

- **Fitness Funct.**
- Representation
- **Experiments**
- Conclusions & Future Work

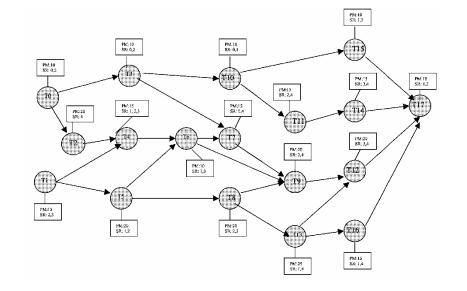
Management of Software Projects with GAs

Lenguajes y Ciencias de la Computación

UNIVERSIDAD DE MÁLAGA

Enrique Alba and <u>J. Francisco Chicano</u>

Introduction PSP Fitness Funct.


Representation

Experiments

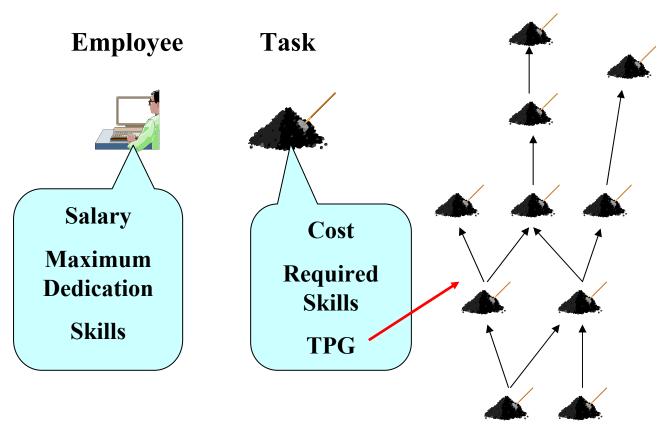
Conclusions & Future Work

Introduction

Modern software projects are very complex

- They could involve hundreds of people and resources
- There is a need to control people and processes efficiently
- An automatic tool could help the project manager

Fitness Funct.


Representation

Experiments

Conclusions & Future Work 6th Metaheuristics International Conference 2005

Project Scheduling Problem

- Consists in deciding "who does what" in a Software Project
- Main components:

• Skills: Java knowledge, database knowledge, leadership capacity, ...

Introduction

PSP

- Fitness Funct.
- Representation
- **Experiments**
- Conclusions & Future Work

Project Scheduling Problem

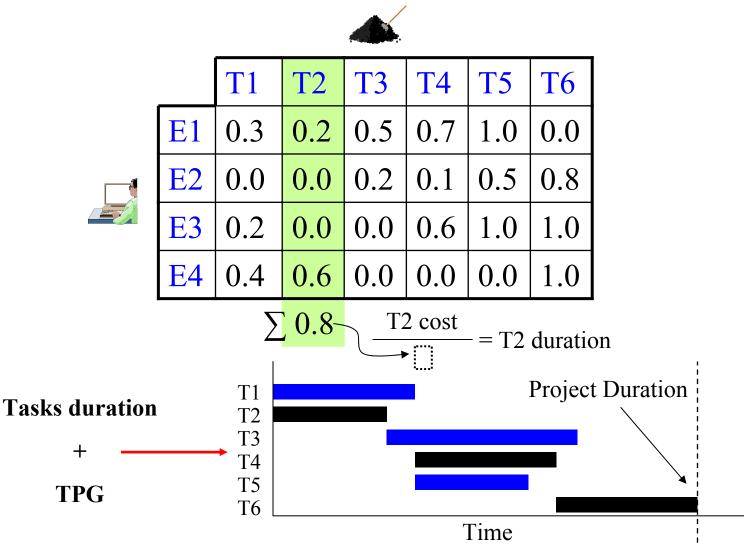
• Solution: a matrix with the dedication of the employees to each task

		T1	T2	T3	T4	T5	T6
	E1	0.3	0.2	0.5	0.7	1.0	0.0
1	E2	0.0	0.0	0.2	0.1	0.5	0.8
	E3	0.2	0.0	0.0	0.6	1.0	1.0
	E4	0.4	0.6	0.0	0.0	0.0	1.0

- Objectives:
 - Minimize the project duration
 - Minimize the project cost
- Constraints:
 - > All tasks must be performed by some employee
 - The union of the employees skills must include the required skills of the task they perform
 - > No employee exceeds his/her maximum dedication

Project Scheduling Problem

Computation of the task and project duration


Introduction PSP

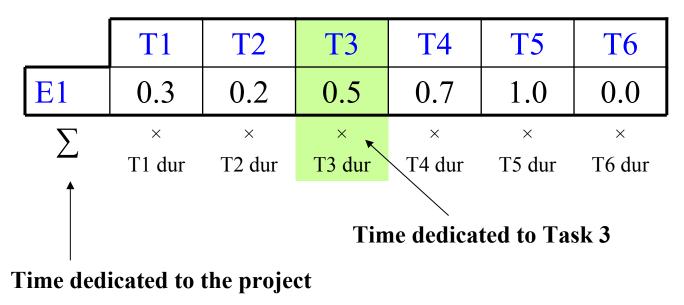
Fitness Funct.

