Regression

Testing

Elementary Landscape Decomposition of the Test Suite Minimization Problem

Francisco Chicano, Javier Ferrer and Enrique Alba

Problem Formalization

Test Suite Minimization

- Given:
 - \triangleright A set of test cases $T = \{t_1, t_2, ..., t_n\}$
 - \triangleright A set of program elements to be covered (e.g., branches) $M = \{m_1, m_2, ..., m_k\}$
 - > A coverage matrix

$$T_{ij} = \begin{cases} 1 & \text{if element } m_i \text{ is covered by test } t_j \\ 0 & \text{otherwise} \end{cases}$$

- Find a subset of tests $X \subseteq T$ maximizing coverage and minimizing the testing cost
- Binary representation:

$$x_i = \begin{cases} 1 & \text{if test } t_i \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$

$$coverage(x) = \sum_{i=1}^{k} \max_{j=1}^{n} \{T_{ij}x_j\}; \quad ones(x) = \sum_{j=1}^{n} x_j$$

$$f(x) = \sum_{i=1}^{k} \max_{j=1}^{n} \{T_{ij}x_j\} - c \cdot ones(x)$$

Landscape Definition

- A landscape is a triple (X,N, f) where
 - > X is the solution space
 - > N is the neighbourhood operator
 - > f is the objective function
- The neighbourhood operator is a function

$$N: X \rightarrow P(X)$$

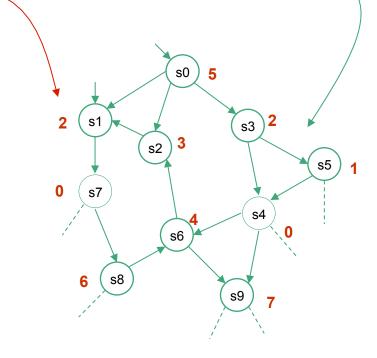
- Solution y is neighbour of x if $y \in N(x)$
- Regular and symmetric neighbourhoods

•
$$d=|N(x)| \quad \forall x \in X$$

- $y \in N(x) \Leftrightarrow x \in N(y)$
- Objective function

$$f: X \rightarrow R \text{ (or } N, Z, Q)$$

The pair (X,N) is called configuration space



Elementary Landscapes: Formal Definition

An elementary function is an eigenvector of the graph Laplacian (plus constant)

Adjacency matrix

$$A_{xy} = \begin{cases} 1 & \text{if } y \in N(x) \\ 0 & \text{otherwise} \end{cases}$$

Degree matrix

$$D_{xy} = \begin{cases} |N(x)| & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

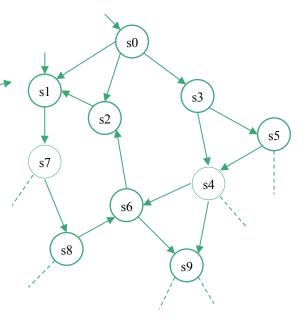
Graph Laplacian:

$$\triangle = A - D$$

Depends on the configuration space

• Elementary function: eigenvector of △ (plus constant)

$$(-\Delta) \times \left(\vec{f} - b \right) = \lambda \cdot \left(\vec{f} - b \right)$$
 Eigenvalue

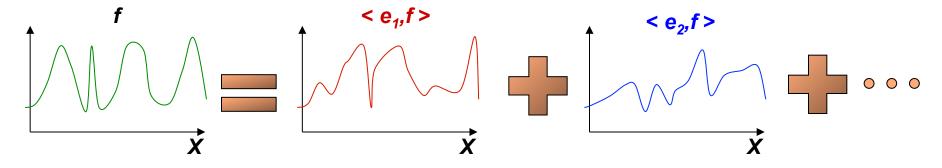


Elementary Landscapes: Characterizations

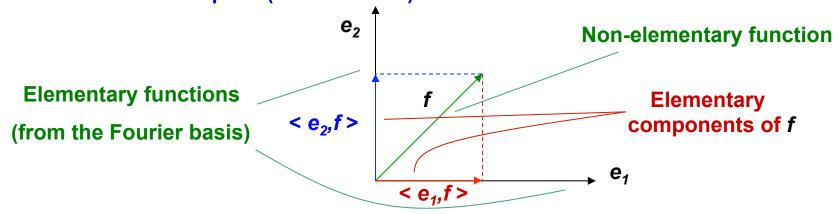
An elementary landscape is a landscape for which

