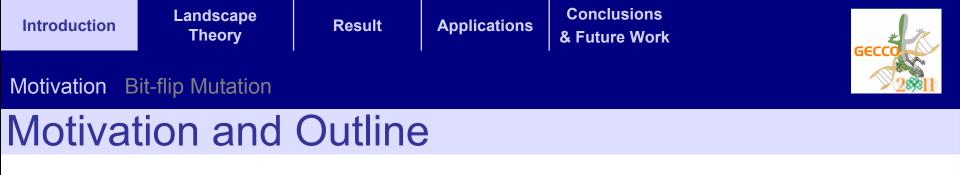
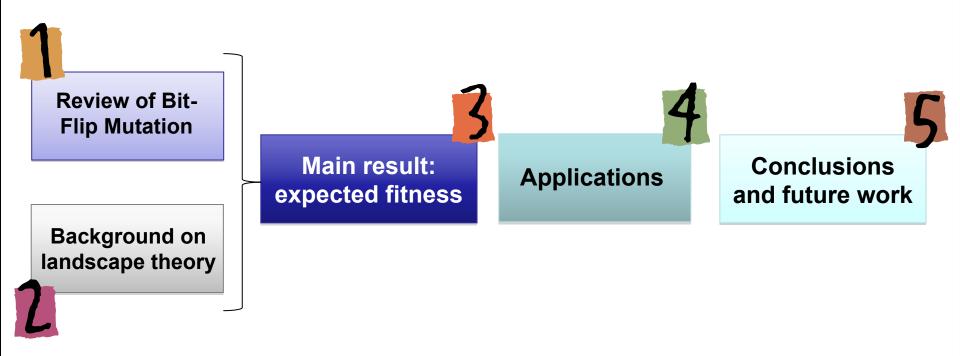


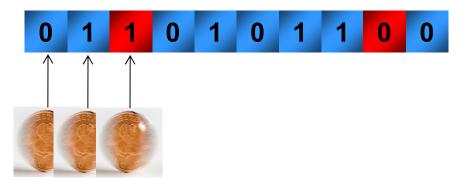
Exact Computation of the Expectation Curves of the Bit-Flip Mutation using Landscapes Theory

Francisco Chicano and Enrique Alba



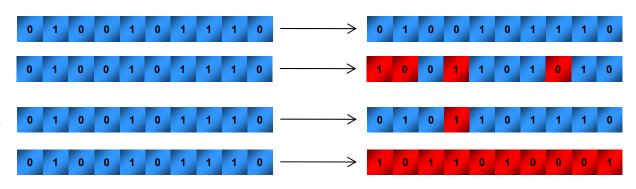
- Research Question: what is the expected fitness of a solution after bit-flip mutation?
- We answer this question with the help of landscape theory



