
1  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

On the Scalability of Multi-objective Metaheuristics 
for the Software Scheduling Problem 

Francisco Luna, David L. González-Álvarez,  
Francisco Chicano, Miguel A. Vega-Rodríguez 



2  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Introduction 

•  Current software projects are very complex 
•  They can involve hundreds of people and tasks 
•  An efficient way of assigning employees to tasks is required 
•  An automatic software tool can assist to the software project manager 
•  Problem: assign employees to tasks with a given dedication degree 

•  What is the performance of metaheuristics when the problem size increases? 

Employee Task 

 Salary 
 Maximum dedication 

Skills 

 Effort 
 Required skills 

TPG 



3  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

E2 0.0 0.0 0.2 0.1 0.5 0.8 

E3 0.2 0.0 0.0 0.6 1.0 1.0 

E4 0.4 0.6 0.0 0.0 0.0 1.0 

T1 
T2 
T3 
T4 
T5 
T6 

Time 

Project duration 
∑   0.8 

Effort T2 
= Duration T2 

•  Project duration (computation) 

Gantt diagram of the project 

Task 
duration TPG 

Problem Formulation: duration 



4  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

1.0 

1.0 

0.8 

0.0 

T6 

0.0 

1.0 

0.5 

1.0 

T5 

0.0 0.0 0.6 0.4 E4 

0.6 0.0 0.0 0.2 E3 

0.1 0.2 0.0 0.0 E2 

0.7 0.5 0.2 0.3 E1 

T4 T3 T2 T1 

•  Project cost (computation) 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

E2 0.0 0.0 0.2 0.1 0.5 0.8 

E3 0.2 0.0 0.0 0.6 1.0 1.0 

E4 0.4 0.6 0.0 0.0 0.0 1.0 

Dur. 
T4 

× 

 

Time employee E3 spends on task T4 

Problem Formulation: cost 



5  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

1.0 

1.0 

0.8 

0.0 

T6 

0.0 

1.0 

0.5 

1.0 

T5 

0.0 0.0 0.6 0.4 E4 

0.6 0.0 0.0 0.2 E3 

0.1 0.2 0.0 0.0 E2 

0.7 0.5 0.2 0.3 E1 

T4 T3 T2 T1 

•  Project cost (computation) 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

E2 0.0 0.0 0.2 0.1 0.5 0.8 

E3 0.2 0.0 0.0 0.6 1.0 1.0 

E4 0.4 0.6 0.0 0.0 0.0 1.0 

Dur. 
T4 

× 

 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

E2 Dur. T1 
× 

Dur. T2 
× 

Dur. T3 
× 

Dur. T4 
× 

Dur. T5 
× 

Dur. T6 
× 

E3 0.2 0.0 0.0 0.6 1.0 1.0 

E4 0.4 0.6 0.0 0.0 0.0 1.0 

∑ = time the employee 
spends on the project 

Salary of E3 

Cost of employee E3 due 
to its participacion 

Problem Formulation: cost 



6  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

1.0 

1.0 

0.8 

0.0 

T6 

0.0 

1.0 

0.5 

1.0 

T5 

0.0 0.0 0.6 0.4 E4 

0.6 0.0 0.0 0.2 E3 

0.1 0.2 0.0 0.0 E2 

0.7 0.5 0.2 0.3 E1 

T4 T3 T2 T1 

•  Project cost (computation) 

Cost of employee E3 due 
to its participacion 

Cost of employee E2 due 
to its participation 

Cost of employee E4 due 
to its participacion 

Cost of employee E1 due 
to its participation 

Project cost ∑ = 

Problem Formulation: cost 



7  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

E2 0.0 0.0 0.2 0.1 0.5 0.8 

E3 0.2 0.0 0.0 0.6 1.0 1.0 

E4 0.4 0.6 0.0 0.0 0.0 1.0 

∑   0.9   > 0 

R1. All tasks must be 
performed 

R2. The union of the work team 
skills must include the required 
skills of the task they perform 