Landscape Decomposition

- What if the landscape is not elementary?
- Any landscape can be written as the sum of elementary landscapes



• There exists a set of eigenfunctions of ∆ that form a basis of the function space (Fourier basis)



Examples

Elementary Landscapes

Sum of elementary Landscapes

Problem	Neighbourhood	d	k
Symmetric TSP	2-opt	n(n-3)/2	<i>n</i> -1
	swap two cities	n(n-1)/2	2(<i>n</i> -1)
Graph α-Coloring	recolor 1 vertex	(α-1) <i>n</i>	2α
Max Cut	one-change	n	4
Weight Partition	one-change	n	4

Problem	Neighbourhood	d	Components
General TSP	inversions	<i>n</i> (<i>n</i> -1)/2	2
	swap two cities	n(n-1)/2	2
Subset Sum Problem	one-change	n	2
MAX k-SAT	one-change	n	k
QAP	swap two elements	n(n-1)/2	3
Test suite minimization	one-change	n	$\max v_i $

Regression Testing

Landscape Theory

Result

Applications Experiments

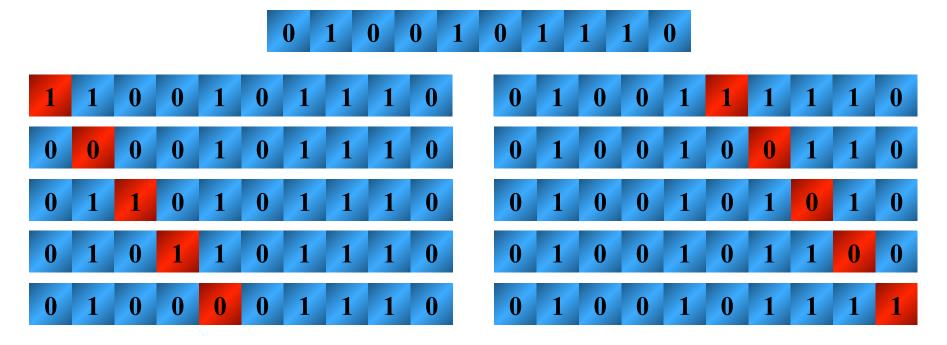
Conclusions & Future Work

Landscape Definition Elementary Landscapes Landscape decomposition Binary Space

Binary Search Space

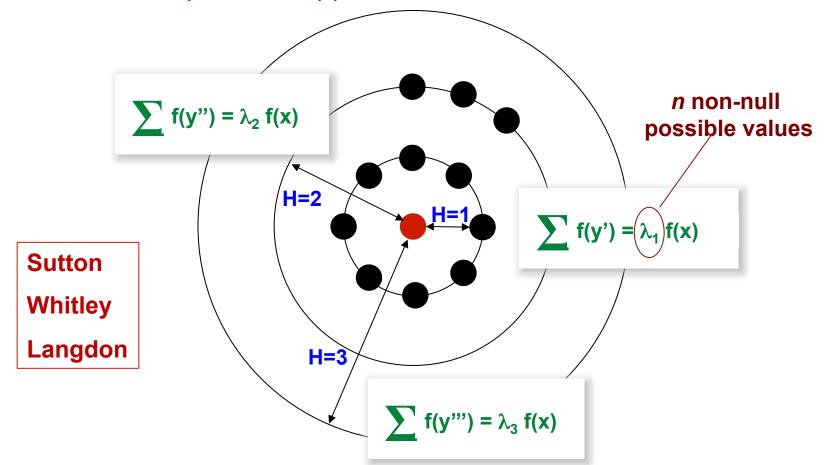
• The set of solutions X is the set of binary strings with length n

- Neighborhood used in the proof of our main result: one-change neighborhood
 - > Two solutions x and y are neighbors iff Hamming(x,y)=1