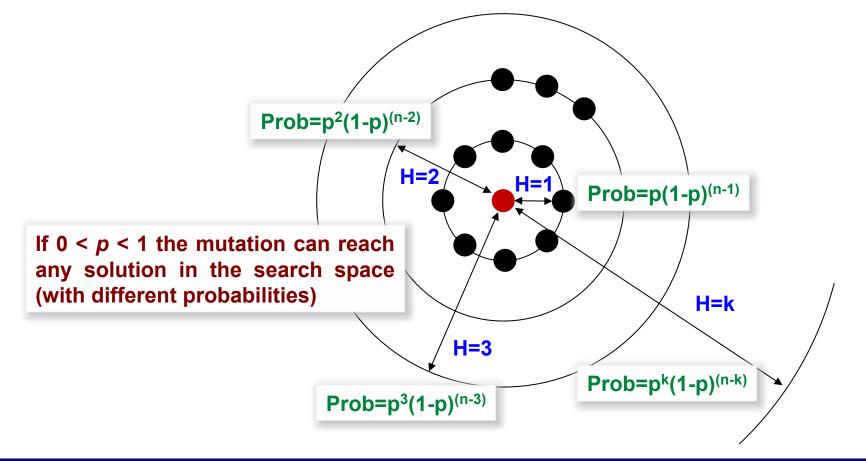


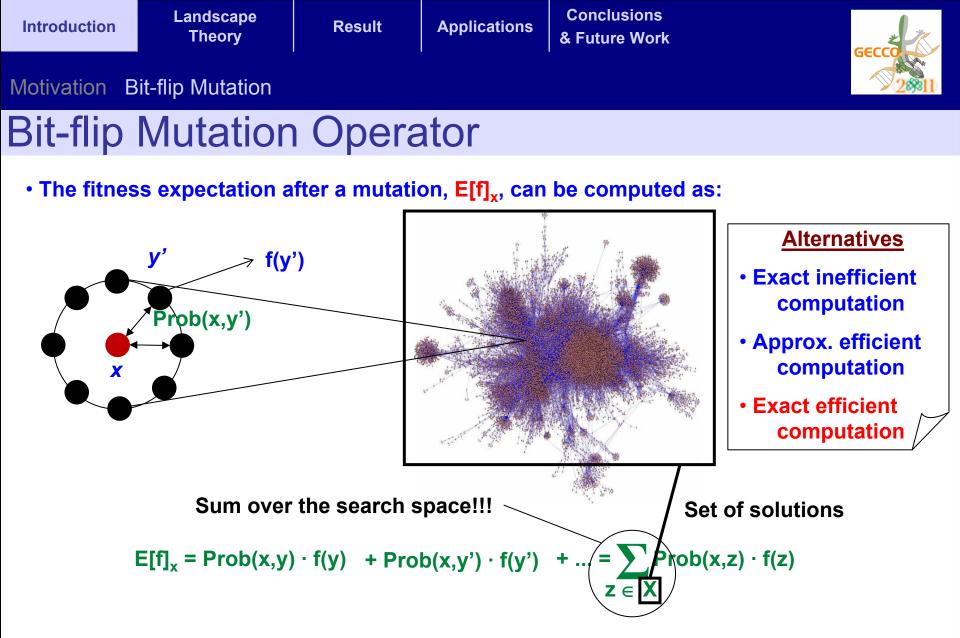
Special cases

- > p=0: no change
- p=1/2: random sol.
- p=1/n: average 1 flip
- p=1: complement