•  Constraints 

Problem Formulation: constraints 7/19

Vienna, Austria, August 22-26, 2005

6th Metaheuristics International Conference 2005

Project Scheduling Problem

T1 T2 T3 T4 T5 T6
E1 0.3 0.2 0.5 0.7 1.0 0.0
E2 0.0 0.0 0.2 0.1 0.5 0.8
E3 0.2 0.0 0.0 0.6 1.0 1.0
E4 0.4 0.6 0.0 0.0 0.0 1.0

• Constraints

�
 

0.9 > 0

1. All
 

tasks
 

must
 

be 
performed

 
by somebody

�

2. The union of the employees 
skills must include the required 
skills of the task they perform

Introduction

PSP

Fitness Funct.

Representation

Experiments

Conclusions & 
Future Work

7/19

Vienna, Austria, August 22-26, 2005

6th Metaheuristics International Conference 2005

Project Scheduling Problem

T1 T2 T3 T4 T5 T6
E1 0.3 0.2 0.5 0.7 1.0 0.0
E2 0.0 0.0 0.2 0.1 0.5 0.8
E3 0.2 0.0 0.0 0.6 1.0 1.0
E4 0.4 0.6 0.0 0.0 0.0 1.0

• Constraints

�
 

0.9 > 0

1. All
 

tasks
 

must
 

be 
performed

 
by somebody

�

2. The union of the employees 
skills must include the required 
skills of the task they perform

Introduction

PSP

Fitness Funct.

Representation

Experiments

Conclusions & 
Future Work

7/19

Vienna, Austria, August 22-26, 2005

6th Metaheuristics International Conference 2005

Project Scheduling Problem

T1 T2 T3 T4 T5 T6
E1 0.3 0.2 0.5 0.7 1.0 0.0
E2 0.0 0.0 0.2 0.1 0.5 0.8
E3 0.2 0.0 0.0 0.6 1.0 1.0
E4 0.4 0.6 0.0 0.0 0.0 1.0

• Constraints

�
 

0.9 > 0

1. All
 

tasks
 

must
 

be 
performed

 
by somebody

�

2. The union of the employees 
skills must include the required 
skills of the task they perform

Introduction

PSP

Fitness Funct.

Representation

Experiments

Conclusions & 
Future Work

7/19

Vienna, Austria, August 22-26, 2005

6th Metaheuristics International Conference 2005

Project Scheduling Problem

T1 T2 T3 T4 T5 T6
E1 0.3 0.2 0.5 0.7 1.0 0.0
E2 0.0 0.0 0.2 0.1 0.5 0.8
E3 0.2 0.0 0.0 0.6 1.0 1.0
E4 0.4 0.6 0.0 0.0 0.0 1.0

• Constraints

�
 

0.9 > 0

1. All
 

tasks
 

must
 

be 
performed

 
by somebody

�

2. The union of the employees 
skills must include the required 
skills of the task they perform

Introduction

PSP

Fitness Funct.

Representation

Experiments

Conclusions & 
Future Work

7/19

Vienna, Austria, August 22-26, 2005

6th Metaheuristics International Conference 2005

Project Scheduling Problem

T1 T2 T3 T4 T5 T6
E1 0.3 0.2 0.5 0.7 1.0 0.0
E2 0.0 0.0 0.2 0.1 0.5 0.8
E3 0.2 0.0 0.0 0.6 1.0 1.0
E4 0.4 0.6 0.0 0.0 0.0 1.0

• Constraints

�
 

0.9 > 0

1. All
 

tasks
 

must
 

be 
performed

 
by somebody

�

2. The union of the employees 
skills must include the required 
skills of the task they perform

Introduction

PSP

Fitness Funct.

Representation

Experiments

Conclusions & 
Future Work



8  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

T1 T2 T3 T4 T5 T6 

E1 0.3 0.2 0.5 0.7 1.0 0.0 

T1 
T2 
T3 
T4 
T5 
T6 

Time 

Project duration 

R3. No employee must 
exceed her/his 

maximum dedication 

Time 

D
ed

ic
at

io
n 

Maximum dedication Overwork 

•  Constraints (cont.) 

