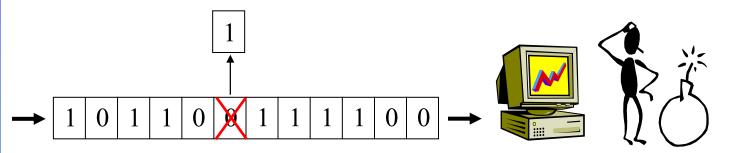
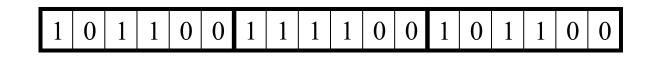
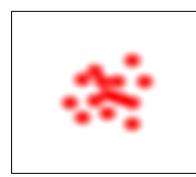
The 19th Annual ACM Symposium on Applied Computing

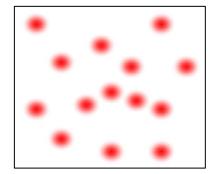

Introduction ECC Problem Algorithms Experiments Conclusions & Future Work

Solving the Error Correcting Code Problem with Parallel Hybrid Heuristics



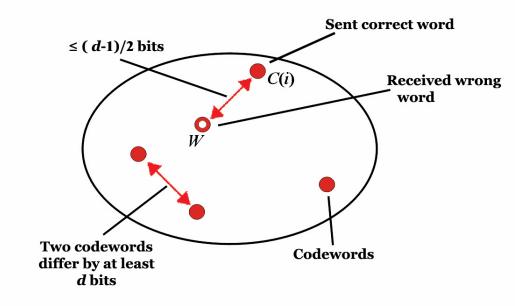
Enrique Alba and <u>J. Francisco Chicano</u>


• Some applications cannot afford the resubmission of an erroneous msg



Linear Block Codes

• Larger (Hamming) distance \rightarrow Larger autocorrection capacity



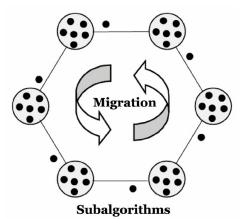
- Introduction ECC Problem
- Algorithms
- **Experiments**
- Conclusions & Future Work

ECC Problem

- Designing error correcting codes (n, M, d) is NP-hard
- Objective: Given *n* and *M* find a code that maximizes *d*

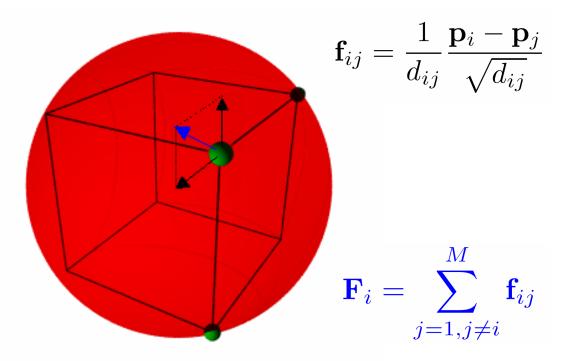
- Instance: n = 12 bits, M = 24 words
- Maximum d: 6