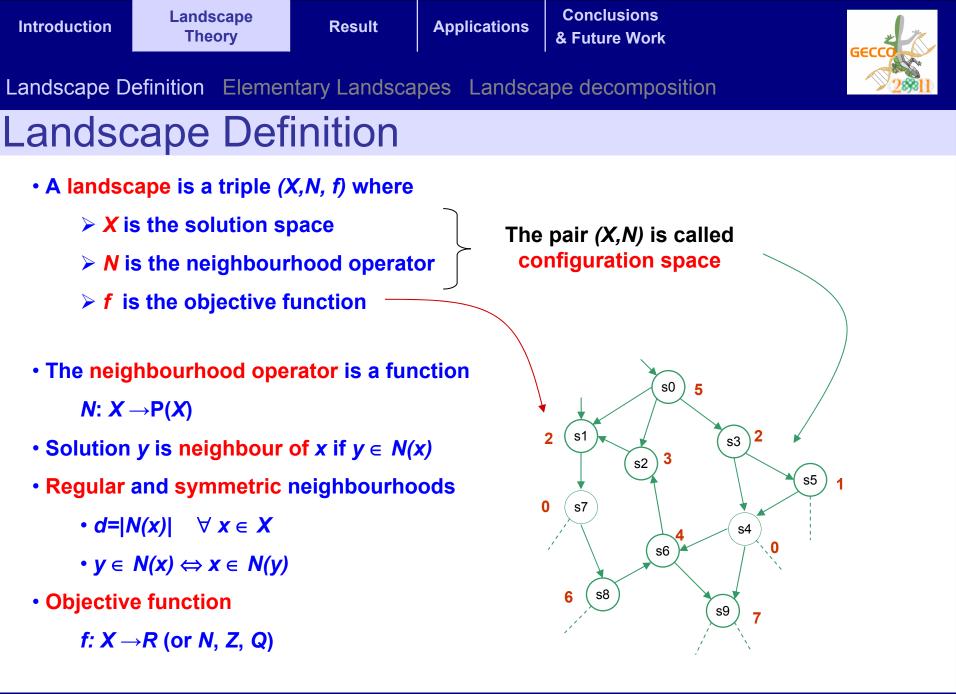


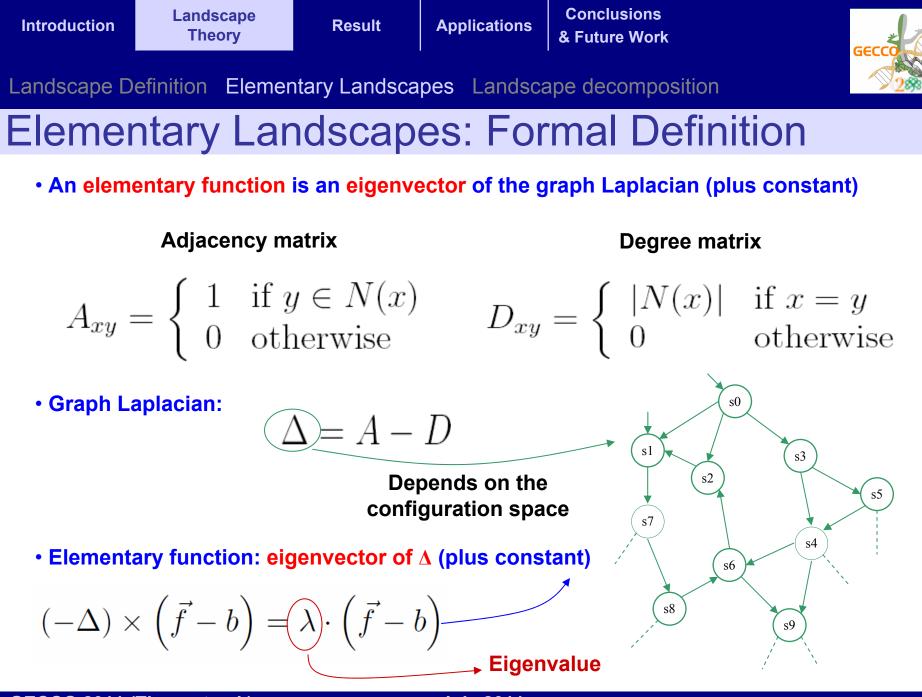
Introduction	Landscape Theory	Result	Applications	Conclusions & Future Work	CECCO C		
Motivation B	it-flip Mutation				2011		
Bit-flip Mutation Operator							
 A different point of view: p is the probability of flipping a bit, H is the Hamming distance 							





