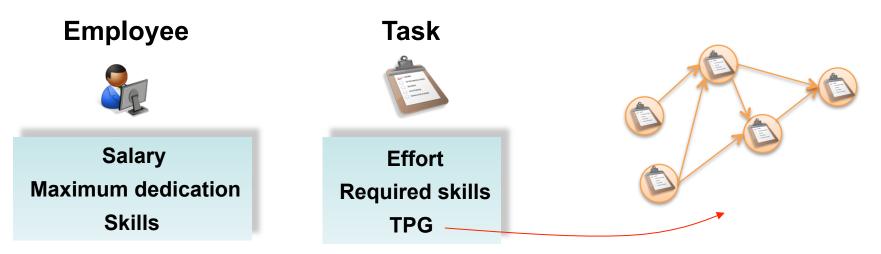


Francisco Luna, David L. González-Álvarez, <u>Francisco Chicano</u>, Miguel A. Vega-Rodríguez

UNIVERSIDAD DE MÁLAGA

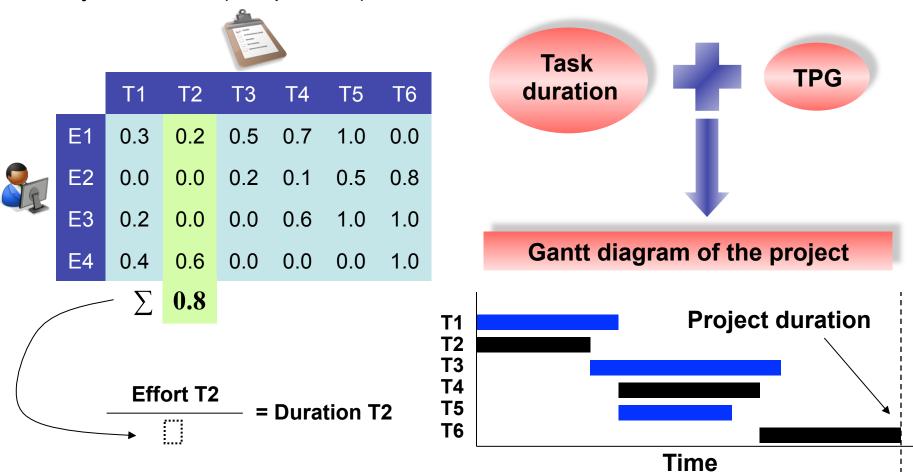

UNIVERSIDAD DE MÁLAGA

Conclusions & Future Work

Introduction

- Current software projects are very complex
- They can involve hundreds of people and tasks
- An efficient way of assigning employees to tasks is required
- An automatic software tool can assist to the software project manager
- Problem: assign employees to tasks with a given dedication degree

• What is the performance of metaheuristics when the problem size increases?


Software Project Scheduling Algorithms

Experiments & Results

Conclusions & Future Work

Problem Formulation: duration

• Project duration (computation)

S

D

	-	
Intr	adu	on
		UH
	044	<u> </u>

Software Project Scheduling

Algorithms

Experiments & Results &

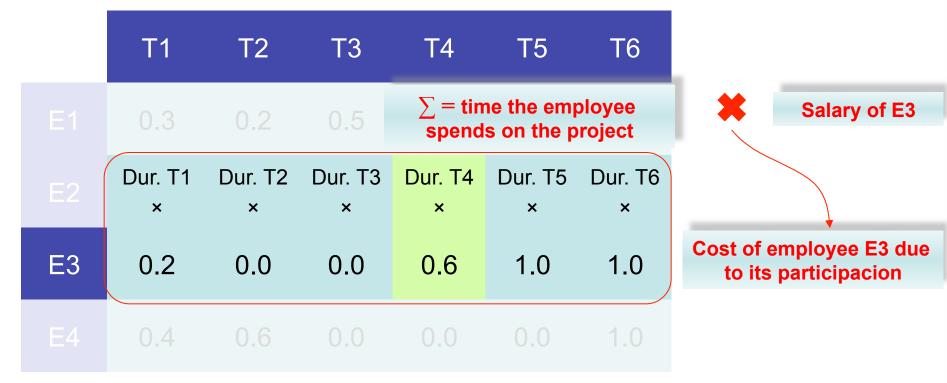
Conclusions & Future Work

Problem Formulation: cost

• Project cost (computation)

	T1	T2	Т3	T4	T5	Т6
	0.3	0.2	0.5	0.7	1.0	0.0
E2	0.0	0.0	0.2	Dur. T4	0.5	0.8
E3	0.2	0.0	0.0	0.6	1.0	1.0
E4	0.4	0.6	0,0	0.0	0.0	1.0
		/				

Time employee E3 spends on task T4


Problem Formulation: cost

Software Project

Scheduling

• Project cost (computation)