Nicosia, Cyprus, March 14-17, 2004


Introduction ECC Problem Algorithms Experiments Conclusions & Future Work

Genetic Algorithms

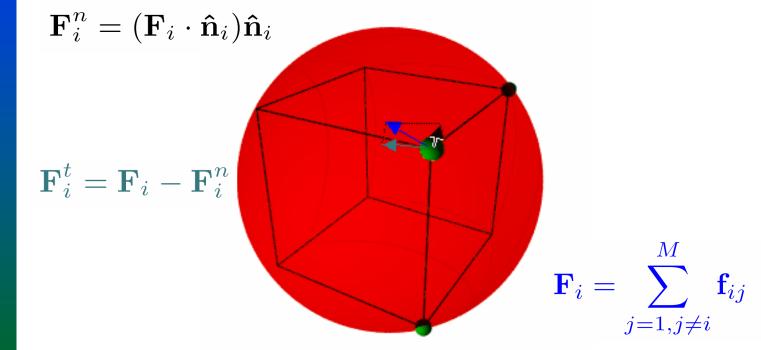
Pseudo-code of a general GA


Introduction ECC Problem Algorithms GA RA Hybrid Experiments Conclusions & Future Work $\begin{array}{ll} t := 0; \\ \text{initialize:} & P(0) := \{\vec{a}_1(0), \dots, \vec{a}_\mu(0)\} \in I^\mu; \\ \text{evaluate:} & P(0) : \{\Phi\left(\vec{a}_1(0)\right), \dots, \Phi\left(\vec{a}_\mu(0)\right)\}; \\ \text{while } \iota\left(P(t)\right) \neq \textbf{true do} & //\text{Reproductive loop} \\ & \text{select:} & P'(t) := s_{\Theta_s}\left(P(t)\right); \\ & \text{recombine:} & P''(t) := \otimes_{\Theta_c}\left(P'(t)\right); \\ & \text{mutate:} & P'''(t) := m_{\Theta_m}\left(P''(t)\right); \\ & \text{evaluate:} & P'''(t) : \{\Phi\left(\vec{a}_1''(t)\right), \dots, \Phi\left(\vec{a}_\lambda''(t)\right)\}; \\ & \text{replace:} & P(t+1) := r_{\Theta_r}\left(P'''(t) \cup Q\right); \\ & < \textbf{communication step} > \\ & t := t+1; \\ \textbf{end while} \end{array}$

• Decentralized GAs: cGA and dGA

Repulsion Algorithm

- RA considers the words as equally charged particles
- RA calculates the repulsion forces among the particles
- RA moves a particle according to the resultant force exerted over it

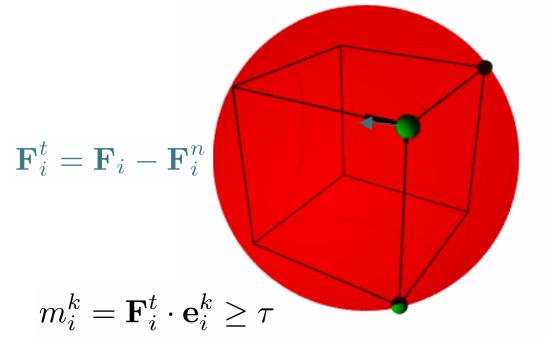


Nicosia, Cyprus, March 14-17, 2004

Introduction ECC Problem Algorithms GA RA Hybrid **Experiments Conclusions &** Future Work

Repulsion Algorithm

- RA considers the words as equally charged particles
- RA calculates the repulsion forces among the particles
- RA moves a particle according to the resultant force exerted over it



ECC Problem Algorithms GA RA Hybrid Experiments Conclusions &

Future Work

Repulsion Algorithm

- RA considers the words as equally charged particles
- RA calculates the repulsion forces among the particles
- RA moves a particle according to the resultant force exerted over it

ECC ProblemAlgorithmsGAGARAHybridExperimentsConclusions & Future Work

Hybrid Algorithms

- Hybridization: Inclusion of problem knowledge into the algorithm
- Two posible classes of hybrids:
 - Strong: Specific representation and operators
 - <u>Weak</u>: Combination of several algorithms (cooperation)

Nicosia, Cyprus, March 14-17, 2004

ECC Problem Algorithms

Introduction

GA

RA

Hybrid Experiments

Conclusions &

Future Work

9/16

Nicosia, Cyprus, March 14-17, 2004

Fitness

• De Jong's function (possibly problematic): $f(\mathbf{x}) = \frac{1}{\sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{d_{ij}^2}}$ Introduction d=4Fitness **ECC Problem** d=3Algorithms d=2**Experiments Fitness** Codes **Parameters** $f(\mathbf{x}) = \frac{1}{\sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{d_{i_i}^2}} + \left(\frac{d_{min}}{12} - \frac{d_{min}^2}{4} + \frac{d_{min}^3}{6}\right)$ Corrected function **Results Conclusions &** *d***∓**4 **Future Work** Fitness d∓́ Codes

10/16

Fitness

• De Jong's function (possibly problematic): $f(\mathbf{x}) = \frac{1}{\sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{d_{ij}^2}}$ Introduction d=4Fitness **ECC Problem** d=3Algorithms d=2**Experiments Fitness** Codes **Parameters** $f(\mathbf{x}) = \frac{1}{\sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \frac{1}{d_{i_i}^2}} + \left(\frac{d_{min}}{12} - \frac{d_{min}^2}{4} + \frac{d_{min}^3}{6}\right)$ Corrected function **Results Conclusions &** *d***∓**4 **Future Work** Fitness d∓́ Codes