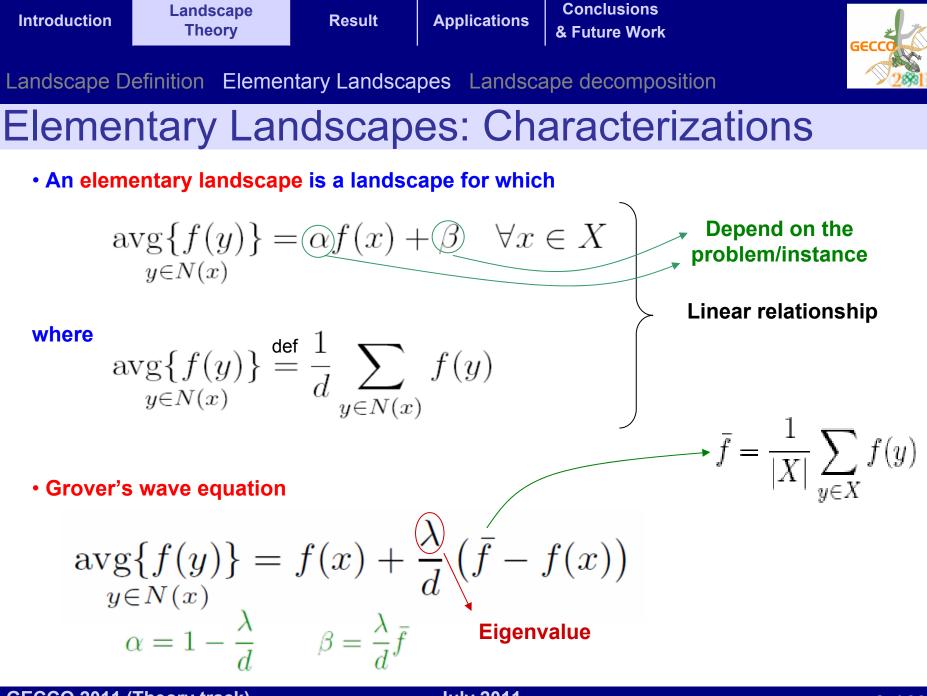
• We compute E[f]_x avoiding the sum using landscape theory



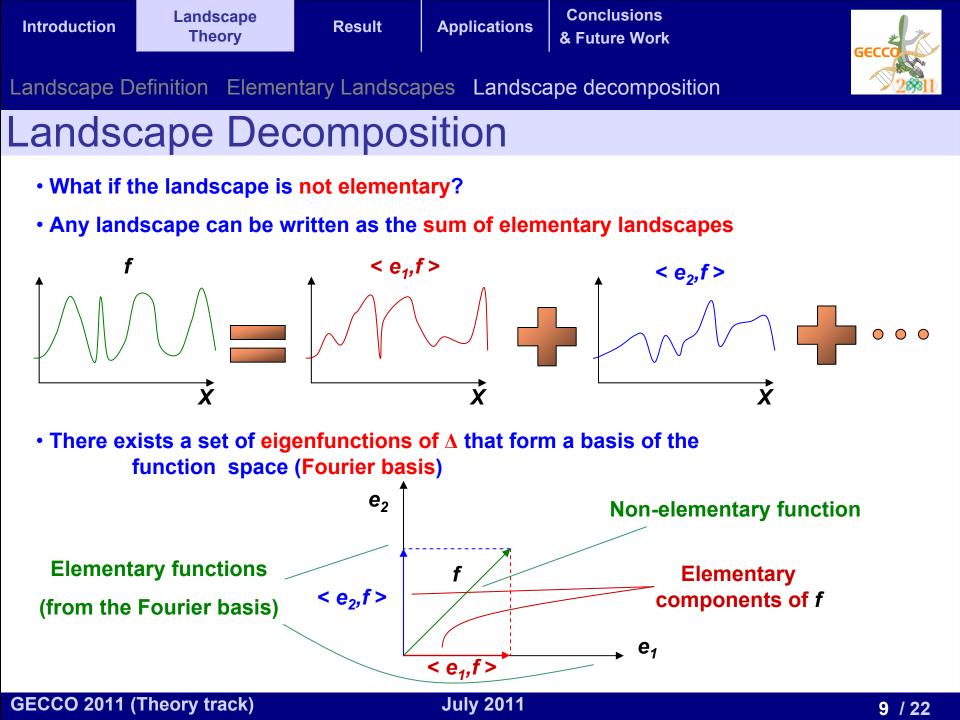


GECCO 2011 (Theory track)

July 2011



GECCO 2011 (Theory track)



um of elementar	Landscapes
ร	

Problem	Neighbourhood	d	Components
Conorol TSD	inversions	<i>n</i> (<i>n</i> -1)/2	2
General TSP	swap two cities	<i>n</i> (<i>n</i> -1)/2	2
Subset Sum Problem	one-change	n	2
MAX k-SAT	one-change	n	k
QAP	swap two elements	<i>n</i> (<i>n</i> -1)/2	3