Introduction

Experiments & Results Conclusions

& Future Work

ISDA 2011, Córdoba, Spain, November 22-24

Project cost

Software Project

Problem Formulation: cost

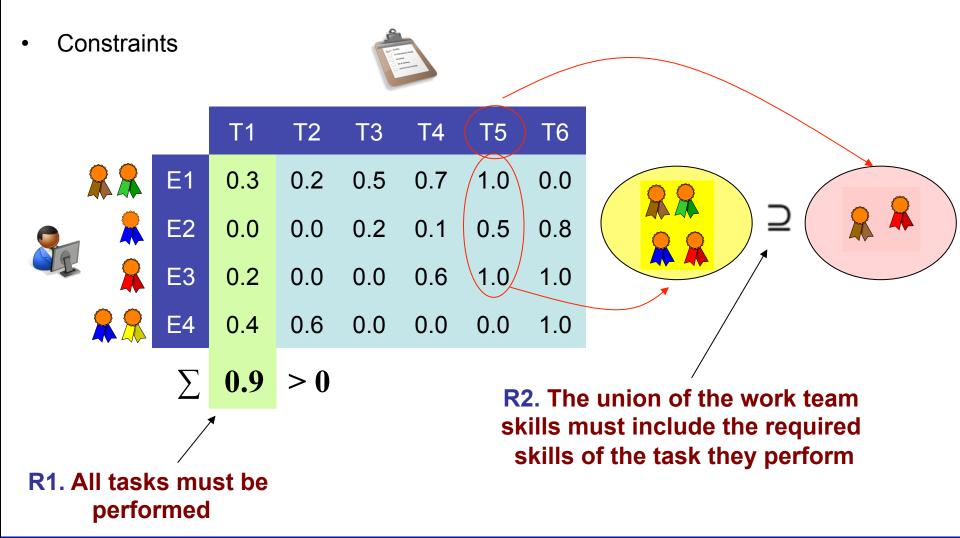
• Project cost (computation)

	T1	T2	T3	T4	T5	T6	
E1	0.3	0.2	0.5	0.7	1.0	0.0	Cost of employee E1 due to its participation
E2	0.0	0.0	0.2	0.1	0.5	0.8	Cost of employee E2 due to its participation
E3	0.2	0.0	0.0	0.6	1.0	1.0	Cost of employee E3 due to its participacion
E4	0.4	0.6	0.0	0.0	0.0	1.0	Cost of employee E4 due to its participacion