Spheres around a Solution

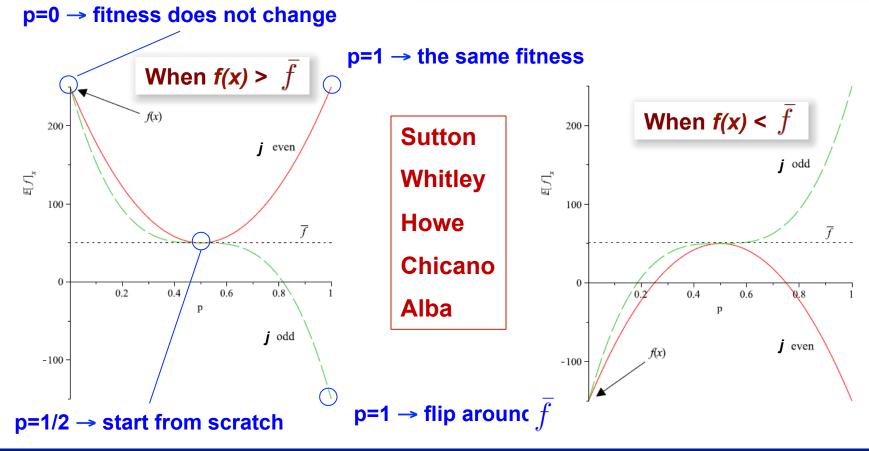
• If f is elementary, the average of f in any sphere and ball of any size around x is a linear expression of f(x)!!!



Bit-flip Mutation: Elementary Landscapes

Analysis of the expected fitness

$$\mathbb{E}[f]_x = \bar{f} + (1 - 2p)^j (f(x) - \bar{f})$$

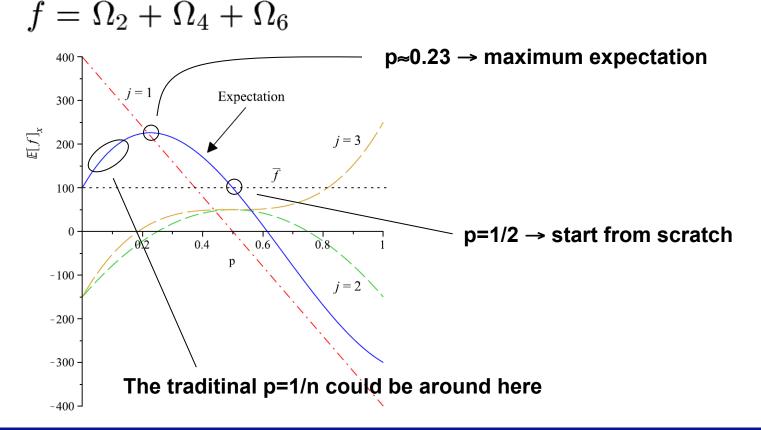


Binary Space

Bit-flip Mutation: General Case

- Analysis of the expected fitness
- Example (j=1,2,3):

ranges of the expected fitness teample (j=1,2,3):
$$\mathbb{E}[f]_x = \overline{f} + \sum_{j=1} (1-2p)^j (\Omega_{2j}(x) - \overline{\Omega_{2j}})$$



Elementary Landscape Decomposition of f

The elementary landscape decomposition of

$$f(x) = \sum_{i=1}^{k} \max_{j=1}^{n} \{T_{ij}x_{j}\} - c \cdot ones(x)$$

Computable in O(nk)

is

Tests that cover m_i

$$f^{(0)}(x) = \sum_{i=1}^k \left(1 - \frac{1}{2^{|V_i|}}\right) - c \cdot \frac{n}{2} \longleftarrow \text{constant expression}$$

$$f^{(1)}(x) = -\sum_{i=1}^k \frac{1}{2^{|V_i|}} (-1)^{n_1^{(i)}} \mathcal{K}_{|V_i|-1,n_1^{(i)}}^{|V_i|} - c \cdot \left(ones(x) - \frac{n}{2}\right)$$
 Krawtchouk matrix
$$f^{(p)}(x) = -\sum_{i=1}^k \frac{1}{2^{|V_i|}} (-1)^{n_1^{(i)}} \mathcal{K}_{|V_i|-p,n_1^{(i)}}^{|V_i|} \quad \text{where } 1$$