Problem Neighbourhood		d	k
Symmetric TSP	2-opt	n(n-3)/2	<i>n</i> -1
Symmetric 13P	swap two cities	<i>n</i> (<i>n</i> -1)/2	2(<i>n</i> -1)
Graph α-Coloring recolor 1 vertex		(α-1) <i>n</i>	2α
Max Cut	one-change	n	4
Weight Partition	one-change	n	4

Examples

Introduction

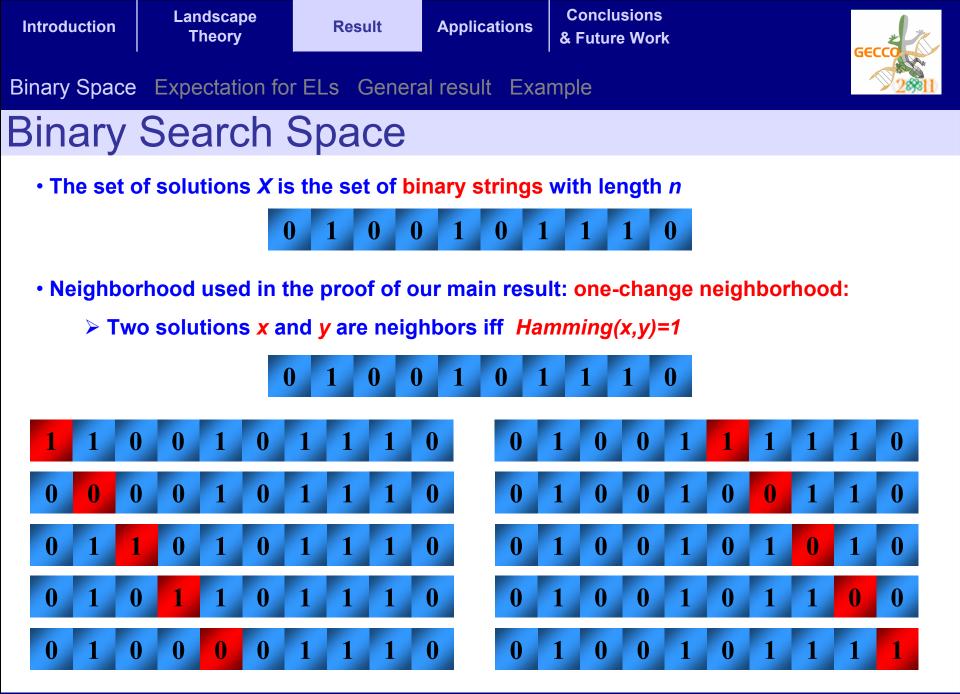
Elementary Landscapes

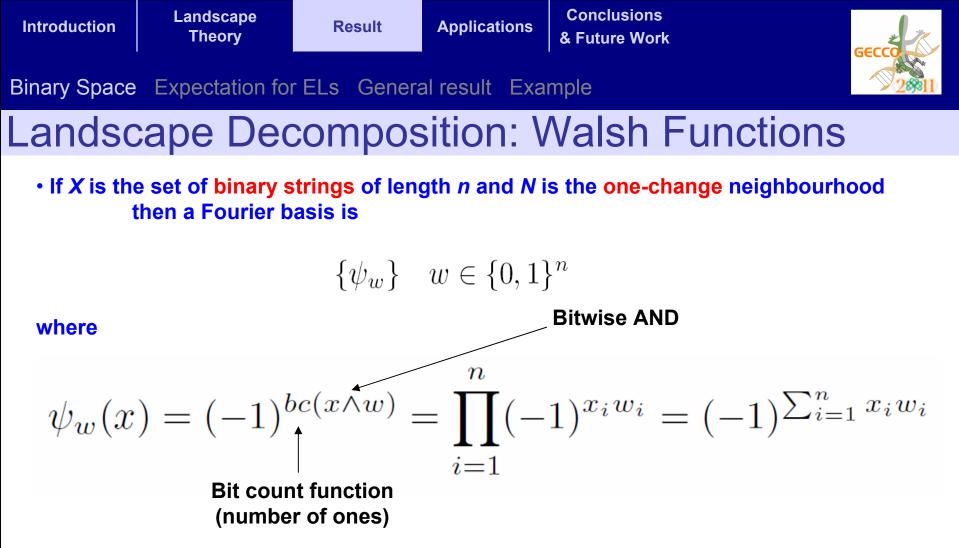
Landscape Definition Elementary Landscapes Landscape decomposition