Problem Formulation: constraints 



9  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Generational GA 
•  Ranking & Crowding NSGA-II 

•  Differential Evolution 
•  Pareto Tournament 

PAES •  (1+1) Evolution Strategy + External  Archive 
•  Adaptive Grid 

DEPT 
•  Firefly Algorithm 
•  Light intensity & Firefly attraction MO-FA 

Algorithms in the comparison 



10  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Algorithms: NSGA-II 

is presented in Algorithm 1. NSGA-II makes use of a population (P) of candidate solutions (known
as individuals). In each generation, it works by creating new individuals after applying the genetic
operators to P, in order to create a new population Q (lines 5 to 8). Then, both the current (P) and
the new population (Q) are joined; the resulting population, , is ordered according to a ranking
procedure and a density estimator known as crowding distance (line 13) (for further details, please
see [19]). Finally, the population is updated with the best individuals in (line 14). These steps
are repeated until the termination condition is fulfilled.

Algorithm 1 Pseudocode of NSGA-II.
1: proc Input:(nsga-II) //Algorithm parameters in ‘nsga-II’
2: P Initialize Population() // P = population
3: Q // Q = auxiliary population
4: while not Termination Condition() do
5: for i to (nsga-II.popSize / 2) do
6: parents Selection(P)
7: offspring Recombination(nsga-II.Pc,parents)
8: offspring Mutation(nsga-II.Pm,offspring)
9: Evaluate Fitness(offspring)
10: Insert(offspring,Q)
11: end for
12: R P Q
13: Ranking And Crowding(nsga-II, R)
14: P Select Best Individuals(nsga-II, R)
15: end while
16: end proc

MOCell (Multi-Objective Cellular Genetic Algorithm), introduced by Nebro et al. [20], is a
cellular genetic algorithm (cGA) which outperforms NSGA-II in some studies [20, 21]. In cGAs,
the concept of (small) neighbourhood is paramount. This means that an individual may only
cooperate with its nearby neighbours in the breeding loop. Overlapped small neighbourhoods of
cGAs help in exploring the search space because they induce a slow diffusion of solutions through
the population, providing a kind of exploration (diversification). Exploitation (intensification) takes
place inside each neighbourhood by applying the typical genetic operations (crossover, mutation,
and replacement).
MOCell includes an external archive to store the non-dominated solutions found as the algorithm

progresses. This archive is limited in size and uses the crowding distance of NSGA-II to maintain
diversity. The pseudocode of MOCell is presented in Algorithm 2, which corresponds with the
version called aMOCell4, described in [21].

Algorithm 2 Pseudocode of MOCell.
1: proc Input:(MOCell) //Algorithm parameters in ‘MOCell’
2: archive //Creates an empty archive
3: while not Termination Condition() do
4: for individual toMOCell.popSize do
5: n list Get neighbourhood(MOCell,position(individual))
6: parent1 Selection(n list)
7: parent2 Selection(archive)
8: offspring Recombination(MOCell.Pc,parent1, parent2)
9: offspring Mutation(MOCell.Pm,offspring)
10: Evaluate Fitness(offspring)
11: Replacement(position(individual),offspring,MOCell)
12: Insert Pareto Front(offspring, archive)
13: end for
14: end while
15: end proc

We can observe that, in this version, for each individual we select one parent from its
neighbourhood and one from the archive, in order to guide the search towards the best solutions
found (lines 5 to 8). Then a new solution is created by applying the genetic operators to these



11  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Algorithms: PAES 
Algorithm 4 Pseudocode of PAES.
1: proc Input:(paes) //Algorithm parameters in ‘paes’
2: archive
3: currentSolution Create Solution(paes) // Creates an initial solution
4: while not Termination Condition() do
5: mutatedSolution Mutation(currentSolution)
6: Evaluate Fitness(mutatedSolution)
7: if IsDominated(currentSolution, mutatedSolution) then
8: currentSolution mutatedSolution
9: else
10: if Solutions Are Nondominated(currentSolution, mutatedSolution) then
11: Insert(archive, mutatedSolution)
12: currentSolution Select(paes, archive)
13: end if
14: end if
15: end while
16: end proc