Algorithms

Experiments & Results Conclusions & Future Work

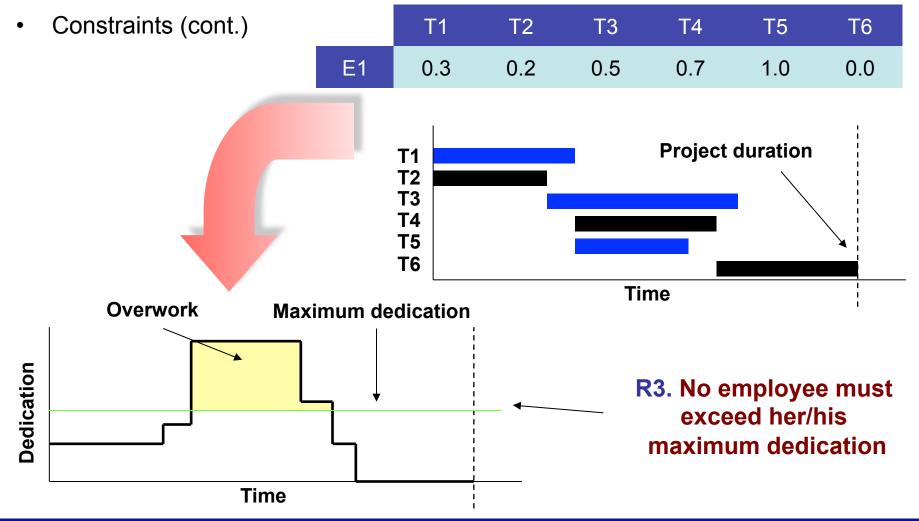
 $\sum =$


Software Project Scheduling

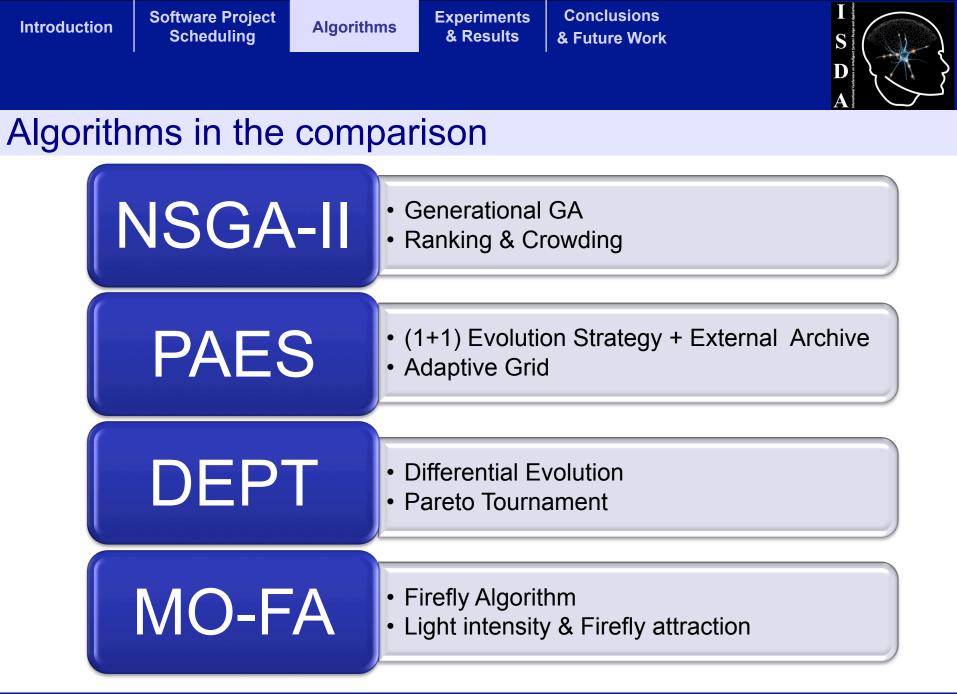
Algorithms

Experiments & Results Conclusions & Future Work

Problem Formulation: constraints



ISDA 2011, Córdoba, Spain, November 22-24



Problem Formulation: constraints

ISDA 2011, Córdoba, Spain, November 22-24

Software Project Scheduling Algorithms

Experiments & Results

Conclusions & Future Work I S D A

Algorithms: NSGA-II

- 1: **proc** Input:(nsga-II) //Algorithm parameters in 'nsga-II'
- 2: P ← **Initialize_Population**() // P = population
- 3: $Q \leftarrow \emptyset$ // Q = auxiliary population
- 4: while not Termination_Condition() do
- 5: for $i \leftarrow 1$ to (nsga-II.popSize / 2) do
- 6: $parents \leftarrow Selection(P)$
- 7: offspring←**Recombination**(nsga-II.Pc,parents)
- 8: offspring←**Mutation**(nsga-II.Pm,offspring)
- 9: **Evaluate_Fitness**(offspring)
- 10: **Insert**(offspring,Q)
- 11: **end for**
- 12: $\mathbf{R} \leftarrow \mathbf{P} \cup \mathbf{Q}$
- 13: **Ranking_And_Crowding**(nsga-II, R)
- 14: $P \leftarrow Select_Best_Individuals(nsga-II, R)$
- 15: end while
- 16: **end_proc**

Algorithms: PAES

- 1: **proc** Input:(paes) //Algorithm parameters in 'paes'
- 2: archive $\leftarrow \emptyset$
- 3: currentSolution \leftarrow Create_Solution(paes) // Creates an initial solution
- 4: while not Termination_Condition() do
- 5: mutatedSolution (currentSolution)
- 6: **Evaluate_Fitness**(mutatedSolution)
- 7: **if IsDominated**(currentSolution, mutatedSolution) **then**
- 8: currentSolution \leftarrow mutatedSolution
- 9: else
- 10: **if Solutions_Are_Nondominated**(currentSolution, mutatedSolution) **then**
- 11: **Insert**(archive, mutatedSolution)
- 12: currentSolution \leftarrow Select(paes, archive)
- 13: **end if**
- 14: **end if**
- 15: end while
- 16: **end_proc**

Software Project Scheduling Algorithms

Experiments Conc & Results & Futu

Conclusions & Future Work

Algorithms: DEPT

1: **proc** Input:(dept) //Algorithm parameters in 'dept' 2: $P \leftarrow Initialize_Population()$ 3: while not Termination_Condition() do 4: for $i \leftarrow 1$ to dept.popSize do 5: Randomly select three different indices i_1 , i_2 and i_3 6: $v = P[i_1] + \lambda \cdot (Best - P[i]) + F \cdot (P[i_2] - P[i_3]) / Trial vector$ 7: $u = \operatorname{Recombine}(v, P[i])$ 8: Evaluate(u)9: P[i] = Replacement(u, P[i]) / / Taking into account Pareto dominance10: end for 11: end while 12: end_proc