Tests in the solution that cover m_i

Elementary Landscape Decomposition of f²

The elementary landscape decomposition of f² is

$$\left| (f^2)^{(0)}(x) = \beta^2 + \frac{c^2}{4}n - \sum_{i=1}^k \frac{c|V_i| + 2\beta}{2^{|V_i|}} + \sum_{i,i'=1}^k \frac{1}{2^{|V_i \cup V_{i'}|}} \right|$$

$$\beta = k - cn/2$$

$$(f^2)^{(1)}(x) = c\beta(n - 2ones(x)) - \sum_{i=1}^k \left(\frac{(c|V_i| + 2\beta)(-1)^{n_1^{(i)}}}{2^{|V_i|}} \mathcal{K}_{|V_i|-1,n_1^{(i)}}^{|V_i|} \right)$$

$$+ \sum_{i,i'=1}^k \left(\frac{(-1)^{n_1^{(i\vee i')}}}{2^{|V_i\cup V_{i'}|}} \mathcal{K}_{|V_i\cup V_{i'}|-1,n_1^{(i\vee i')}}^{|V_i\cup V_{i'}|} \right)$$

$$- c\sum_{i=1}^k \frac{n - 2ones(x) - |V_i| + 2n_1^{(i)}}{2^{|V_i|}}$$

Elementary Landscape Decomposition of f²

• The elementary landscape decomposition of f^2 is

$$(f^2)^{(0)}(x) = \beta^2 + \frac{c^2}{4}n - \sum_{i=1}^k \frac{c|V_i| + 2\beta}{2^{|V_i|}} + \sum_{i,i'=1}^k \frac{1}{2^{|V_i \cup V_{i'}|}}$$

$$\beta = k - cn/2$$

$$(f^{2})^{(2)}(x) = \frac{c^{2}}{2}(-1)^{ones(x)}\mathcal{K}_{n-2,ones(x)}^{n} - \sum_{i=1}^{k} \left(\frac{(c|V_{i}|+2\beta)(-1)^{n_{1}^{(i)}}}{2^{|V_{i}|}}\mathcal{K}_{|V_{i}|-2,n_{1}^{(i)}}^{|V_{i}|}\right)$$

$$+ \sum_{i,i'=1}^{k} \left(\frac{(-1)^{n_{1}^{(i\vee i')}}}{2^{|V_{i}\cup V_{i'}|}}\mathcal{K}_{|V_{i}\cup V_{i'}|-2,n_{1}^{(i\vee i')}}^{|V_{i}\cup V_{i'}|}\right)$$

$$- c\sum_{i=1}^{k} \frac{(-1)^{n_{1}^{(i)}}}{2^{|V_{i}|}}\mathcal{K}_{|V_{i}|-1,n_{1}^{(i)}}^{|V_{i}|}\left(n-2ones(x)-|V_{i}|+2n_{1}^{(i)}\right)$$

Elementary Landscape Decomposition of f²

• The elementary landscape decomposition of f^2 is

$$(f^2)^{(0)}(x) = \beta^2 + \frac{c^2}{4}n - \sum_{i=1}^k \frac{c|V_i| + 2\beta}{2^{|V_i|}} + \sum_{i,i'=1}^k \frac{1}{2^{|V_i \cup V_{i'}|}}$$