Algorithm 5 Pseudocode of RNDMulti.
1: proc
2: archive
3: currentSolution Create Solution() // Creates an initial solution
4: while not Termination Condition() do
5: newSolution Create Solution()
6: Insert(archive, newSolution)
7: end while
8: end proc

5. mM APPROACH

In this section we present the second approach. In this approach we use a mono-objective test
data generator to obtain a set of test data with the highest coverage. The mono-objective test data
generator deals with only one branch of the program at the same time. This is an advantage to obtain
high coverage because the search can focus on covering the most complex branches of the program.
However, the resulting test suite is usually large, redundant and inefficient because these

algorithms do not try to minimize the test suite size. One way to reduce the number of test cases in
a test suite, and still test the same functionality, is by solving a Multi Objective Test Case Selection
Problem (MOTCSP) on the given test suite. This problem was recently formalized by Yoo and
Harman in [24] as follows: Given a test suite and several objective functions , we must find
a subset such that is a Pareto optimal set with respect to the objective functions. The
resulting subset of the test suite, , is composed of the non-dominated solutions considering the
objectives as equally important.
In order to solve the MOTCSP we always use in the experimental section the multi-objective

algorithm NSGA-II. Our implementation is able to generate a Pareto front from thousands of test
cases previously generated by the mono-objective algorithms. But first, we delete repeated test cases
from the obtained test suite in order to reduce from thousands of test cases to hundreds of them. Two
test cases are repeated when both of them traverse the same branches. We have compared the results
obtained with and without this reduction phase, and the results are better when this reduction is
applied. Finally, for the mono-objective algorithm involved in the first phase of test data generation,
we use three different algorithms: a genetic algorithm, an evolutionary strategy and a random search.
In the following we describe in detail the test data generator and the algorithms used as its search
engine.

5.1. Test Data Generator

Our test data generator breaks down the global objective (to cover all the branches) into several
partial objectives consisting of dealing with only one branch of the program. Then, each partial



12  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Algorithms: DEPT 

case, the target and the trial individuals). To do this we
calculate a multiobjective fitness value (MOF) for each
individual by using the following equation:

(10)

where is the processed individual and the population
size. In Equation (10) we consider the number of solutions
that dominate the individual and the number of solutions of
the population that are dominated by it. If both individuals
(trial and target) obtain the same MOF, we have two solu-
tions of the same Pareto front and we have to apply another
selection criterion: the crowding distance. In this case, the
individual with greater value of the crowding distance will
be the winner of the Pareto Tournament.

D. Multiobjective Firefly Algorithm
The Firefly Algorithm (FA) is one of the latest nature-

inspired optimizers proposed. This algorithm is defined by
Xin-She Yang [10] and it is inspired by the flash pattern
and characteristics of fireflies. To solve the SPS problem we
have developed the Multiobjective Firefly Algorithm (MO-
FA). In the simplest form, the light intensity varies
according to a fixed absorption coefficient in the media, .
So, the brightness decreases as . Therefore, in this
algorithm the two most important factors are the variation of
the light intensity and the formulation of the attractiveness.
For simplicity, the attractiveness of a firefly is determined
by its brightness, which is associated with the objective
functions. Consequently, each firefly is attracted to another
more attractive (brighter) by the following equation:

(11)

while the second term of Equation (11) is due to the
attraction, the third term brings randomness to the process
with the control parameter . The parameter values have
been established as proposed in [10].

IV. EXPERIMENTATION
This section is aimed at presenting the experiments con-

ducted to evaluate the scalability capabilities of the pre-
viously described algorithms on 36 instances of the SPS
problem.