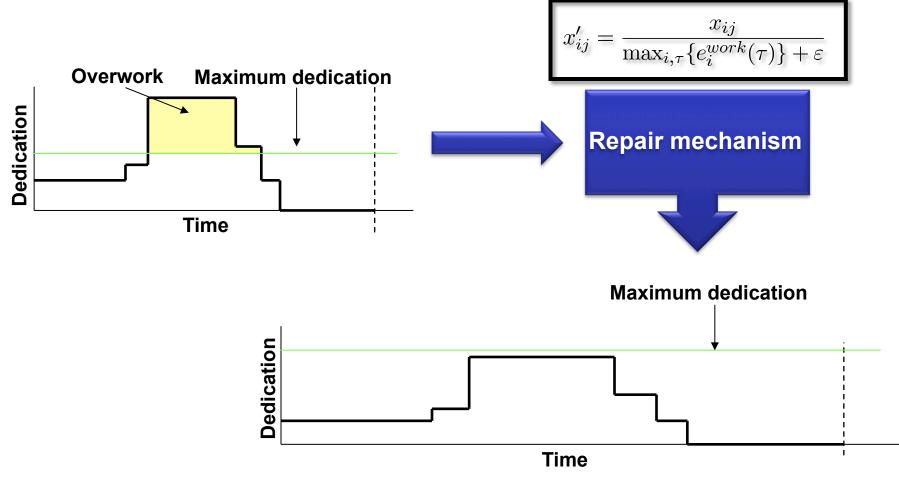
MOF(i) = IsDominated(i) * PS + Dominates(i)

Software Project Scheduling Algorithms

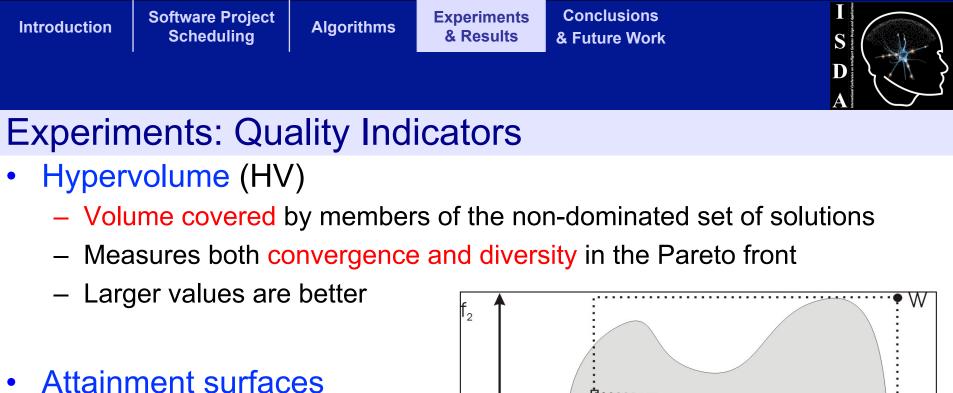
Experiments C & Results &

Conclusions & Future Work

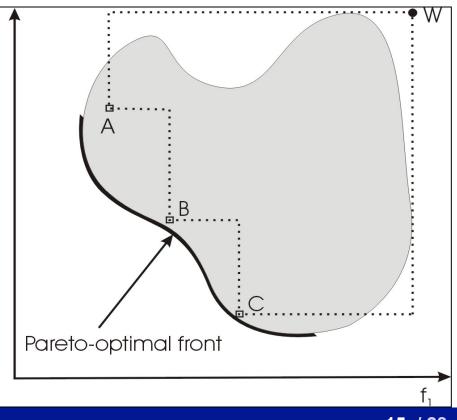
Algorithms: MO-FA

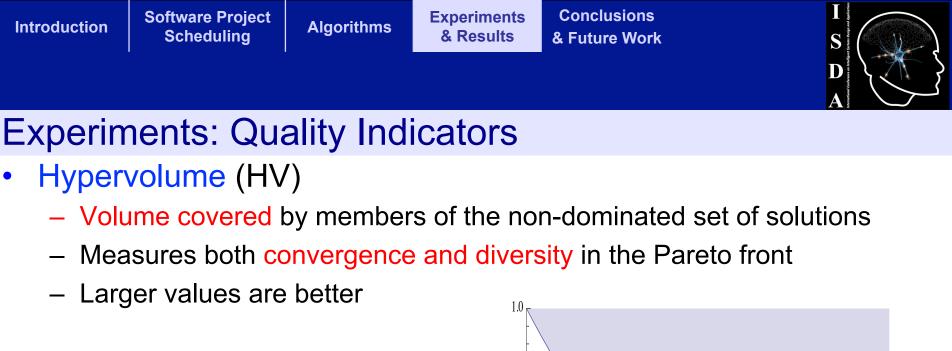

Objective function $f(\mathbf{x})$, $\mathbf{x} = (x_1, ..., x_d)^T$ Generate initial population of fireflies \mathbf{x}_i (i = 1, 2, ..., n)Light intensity I_i at \mathbf{x}_i is determined by $f(\mathbf{x}_i)$ Define light absorption coefficient γ while (t < MaxGeneration)for i = 1 : n all n fireflies for j = 1 : i all n fireflies if $(I_j > I_i)$, Move firefly i towards j in d-dimension; end if Attractiveness varies with distance r via $\exp[-\gamma r]$ Evaluate new solutions and update light intensity end for jend for iRank the fireflies and find the current best end while Postprocess results and visualization

$$\mathbf{x}_i = \mathbf{x}_i + \beta_0 e^{-\gamma r_{ij}^2} (\mathbf{x}_j - \mathbf{x}_i) + \alpha \; (\text{rand} - \frac{1}{2})$$