Parameters

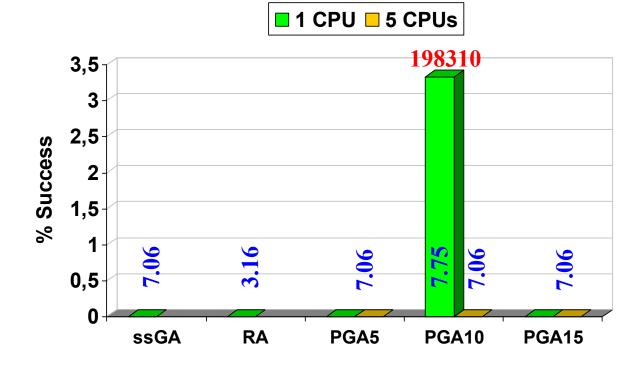
- Genotype: concatenation of the codewords
- The same number of evaluations for all the algorithms (2.10⁵)
- Three distributed GAs: 5, 10 and 15 islands (same pop. size)
- Unidirectional ring for dGAs
- RA with $\tau = 0.001$
- Two classes of hybrids:
 - With recombination: PGARAn
 - Without recombination: PGRAn

Introduction ECC Problem

Algorithms

Experiments

Fitness


Parameters

Results

Conclusions & Future Work

Results

- The pure algorithms obtain a very small success rate (<4%)
- The fitness of solutions given by RA are lower than GAs ones

Algorithms
Experiments
Fitness

Introduction

ECC Problem

Parameters

Results

Conclusions & Future Work

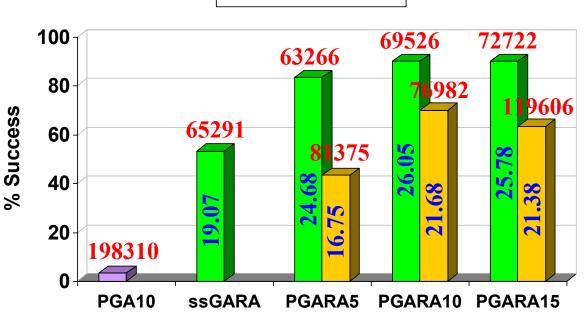
ECC Problem

Algorithms

Experiments

Fitness

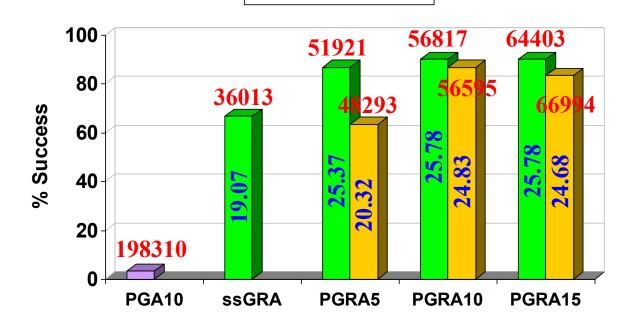
Results


Conclusions &

Future Work

Parameters

Results


- High success rate with hybrid algorithms
- Decentralized algorithms get still larger success than panmictic ones
- Results in 1 CPU better in both numerical effort and success

🔳 1 CPU 🔲 5 CPUs

Results

- Higher hit rate in 5 CPUs
- Lower number of evaluations
- Improvement in the panmictic algorithm

1 CPU 5 CPUs

Introduction

ECC Problem

Algorithms

Experiments

Fitness

Parameters

Results

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Decentralization and hybridization with RA leverage the quality
 - Increasing the number of islands do not always improves the search
 - Results in 1 CPU better than 5 CPUs
 - The recombination operator ruins the RA work

Future Work

- To study other algorithms for the problem (idea: scatter search + RA)
- To solve larger instances
- To extend the repulsion algorithm to other problems (Thomson)

Introduction ECC Problem Algorithms Experiments Conclusions & Future Work

THE END

Thanks for your attention !!!

Nicosia, Cyprus, March 14-17, 2004

Introduction ECC Problem Algorithms Experiments Conclusions & Future Work