A. Methodology
In order to measure the performance of the multi-objective

solvers used here, the quality of their resulting nondominated
set of solutions has to be considered. Two indicators have
been used for this purpose in this work: the hypervolume
(HV) [11] and the attainment surfaces [12].
The HV is considered as one of the more suitable indi-

cators in the multi-objective community since it provides

a measure that takes into account both the convergence and
diversity of the obtained approximation set. Higher values of
the hypervolume metric are desirable. Since this indicator is
not free from an arbitrary scaling of the objectives, we have
built up a reference Pareto front (RPF) for each problem
composed of all the nondominated solutions found for each
problem instance by all the algorithms. Then, the RPF is
used to normalize each approximation prior to compute the
HV value by mapping all the nondominated solutions to

. This way the reference point to compute the HV
values is (1,1), which results from the mapping of the
extreme solutions of the RPF.
While the HV allows one to numerically compare dif-

ferent algorithms, from the point of view of a decision
maker, knowing about the HV value might not be enough,
because it gives no information about the shape of the
front. The empirical attainment function (EAF) [12] has
been defined to do so. EAF graphically displays the expected
performance and its variability over multiple runs of a multi-
objective algorithm. In short, the EAF is a function from
the objective space to the interval that estimates
for each vector in the objective space the probability of
being dominated by the approximated Pareto front of one
single run of the multi-objective algorithm. Given the
approximated Pareto fronts obtained in the different runs,
the EAF is defined as:

(12)

where is the -th approximated Pareto front obtained
with the multi-objective algorithm and is an indicator
function that takes value 1 when the predicate inside it is
true, and 0 otherwise. The predicate means
dominates solution . Thanks to the attainment function, it is
possible to define the concept of %-attainment surface [12].
The attainment function is a scalar field in and the
%-attainment surface is the level curve with value
for . Informally, the 50%-attainment surface in the multi-
objective domain is analogous to the median in the single-
objective one.
Metaheuristics are stochastic algorithms; therefore the

results have to be provided with statistical significance.
The following statistical procedure has been used. First,
30 independent runs for each algorithm and each problem
instance have been performed. The HV indicator and the
attainment surfaces are then computed. In the case of HV,
a multiple comparison test has been carried out in order to
check if the differences are statistically significant or not. All
the statistical tests are performed with a confidence level of
95%.

B. Parameterization
In order for a fair comparison among all the algorithms to

be performed, they all are required to run for 100,000 func-

Algorithm 1 Pseudocode of DEPT.

1: proc Input:(dept) //Algorithm parameters in ‘dept’

2: P  Initialize Population()

3: while not Termination Condition() do

4: for i  1 to dept.popSize do

5: Randomly select three di↵erent indices i1, i2 and i3
6: v = P [i1] + � · (Best� P [i]) + F · (P [i2]� P [i3]) // Trial vector

7: u=Recombine(v, P [i])
8: Evaluate(u)
9: P [i] = Replacement(u, P [i]) // Taking into account Pareto dominance

10: end for

11: end while

12: end proc

1



13  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Algorithms: MO-FA 
172 X.-S. Yang

Firefly Algorithm

Objective function f(x), x = (x1, ..., xd)T

Generate initial population of fireflies xi (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : i all n fireflies
if (Ij > Ii), Move firefly i towards j in d-dimension; end if
Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

Fig. 1. Pseudo code of the firefly algorithm (FA)

adjustable visibility and more versatile in attractiveness variations, which usually
leads to higher mobility and thus the search space is explored more efficiently.