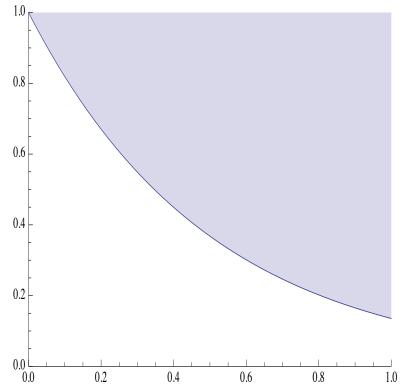

Algorithms: repair mechanism

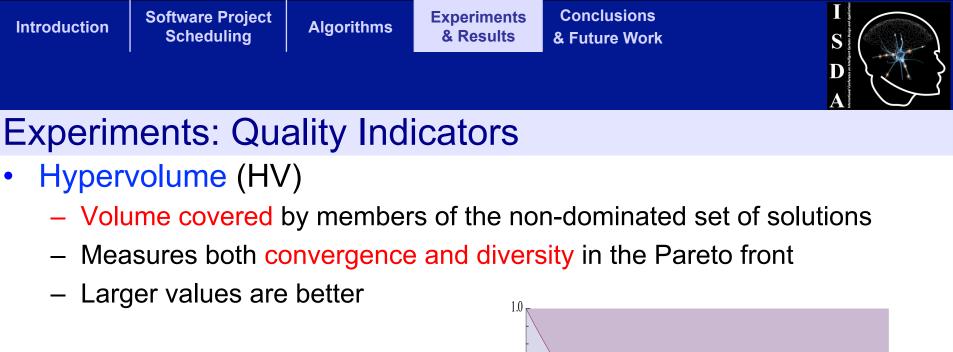
• For constraint R3

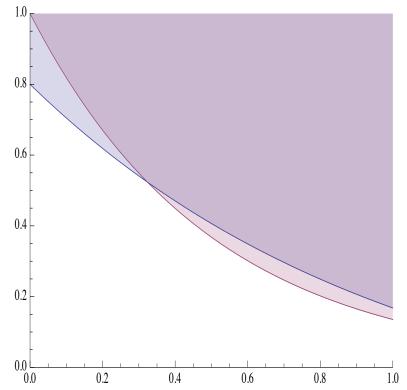


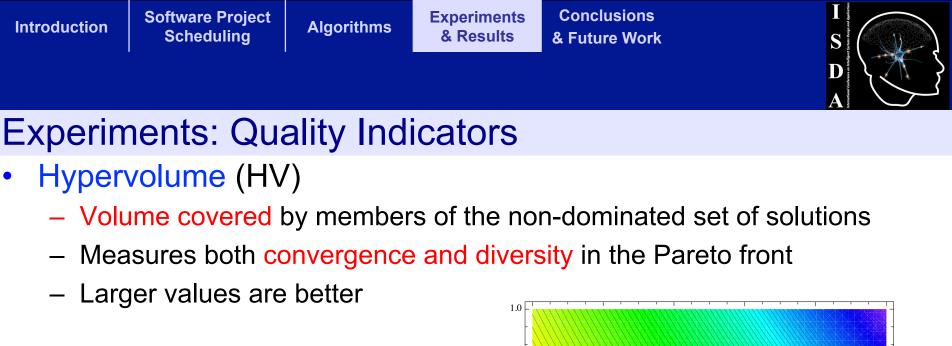

S

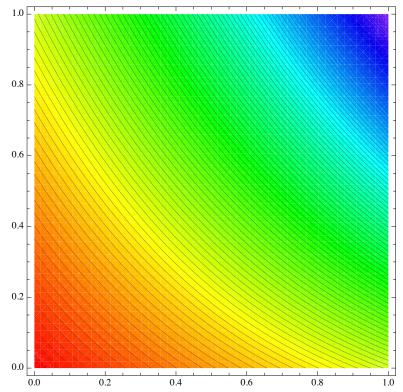
D

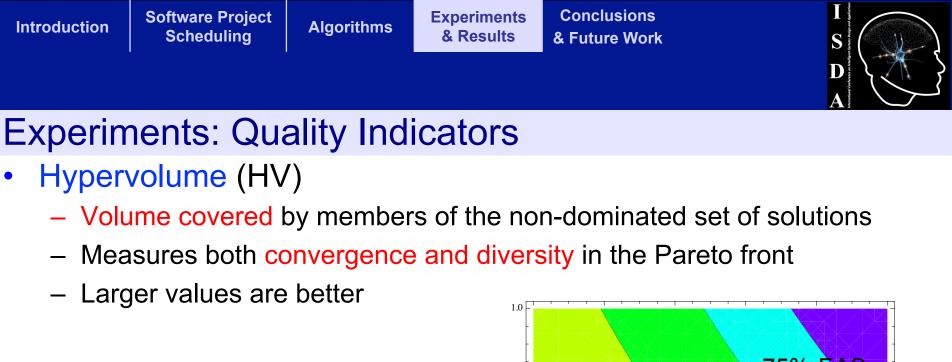


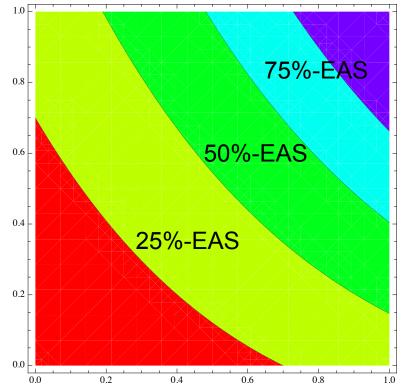

- Localization statistics for fronts
- The same as the median and the interquartile range in the mono-objective case




- Attainment surfaces
 - Localization statistics for fronts
 - The same as the median and the interquartile range in the mono-objective case




- Attainment surfaces
 - Localization statistics for fronts
 - The same as the median and the interquartile range in the mono-objective case



- Attainment surfaces
 - Localization statistics for fronts
 - The same as the median and the interquartile range in the mono-objective case