Representation

Experiments

Conclusions & Future Work

Fitness Funct.


Representation

Experiments

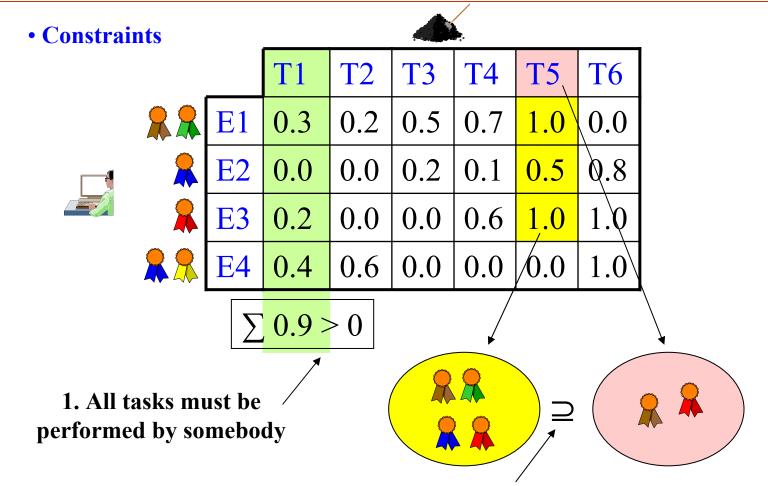
Conclusions & Future Work

Project Scheduling Problem

Computation of the project cost

× — Employee E1 fee

Salary


 \sum Employee fees = **Project Cost**

Fitness Funct. Representation Experiments Conclusions & Future Work 6th Metaheuristics International Conference 2005

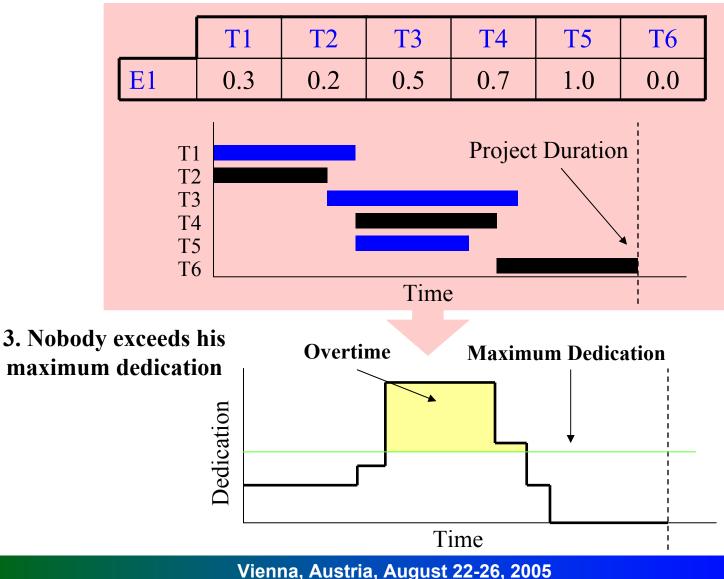
Project Scheduling Problem

2. The union of the employees skills must include the required skills of the task they perform

Project Scheduling Problem

• Constraints

Introduction


PSP

Fitness Funct.

Representation

Experiments

Conclusions & Future Work

Introduction

PSP

Fitness Funct.

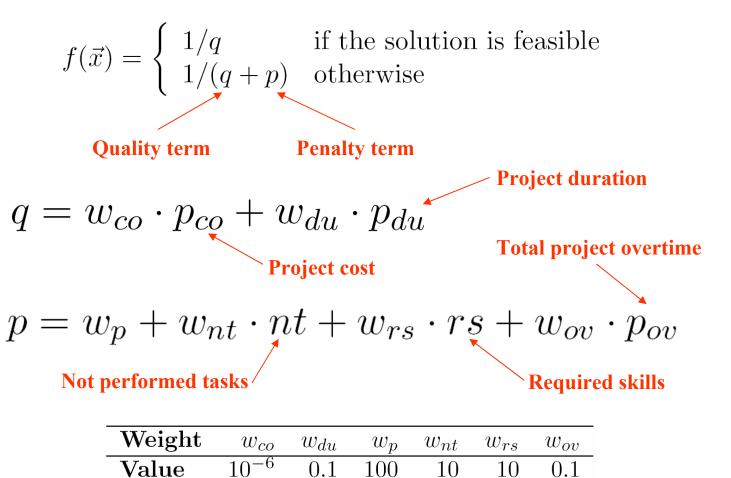
Representation

Experiments

Conclusions & Future Work

Project Scheduling Problem

 Project Scheduling Problem and Resource Constrained Project Scheduling are different Problems



- Introduction PSP
- Fitness Funct.
- Representation
- **Experiments**
- **Conclusions & Future Work**

Fitness Function

- We use a standard Genetic Algorithm with binary representation
- Fitness Function

- Introduction PSP
- **Fitness Funct.**
- Representation
- Experiments
- Conclusions & Future Work

Representation

- Maximum dedication set to 1.0 for all the employees $\rightarrow x_{ij} \in [0,1]$
- The matrix elements are discretized: eight possible values (3 bits)

	T1	T2	T3	T4	T5	T6
E1	0.3	0.2	0.5	0.7	1.0	0.0
E2	0.0	0.0	0.2	0.1	0.5	0.8
E3	0.2	0.0	0.0	0.6	1.0	1.0
E4	0.4	0.6	0.0	0.0	0.0	1.0

Chromosome

010001100101110000000000...