Landscape

Theory

Conclusions & Future Work





- These functions are known as Walsh Functions
- The function with subindex w is elementary with k=2 j, and j=bc (w) is called order of the Walsh function

Binary Space Expectation for ELs General result Example

Expectation for Elementary Landscapes

• If *f* is elementary, the expected value after the mutation with probability *p* is:

$$\mathbb{E}[f]_x = \bar{f} + (1 - 2p)^j (f(x) - \bar{f})$$

• Sketch of the proof: if g is elementary and $\overline{g} = 0$ Order of the order of the

Order of the function

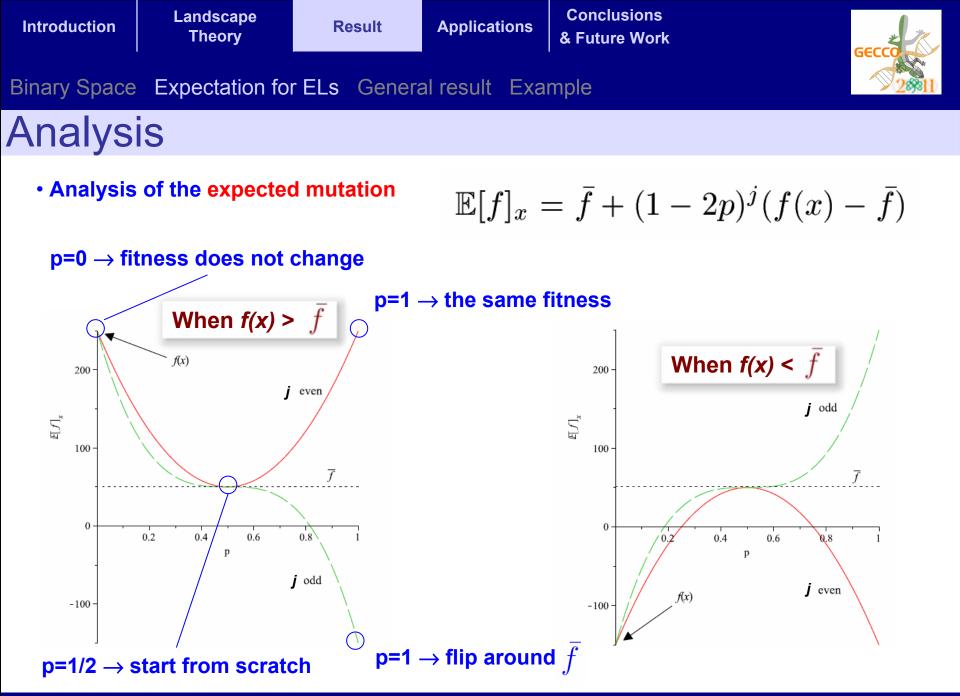
$$\sum g(y'') = \lambda_2 g(x)$$

$$E[g]_x = \sum_{z \in X} Prob(x,z) \cdot g(z)$$

$$= \sum_k p^k (1-p)^{(n-k)} \lambda_k g(x)$$

$$(1-2p)^j$$

GECCO 2011 (Theory track)



