12.291	esc32d	8.000	8.000	
bur26d	12.050	12.258	esc32e	8.000	8.000	
bur26e	12.032	12.248	esc32f	8.000	8.000	
bur26f	11.962	12.208	esc32g	8.000	8.000	
bur26g	12.323	12.407	esc32h	8.000	8.000	
bur26h	12.296	12.392	esc64a	16.000	16.000	
chr12a	3.096	3.171	had12	3.743	4	
chr12b	3.201	3.346	had14	4.319	4.	n-1
chr12c	3.044	3.079	had16	4.405	12	
chr15a	3.917	4.049	had18	5.084		$\overline{2}$
chr15b	4.126	4.388	had20			
chr15c	3.843	3.920	kra30a			
chr18a	4.585	4.658	kra30	on (optin	al com	nlovity)
chr18b	4.632	4.742	putati	on (opun	iai comj	piexity)
chr20a	5.105	5.195	in the OA	PI IR		
chr20b	5.035	5.067	lipa QA	II LID		
chr20c	5.260	5 160	and the same of th			

Subproblems of QAP: TSP and DNA-FA

• TSP is a particular case of QAP with two elementary components (f_{c1} and f_{c2})

$$f(x) = \sum_{i=1}^{n-1} w_{x(i)x(i+1)} + w_{x(n)x(1)}$$

$$f(x) = \sum_{i=1}^{n-1} w_{x(i)x(i+1)} + w_{x(n)x(1)} \qquad r_{ij} = \begin{cases} 1 & \text{if } j = (i \mod n) + 1 \\ 0 & \text{otherwise} \end{cases}$$

• The autocorrelation parameters are: $\xi = \frac{n(n-1)}{4(n-W_2)}$ $l = \frac{n-1+W_2}{4}$

$$\xi = \frac{n(n-1)}{4(n-W_2)}$$

$$l = \frac{n-1+W_2}{4}$$

• DNA Fragment Assembly is a technique to reconstruct an original DNA sequence a large number of fragments Alba, Luque, Khuri, CEC 2005:57-65

• Two fitness functions are possible and both define QAP subproblems

$$F1(x) = \sum_{i=1}^{n-1} w_{x(i)x(i+1)}$$

$$r_{ij} = \delta_i^{j-1}$$

$$F2(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} |i - j| \cdot w_{x(i)x(j)}$$

$$r_{ij} = |i - j|$$

Conclusions & Future Work

Introduction

Conclusions & Future Work

Conclusions

- Elementary landscape decomposition is a useful tool to understand a problem
- The decomposition can be used to design new operators
- We can exactly determine the autocorrelation functions
- We present the decomposition for QAP (permutation representation)

Future Work

- Methodology for landscape decomposition
- Search for additional applications of landscapes' theory in EAs
- Design new operators and search methods based on landscapes' information
- Analyze other problems

Elementary Landscape Decomposition of the Quadratic Assignment Problem

Thanks for your attention !!!