Computable in $O(nk^2)$

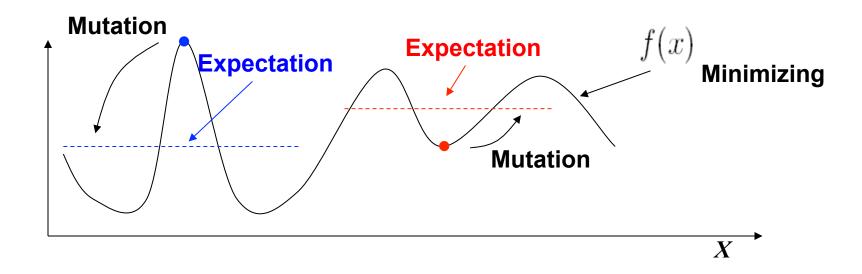
$$\beta = k - cn/2$$

|eta = k - cn/2| Number of tests that cover m_i or $m_{i'}$

$$\begin{split} \left(f^2\right)^{(p)}(x) &= -\sum_{i=1}^k \left(\frac{(c|V_i|+2\beta)(-1)^{n_1^{(i)}}}{2^{|V_i|}}\mathcal{K}_{|V_i|-p,n_1^{(i)}}^{|V_i|}\right) \qquad p > 2 \\ &+ \sum_{i,i'=1}^k \left(\frac{(-1)^{n_1^{(i\vee i')}}}{2^{|V_i\cup V_{i'}|}}\mathcal{K}_{|V_i\cup V_{i'}|-p,n_1^{(i\vee i')}}^{|V_i\cup V_{i'}|}\right) \qquad \text{Number of tests in the solution that cover m_i or $m_{i'}$} \\ &- c\sum_{i=1}^k \frac{(-1)^{n_1^{(i)}}}{2^{|V_i|}}\mathcal{K}_{|V_i|-p+1,n_1^{(i)}}^{|V_i|}\left(n-2ones(x)-|V_i|+2n_1^{(i)}\right) \end{split}$$

Selection Operator

Selection operator



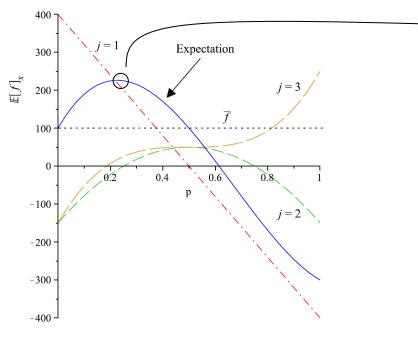
• We can design a selection operator selecting the individuals according to the expected fitness value after the mutation

Regression

Testing

Mutation Operator

- Mutation operator
- Given one individual x, we can compute the expectation against p



- 1. Take the probability *p* for which the expectation is maximum
- 2. Use this probability to mutate the individual

If this operator is used the expected improvement is maximum in one step

(Sutton, Whitley and Howe in GECCO 2011)

Guarded Local Search

With the Elementary Landscape Decomposition (ELD) we can compute:

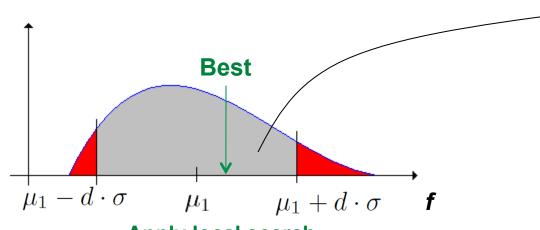
$$\mu_{c} = \arg\{f^{c}(y)\} = {n \choose r}^{-1} \sum_{p=0}^{n} \mathcal{K}_{r,p}^{(n)} (f^{c})^{(p)} (x)$$

• With the ELD of f and f^2 we can compute for any sphere and ball around a solution:

$$\mu_1$$
 : the average

$$\sigma = \sqrt{\mu_2 - \mu_1^2}$$
 : the standard deviation

Distribution of values around the average



Apply local search

Chebyshev inequality

$$100\left(1-\frac{1}{d^2}\right)\%$$

At least 75% of the samples are in the interval

$$[\mu_1 - 2\sigma, \mu_1 + 2\sigma]$$

Guarded Local Search

With the Elementary Landscape Decomposition (ELD) we can compute:

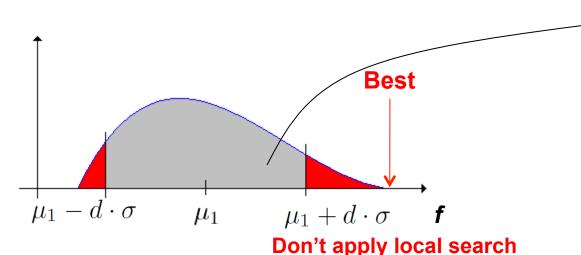
$$\mu_{c} = \arg\{f^{c}(y)\} = {n \choose r}^{-1} \sum_{p=0}^{n} \mathcal{K}_{r,p}^{(n)} (f^{c})^{(p)} (x)$$