GECCO 2011 (Theory track)

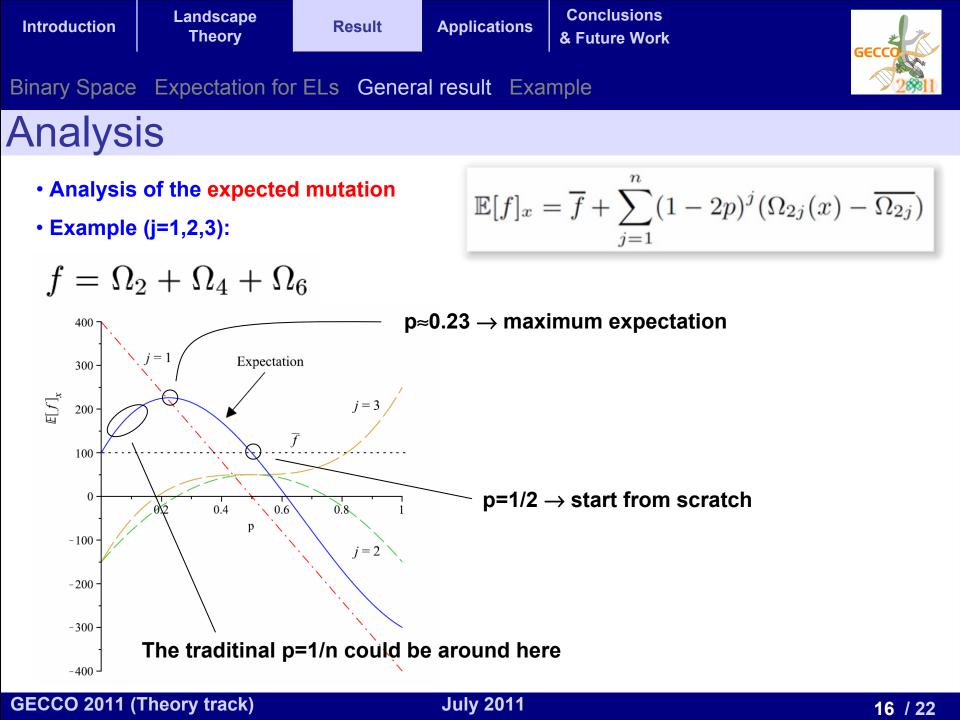
July 2011

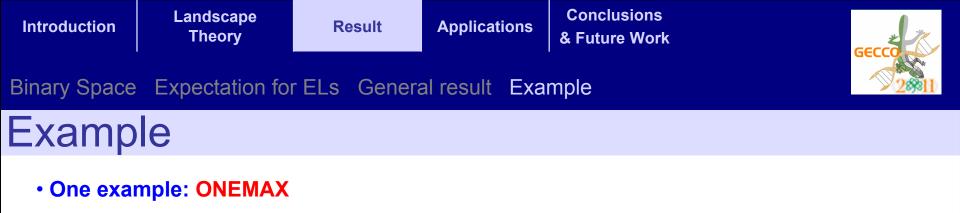
• In the general case *f* is the sum of at most *n* elementary landscapes

$$f = \sum_{j=1}^{n} \Omega_{2j}$$

• And, due to the linearity of the expectation, the expected fitness after the mutation is:

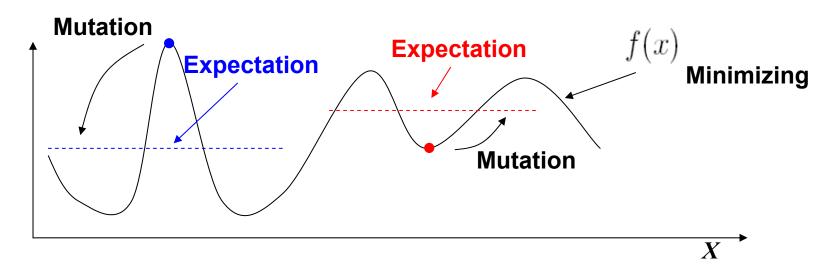
$$\mathbb{E}[f]_x = \overline{f} + \sum_{j=1}^n (1 - 2p)^j (\Omega_{2j}(x) - \overline{\Omega_{2j}})$$
Average value of Ω_{2j} over the whole search space