- Attainment surfaces
 - Localization statistics for fronts
 - The same as the median and the interquartile range in the mono-objective case

Software Project Scheduling Algorithms

Experiments Conclusions & Results & Future Work

Experiments: Instances and Parameters

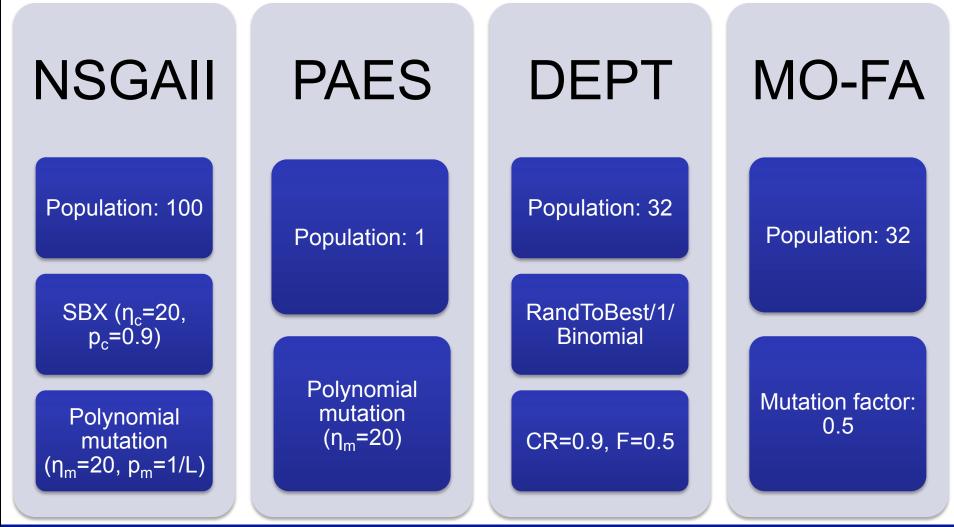
Problem instances

- <u>36 instances</u> of increasing number of tasks (16-512) and employees (8-256)
- Labeled as i<tasks>-<employees>

Global Parameters

- Stopping condition: 100 000 function evaluations
- Approximated Pareto front size: 100 solutions
- 100 independent runs for each algorithm-instance
- Statistical tests for significance differences
- Representation: vector of real numbers

Software Project Scheduling


Algorithms

Experiments C & Results &

Conclusions & Future Work

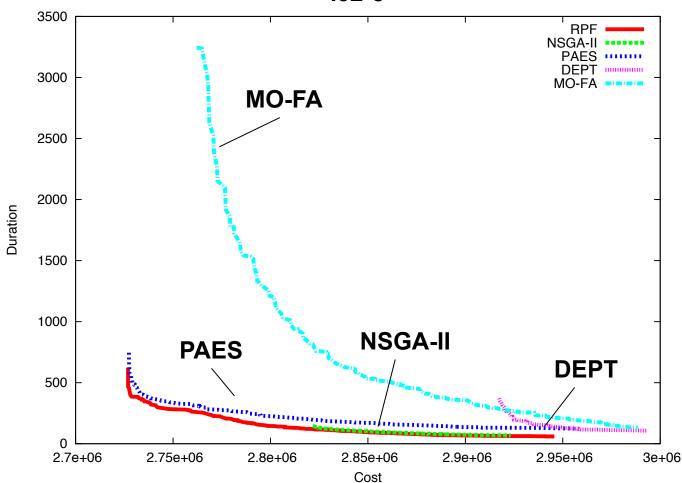
Experiments: Algorithm-Specific Parameters