3.3 Attractiveness

In the firefly algorithm, there are two important issues: the variation of light
intensity and formulation of the attractiveness. For simplicity, we can always
assume that the attractiveness of a firefly is determined by its brightness which
in turn is associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I of
a firefly at a particular location x can be chosen as I(x) ∝ f(x). However, the
attractiveness β is relative, it should be seen in the eyes of the beholder or judged
by the other fireflies. Thus, it will vary with the distance rij between firefly i and
firefly j. In addition, light intensity decreases with the distance from its source,
and light is also absorbed in the media, so we should allow the attractiveness to
vary with the degree of absorption. In the simplest form, the light intensity I(r)
varies according to the inverse square law I(r) = Is/r2 where Is is the intensity
at the source. For a given medium with a fixed light absorption coefficient γ, the
light intensity I varies with the distance r. That is I = I0e−γr, where I0 is the
original light intensity. In order to avoid the singularity at r = 0 in the expression
Is/r2, the combined effect of both the inverse square law and absorption can be
approximated using the following Gaussian form

I(r) = I0e
−γr2

. (3)

Sometimes, we may need a function which decreases monotonically at a slower
rate. In this case, we can use the following approximation

Firefly Algorithms for Multimodal Optimization 173

I(r) =
I0

1 + γr2
. (4)

At a shorter distance, the above two forms are essentially the same. This is
because the series expansions about r = 0

e−γr2
≈ 1 − γr2 +

1
2
γ2r4 + ...,

1
1 + γr2

≈ 1 − γr2 + γ2r4 + ..., (5)

are equivalent to each other up to the order of O(r3).
As a firefly’s attractiveness is proportional to the light intensity seen by ad-

jacent fireflies, we can now define the attractiveness β of a firefly by

β(r) = β0e
−γr2

, (6)

where β0 is the attractiveness at r = 0. As it is often faster to calculate 1/(1+r2)
than an exponential function, the above function, if necessary, can conveniently
be replaced by β = β0

1+γr2 . Equation (6) defines a characteristic distance Γ =
1/

√
γ over which the attractiveness changes significantly from β0 to β0e−1.

In the implementation, the actual form of attractiveness function β(r) can be
any monotonically decreasing functions such as the following generalized form

β(r) = β0e
−γrm

, (m ≥ 1). (7)

For a fixed γ, the characteristic length becomes Γ = γ−1/m → 1 as m → ∞.
Conversely, for a given length scale Γ in an optimization problem, the parameter
γ can be used as a typical initial value. That is γ = 1

Γ m .

3.4 Distance and Movement

The distance between any two fireflies i and j at xi and xj , respectively, is the
Cartesian distance

rij = ||xi − xj || =

√√√√
d∑

k=1

(xi,k − xj,k)2, (8)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. In 2-D
case, we have rij =

√
(xi − xj)2 + (yi − yj)2.

The movement of a firefly i is attracted to another more attractive (brighter)
firefly j is determined by

xi = xi + β0e
−γr2

ij (xj − xi) + α (rand − 1
2
), (9)

where the second term is due to the attraction while the third term is random-
ization with α being the randomization parameter. rand is a random number
generator uniformly distributed in [0, 1]. For most cases in our implementation,



14  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

tion evaluations and to obtain 100 nondominated solutions
at most. NSGA-II uses a population size of 100 individuals,
whereas both DEPT and MO-FA manipulate 32 solutions
(PAES has one single solution since it is a (1+1)-evolution
strategy).
A solution to the problem is a vector of floating point

numbers in which the component stores the dedication of
employee to task (where is the number
of tasks). With this encoding, the typical operators from the
multi-objective metaheuristic community have been used.
So therefore, the NSGA-II has adopted simulated binary
crossover (SBX) and polynomial mutation. The distribution
indices for both operators are and ,
respectively. The crossover probability is and the
mutation probability is , where is the number
of decision variables. In PAES we have also used a poly-
nomial mutation operator, with the same distribution index
as indicated before. DEPT has been configured with the
RandToBest/1/Binomial scheme, and .
The mutation factor for MO-FA is 0.5.

C. Repair Operator

Because of the size of the SPS instances addressed (see
next section), it has been very hard for all the algorithms to
compute feasible solutions. We found out that the employ-
ees’ overwork (Equation (7)) is the most difficult constraint
to meet. The reason is that the search operators are not
endowed with problem-specific knowledge so it is usual to
find assignments in which one or more employees exceed
their maximum dedication. In order to deal with such issue,
we have used a repair operator that, whenever an overwork
in the assignment is detected, it is fixed by dividing the
dedication of all the employees to all the tasks by the
maximum overwork of the employees. That is, the effect
of the operator is:

(13)

where is used in order to prevent from
inaccuracies in the floating-point operations.
This operator increases the project duration of the ten-

tative solution and keeps the cost unchanged. That is:
and .