	T 1	T2	T3	T4	T5	T6
E1	010	001	100	101	110	000
E2	000	000	001	001	100	110
E3	001	000	000	100	111	111
E4	010	100	000	000	000	111

Row major order

- Introduction PSP Fitness Funct. Representation
- Experiments
- Conclusions & Future Work

Experiments

- We tackle 36 instances randomly created with an instance generator
- Two benchmark: 18 instances each one
- First benchmark: knowledge specialization fixed
 - Number of different skills: 10
 - ➢ Skills per employee: 4-5, 6-7
- Second benchmark: employee knowledge fixed
 - Number of different skills: 5 and 10
 - > Skills per employee: 2-3
- Both benchmarks: influence of tasks and employees
 - ➤ Tasks: 10, 20, and 30
 - ➤ Employees: 5, 10, and 15
 - Skills per task: 2-3

Introduction
PSP
Fitness Funct.
Representation
Experiments
Conclusions & Future Work

Experiments: GA Parameters

• We perform 100 independent runs of the GA for each instance

Parameter	Value							
Population size	64							
Selection	2-tournament (2 inds.)			Chr	omo	som	e	
Recombination	2-D SPX		TI	T2	Т3	T4	T5	T6
Mutation	Bit-Flip (1/length)	E1	010	001	100	101	110	000
Replacement	Elitist	E2	000	000	001	001	100	110
		E3	001	000	000	100	111	111
Stop criterion	5000 steps	E4	010	100	000	000	000	111
,								

2-D Single Point Crossover

Experiments: First Benchmark

• Hit percentage (number of runs finding a feasible solution)

Introduction PSP

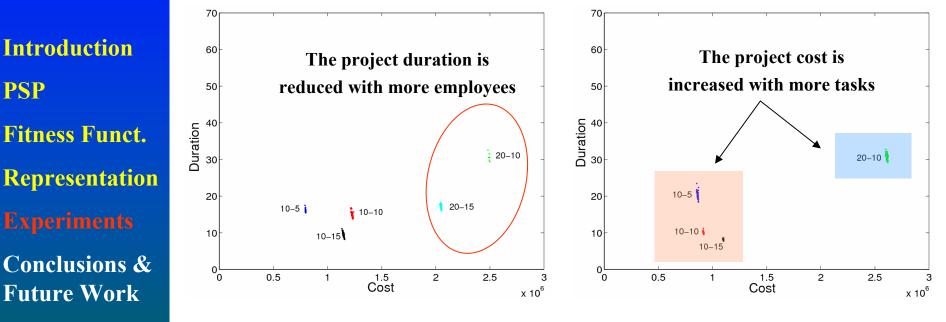
Fitness Funct.

Representation

Experiments

Conclusions & Future Work

	4-5 skills/emp			6-7 skills/emp				
	employees			en	employees			
tasks	5	10	15	5	10	15		
10	94	97	97	84	100	97		
20	0	6	43	0	76	0		
30	0	0	0	0	0	0		
						S		


- The search space increases with the number of tasks and employees
- With more employees it is easier to find a solution
- With more tasks it is more difficult to find a solution

Experiments: First Benchmark

• Project Cost against duration of the solutions

4-5 skills per employee

6-7 skills per employee

• Inclination of the point swarms \rightarrow cost-duration tradeoff

Experiments: Second Benchmark

• Hit percentage (number of runs finding a feasible solution)

Introduction PSP

Fitness Funct.

Representation

Experiments

Conclusions & Future Work

	5 skills			10 skills				
	employees		employees					
tasks	5	10	15	5	10	15		
10	98	99	100	61	85	85		
20	6	9	12	8	1	6		
30	0	0	0	0	0	0		

- We have a similar behavior now with tasks and employees
- The problem becomes harder when a higher knowledge is required

PSP

6th Metaheuristics International Conference 2005

Experiments: Second Benchmark

Project Cost against duration of the solutions

5 different skills in the project

10 different skills in the project

• The knowledge required does not affect the cost and duration

- Introduction PSP
- **Fitness Funct.**
- Representation
- **Experiments**
- Conclusions & Future Work

Conclusions & Future Work

Conclusions

- The presented tool allows project managers to study different scenarios
- The difficulty of the problem is increased with the number of tasks and the number of required skills
- The project duration is reduced with the number of employees
- The project cost is increased with the number of tasks

Future Work

- Study new instances with other aspects
- Apply other algorithms
- Solve the problem in a multiobjective manner

- Introduction PSP
- **Fitness funct.**
- Representation
- **Experiments**
- Conclusions & Future Work

THE END

Thanks for your attention !!!