• With the ELD of f and f^2 we can compute for any sphere and ball around a solution:

$$\mu_1$$
 : the average

$$\sigma = \sqrt{\mu_2 - \mu_1^2}$$
 : the standard deviation

Distribution of values around the average



Chebyshev inequality

$$100\left(1-\frac{1}{d^2}\right)\%$$

At least 75% of the samples are in the interval

$$[\mu_1 - 2\sigma, \mu_1 + 2\sigma]$$

Guarded Local Search: Experimental Setting

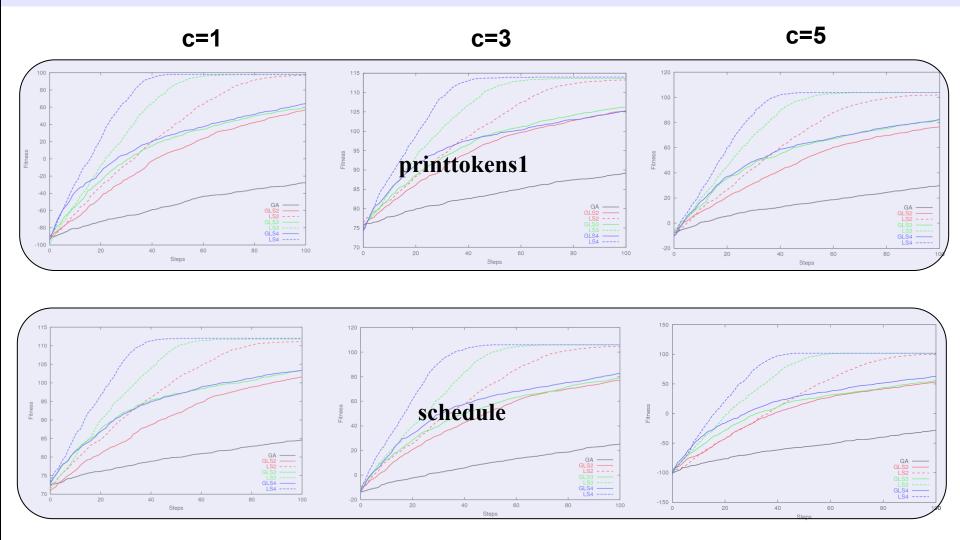
- Steady state genetic algorithm: bit-flip (p=0.01), one-point crossover, elitist replacement
 - GA (no local search)
 - GLSr (guarded local search up to radius r)
 - LSr (always local search in a ball of radius r)
- Instances from the Software-artifact Infrastructure Repository (SIR)
 - printtokens
 - printtokens2
 - schedule
 - schedule2
 - totinfo
 - replace