In addition, the new solution satisfies the third constraint
(the one related to the overwork). From the point of view of
the algorithmic complexity, the overhead introduced is the
same as the evaluation of the solution, since the coefficient
used in the denominator is computed at the same time
that the solution is evaluated. If a solution violates the
other constraints of the problem, then it is penalized in
the selection and replacement operators (it is the last one
selected).

Table I
RANKING OF THE MO SOLVERS BASED ON THEIR HV VALUES.

NSGA-II PAES DEPT MO-FA
i16-8
i16-16
i16-32
i16-64
i16-128
i16-256
i32-8
i32-16
i32-32
i32-64
i32-128
i32-256
i64-8
i64-16
i64-32
i64-64
i64-128
i64-256
i128-8
i128-16
i128-32
i128-64
i128-128
i128-256
i256-8
i256-16
i256-32
i256-64
i256-128
i256-256
i512-8
i512-16
i512-32
i512-64
i512-128
i512-256

D. SPS Instances
For the empirical study we have used a total of 36

instances1. Each instance represents a different software
project. The number of employees and tasks scales up from
16 to 512 and from 8 to 256, respectively. The total number
of skills in the project, , is 10 and the number of skills
per employee ranges from 6 to 7. We denote the instances
with i - , where and are the number of tasks and
employees, respectively. For example, the instance i128-32
has 128 tasks and 32 employees. The maximum dedication
for all the employees is 1 (full working day) in the 36
instances.

E. Results
This first part of the analysis is devoted to compare the

multi-objective metaheuristics on the set of 36 SPS instances
by using the HV indicator. Table I shows the median and
intercuartile range of the HV values of the algorithms for
each instance on 30 independent runs. The gray coloured
background in a table cell has been used to better show the
best performing algorithm.
The HV values draw a clear scenario: PAES has been

able to approximate the Pareto fronts with the best (highest)

1mstar.lcc.uma.es/problems/swscheduling.html

•  For constraint R3 

Time 

D
ed

ic
at

io
n 

Maximum dedication Overwork 

Time 

D
ed

ic
at

io
n 

Maximum dedication 

Repair mechanism 

Algorithms: repair mechanism 



15  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Hypervolume (HV) 
–  Volume covered by members of the non-dominated set of solutions 
–  Measures both convergence and diversity in the Pareto front 
–  Larger values are better 

•  Attainment surfaces 
–  Localization statistics for fronts 
–  The same as the median and 

 the interquartile range in the 
 mono-objective case 

Experiments: Quality Indicators 



16  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Hypervolume (HV) 
–  Volume covered by members of the non-dominated set of solutions 
–  Measures both convergence and diversity in the Pareto front 
–  Larger values are better 

•  Attainment surfaces 
–  Localization statistics for fronts 
–  The same as the median and 

 the interquartile range in the 
 mono-objective case 

Experiments: Quality Indicators 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



17  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Hypervolume (HV) 
–  Volume covered by members of the non-dominated set of solutions 
–  Measures both convergence and diversity in the Pareto front 
–  Larger values are better 

•  Attainment surfaces 
–  Localization statistics for fronts 
–  The same as the median and 

 the interquartile range in the 
 mono-objective case 

Experiments: Quality Indicators 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



18  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Hypervolume (HV) 
–  Volume covered by members of the non-dominated set of solutions 
–  Measures both convergence and diversity in the Pareto front 
–  Larger values are better 

•  Attainment surfaces 
–  Localization statistics for fronts 
–  The same as the median and 

 the interquartile range in the 
 mono-objective case 

Experiments: Quality Indicators 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