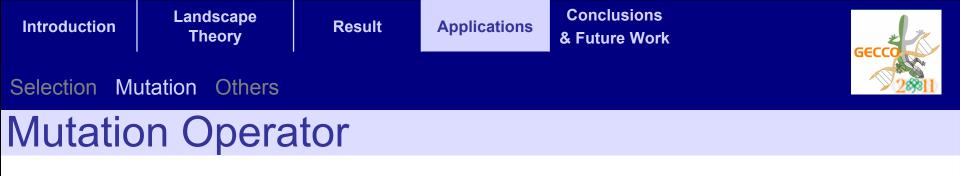


$$\mathbb{E}[onemax]_x = np + (1-2p)\sum_{i=1}^n x_i$$

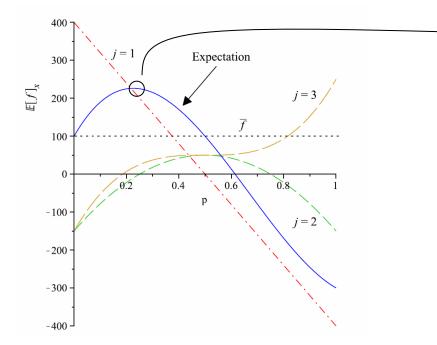
- For p=1/2: E[onemax]_x = n/2
- > For p=0: E[onemax]_x = ones(x)
- For p=1: E[onemax]_x = n ones(x)
- For p=1/n: E[onemax]_x = 1 + (1-2/n) ones(x)



• We can design a selection operator selecting the individuals according to the expected fitness value after the mutation



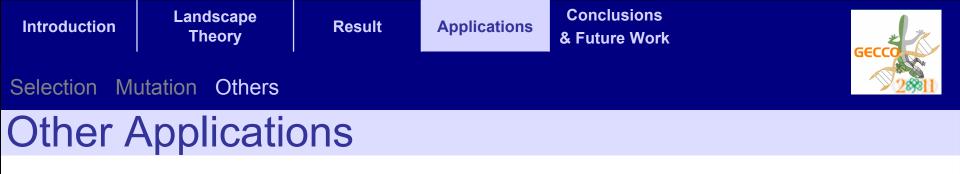
- Mutation operator
- Given one individual x, we can compute the expectation against p



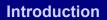
- 1. Take the probability *p* for which the expectation is maximum
- 2. Use this probability to mutate the individual

• If this operator is used the expected improvement is maximum in one step (see the paper by Sutton, Whitley and Howe in the GA track!)

July 2011



- The expected fitness after mutation can be applied in:
 - Genetic Algorithms: traditional bip-flip mutation operator
 - Simulated Annnealing: neighborhood
 - Iterated Local Search: perturbation procedure
 - Variable Neighborhood Search: perturbation operator
 - Runtime analysis: for one iteration of the previous algorithms



Landscape Theory

Result

Applications

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- We give a very simple and efficient formula for the expected fitness after bit-flip mutation
- In elementary landscapes the dependence of the expectation with p is a simple monomial centred in $\frac{1}{2}$
- The result is generalized to any arbitrary function, provided that we have the elementary landscape decomposition.
- Using the expected fitness, new operators can be designed (two examples are outlined)

Future Work

- Expressions not only for the expected value, but for higher-order moments (variance, skewness, kurtosis, etc.)
- Expressions for probability of improvement after a bit-flip mutation
- Design new operators and search methods based on the results of this work
- Connection with runtime analysis

Thanks for your attention !!!