ISDA 2011, Córdoba, Spain, November 22-24

Software Project Scheduling Algorithms

Experiments & Results

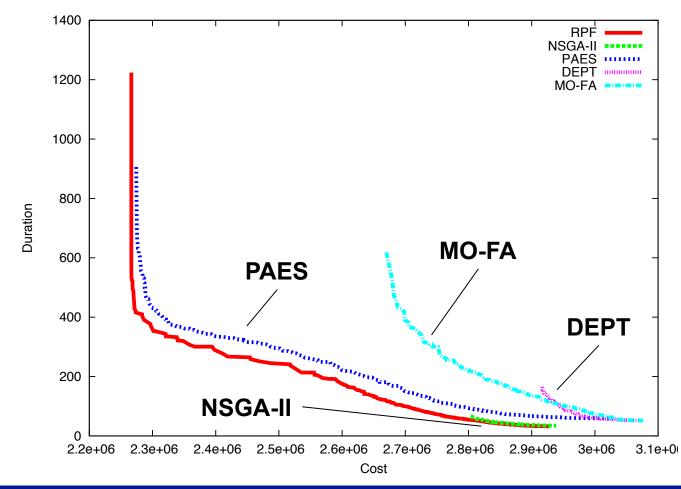
Conclusions & Future Work


Results: Hypervolume Comparison

Hypervolume (HV)

- PAES is the clear winner in HV
- MO-FA is the second best for small instances
- NSGA-II is the second best for large instances
- DEPT is the worst algorithm in the comparison

	NSGA-II	PAES	DEPT	MO-FA
i16-8	$0.661_{\pm 0.028}$	$0.732_{\pm 0.019}$	$0.311_{\pm 0.020}$	$0.540_{\pm 0.022}$
i16-16	0.468 ± 0.026	0.826 ± 0.013	0.327 ± 0.038	0.608 ± 0.031
i16-32	0.147 ± 0.016	0.809 ± 0.009	0.226 ± 0.037	0.379 ± 0.088
i16-64	0.129 ± 0.017	0.858 ± 0.010	$0.287_{\pm 0.034}$	$0.370_{\pm 0.092}$
i16-128	0.048 ± 0.013	$0.722_{\pm 0.012}$	$0.122_{\pm 0.028}$	0.139 ± 0.075
i16-256	0.018 ± 0.008	0.682 ± 0.010	0.078 ± 0.029	0.069 ± 0.029
i32-8	0.538 ± 0.029	$0.721_{\pm 0.017}$	$0.107_{\pm 0.024}$	0.209 ± 0.029
i32-16	0.190 ± 0.026	$0.820_{\pm 0.012}$	0.035 ± 0.017	$0.341_{\pm 0.045}$
i32-32	$0.121_{\pm 0.014}$	0.743 ± 0.009	0.109 ± 0.018	0.284 ± 0.042
i32-64	0.049 ± 0.010	0.795 ± 0.025	$0.042_{\pm 0.018}$	0.263 ± 0.083
i32-128	0.041 ± 0.007	$0.726_{\pm 0.012}$	$0.080_{\pm 0.015}$	$0.061_{\pm 0.011}$
i32-256	0.009 ± 0.007	$0.617_{\pm 0.016}$	$0.011_{\pm 0.011}$	$0.000_{\pm 0.000}$
i64-8	0.463 ± 0.031	$0.813_{\pm 0.014}$	$0.089_{\pm 0.014}$	$0.140_{\pm 0.020}$
i64-16	0.221 ± 0.022	$0.959_{\pm 0.011}$	0.026 ± 0.007	$0.347_{\pm 0.031}$
i64-32	0.063 ± 0.011	0.798 ± 0.008	$0.001_{\pm 0.002}$	$0.321_{\pm 0.031}$
i64-64	$0.073_{\pm 0.012}$	$0.870_{\pm 0.006}$	$0.004_{\pm 0.005}$	0.032 ± 0.023
i64-128	$0.027_{\pm 0.007}$	0.738 ± 0.008	0.006 ± 0.005	0.002 ± 0.004
i64-256	0.000 ± 0.000	0.618 ± 0.013	0.000 ± 0.000	0.000 ± 0.000
i128-8	$0.320_{\pm 0.019}$	0.986 ± 0.006	$0.003_{\pm 0.006}$	0.076 ± 0.031
i128-16	0.253 ± 0.023	0.988 ± 0.013	0.000 ± 0.000	0.000 ± 0.001
i128-32	$0.213_{\pm 0.016}$	$0.980_{\pm 0.010}$	$0.000_{\pm 0.000}$	0.000 ± 0.000
i128-64	0.095 ± 0.008	$0.920_{\pm 0.021}$	$0.000_{\pm 0.000}$	0.044 ± 0.023
i128-128	0.029 ± 0.008	0.782 ± 0.009	$0.000_{\pm 0.000}$	0.000 ± 0.000
i128-256	0.008 ± 0.005	0.514 ± 0.017	$0.000_{\pm 0.000}$	0.000 ± 0.000
i256-8	0.309 ± 0.015	$0.998_{\pm 0.002}$	$0.000_{\pm 0.000}$	$0.010_{\pm 0.019}$
i256-16	0.156 ± 0.012	$0.987_{\pm 0.007}$	$0.000_{\pm 0.001}$	$0.281_{\pm 0.018}$
i256-32	0.089 ± 0.009	$0.927_{\pm 0.012}$	$0.000_{\pm 0.000}$	$0.009_{\pm 0.012}$
i256-64	0.028 ± 0.005	$0.739_{\pm 0.022}$	$0.000_{\pm 0.000}$	$0.002_{\pm 0.004}$
i256-128	$0.019_{\pm 0.005}$	0.752 ± 0.010	$0.000_{\pm 0.000}$	0.000 ± 0.000
i256-256	0.003 ± 0.003	0.626 ± 0.016	0.000 ± 0.000	$0.000_{\pm 0.000}$
i512-8	$0.235_{\pm 0.016}$	$0.995_{\pm 0.002}$	$0.000_{\pm 0.000}$	$0.029_{\pm 0.025}$
i512-16	0.103 ± 0.007	0.960 ± 0.011	0.000 ± 0.000	0.025 ± 0.024
i512-32	0.029 ± 0.008	0.961 ± 0.010	0.000 ± 0.000	0.000 ± 0.000
i512-64	0.018 ± 0.007	$0.820_{\pm 0.014}$	0.000 ± 0.000	0.000 ± 0.000
i512-128	0.198 ± 0.004	$0.820_{\pm 0.010}$	$0.102_{\pm 0.003}$	0.105 ± 0.006
i512-256	$0.008 _{\pm 0.005}$	0.560 ± 0.031	$0.000_{\pm 0.000}$	0.000 ± 0.000