19  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  Hypervolume (HV) 
–  Volume covered by members of the non-dominated set of solutions 
–  Measures both convergence and diversity in the Pareto front 
–  Larger values are better 

•  Attainment surfaces 
–  Localization statistics for fronts 
–  The same as the median and 

 the interquartile range in the 
 mono-objective case 

Experiments: Quality Indicators 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

75%-EAS 

50%-EAS 

25%-EAS 



20  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  36 instances of increasing number of tasks (16-512) and 
employees (8-256) 

•  Labeled as i<tasks>-<employees> 

Problem instances 

•  Stopping condition: 100 000 function evaluations 
•  Approximated Pareto front size: 100 solutions 
•  100 independent runs for each algorithm-instance 
•  Statistical tests for significance differences 
•  Representation: vector of real numbers 

Global Parameters 

Experiments: Instances and Parameters 



21  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

NSGAII 

Population: 100 

SBX (ηc=20, 
pc=0.9) 

Polynomial 
mutation 

(ηm=20, pm=1/L) 

PAES 

Population: 1 

Polynomial 
mutation 
(ηm=20) 

DEPT 

Population: 32 

RandToBest/1/
Binomial 

CR=0.9, F=0.5 

MO-FA 

Population: 32 

Mutation factor: 
0.5 

Experiments: Algorithm-Specific Parameters 



22  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

•  PAES is the clear winner in HV 
•  MO-FA is the second best for 

small instances 
•  NSGA-II is the second best for 

large instances 
•  DEPT is the worst algorithm in 

the comparison 

Hypervolume (HV) 

Results: Hypervolume Comparison 



23  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2.7e+06  2.75e+06  2.8e+06  2.85e+06  2.9e+06  2.95e+06  3e+06

Du
ra

tio
n

Cost

RPF
NSGA-II

PAES
DEPT

MO-FA

i32-8 

MO-FA 

DEPT 
NSGA-II PAES 

Results: 50%-Empirical Attainment Surfaces (EAS) 



24  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2.2e+06  2.3e+06  2.4e+06  2.5e+06  2.6e+06  2.7e+06  2.8e+06  2.9e+06  3e+06  3.1e+06

Du
ra

tio
n

Cost

RPF
NSGA-II

PAES
DEPT

MO-FA

i32-16 

MO-FA 

DEPT 

NSGA-II 

PAES 

Results: 50%-Empirical Attainment Surfaces (EAS) 



25  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2.6e+06  2.7e+06  2.8e+06  2.9e+06  3e+06  3.1e+06  3.2e+06  3.3e+06  3.4e+06

Du
ra

tio
n

Cost

RPF
NSGA-II

PAES
DEPT

MO-FA

i32-32 

MO-FA 

DEPT 
NSGA-II 

PAES 

Results: 50%-Empirical Attainment Surfaces (EAS) 



26  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2.5e+06  2.6e+06  2.7e+06  2.8e+06  2.9e+06  3e+06  3.1e+06  3.2e+06  3.3e+06  3.4e+06

Du
ra

tio
n

Cost

RPF
NSGA-II

PAES
DEPT

MO-FA

i32-64 

MO-FA 

DEPT 
NSGA-II 

PAES 

Results: 50%-Empirical Attainment Surfaces (EAS) 



27  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Introduction Software Project 
Scheduling Algorithms Experiments 

& Results 
Conclusions  

& Future Work 

Conclusions & Future Work 

•  PAES is the algorithm with better scalability behaviour 
•  MO-FA is the second best in small instances 
•  NSGA-II is the second best in large instances 
•  DEPT is the worst algorithm in the comparison 
•  HV not always provides enough information to determine the 

best algorithm. EAS is a good alternative. 

Conclusions 

•  Use real-world instances of the problem 
•  Change the formulation of the problem to get closer to reality 

Future Work 



28  / 28 ISDA 2011, Córdoba, Spain, November 22-24 

Thanks for your attention !!! 

On the Scalability of Multi-objective Metaheuristics 
for the Software Scheduling Problem 