ISDA 2011, Córdoba, Spain, November 22-24

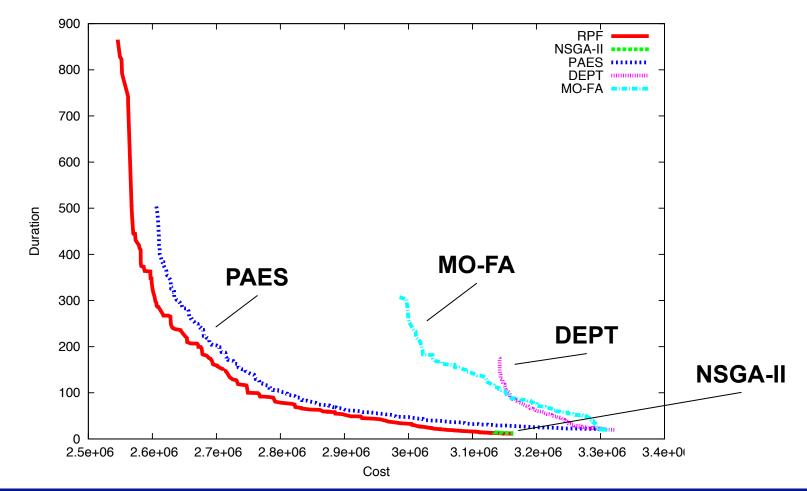
Introduction Software Project Scheduling Algorithms Experiments Conclusions & Results & Future Work S D

Results: 50%-Empirical Attainment Surfaces (EAS)

i32-16

Introduction Software Project Scheduling Algorithms Experiments Conclusions & Results Conclusions & Future Work S A

Results: 50%-Empirical Attainment Surfaces (EAS)


800 RPF NSGA-II PAES 700 DEPT MO-FA 600 11111 III II MARTIN SAINS SAI 500 Duration **MO-FA** 400 PAES 300 DEPT 200 **NSGA-II** 100 0 2.6e+06 2.7e+06 2.8e+06 2.9e+06 3e+06 3.1e+06 3.2e+06 3.3e+06 3.4e+0 Cost

i32-32

IntroductionSoftware Project
SchedulingAlgorithmsExperiments
& ResultsConclusions
& Future WorkI
S
BIntroductionSSS

Results: 50%-Empirical Attainment Surfaces (EAS)

i32-64

ISDA 2011, Córdoba, Spain, November 22-24

Conclusions & Future Work

Scheduling

Conclusions

- PAES is the algorithm with better scalability behaviour
- MO-FA is the second best in small instances •
- NSGA-II is the second best in large instances •
- DEPT is the worst algorithm in the comparison
- HV not always provides enough information to determine the • best algorithm. EAS is a good alternative.

Future Work

- Use real-world instances of the problem
- Change the formulation of the problem to get closer to reality

Software Project Algorithms **Experiments** & Results

Conclusions & Future Work

Introduction

On the Scalability of Multi-objective Metaheuristics for the Software Scheduling Problem

I S D A

Thanks for your attention !!!

M*: Multidisciplinar Multiobjective Metaheuristics TIN2008-06491-C04-01 Ministerio de Ciencia e Innovación (Spain) UMA - University of Malaga