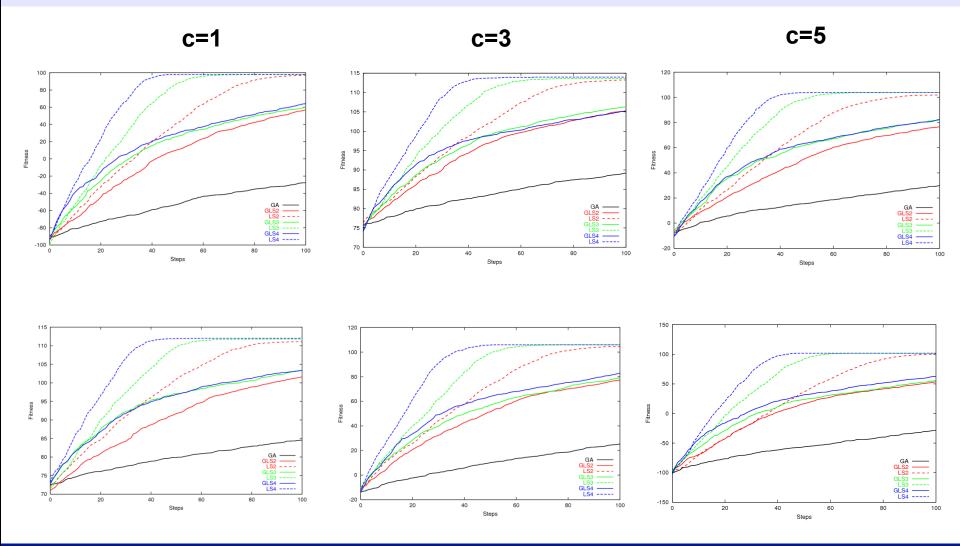
Oracle cost c=1..5

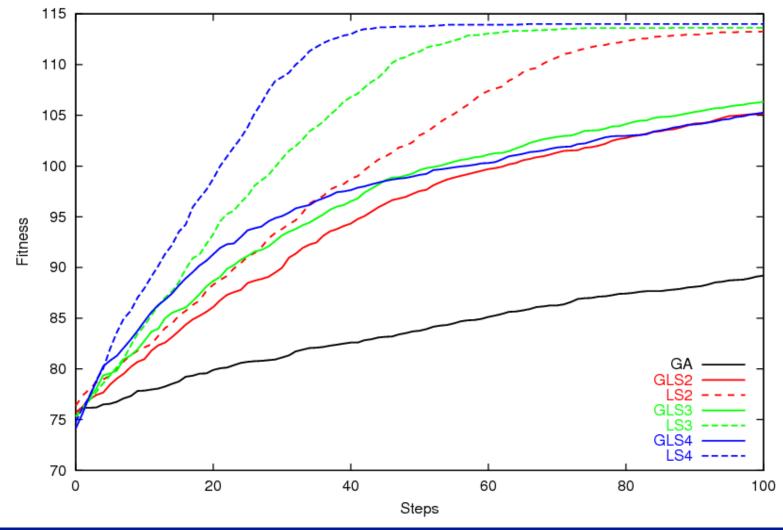
n=100 test cases

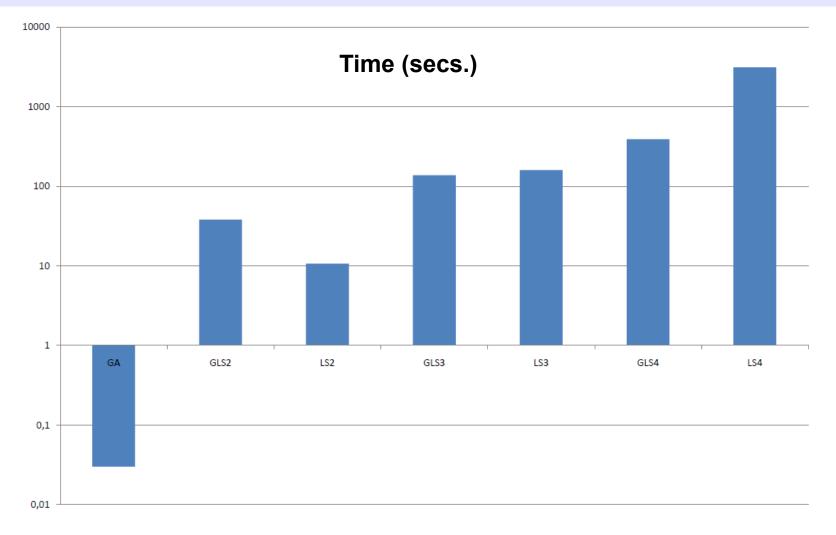
k=100-200 items to cover

100 independent runs









Regression

Testing

Conclusions & Future Work

Conclusions

- Landscape theory provides a promising technique to analyze SBSE problems
- We give the elementary landscape decomposition of the test suite minimization problem
- Using the ELD we can efficiently compute statistics in the neighbourhood of a solution
- We provide a proof-of-concept by proposing a Guarded Local Search operator using the information gained with the ELD

Future Work

- The main drawback of the GLD is runtime: parallelize computation with GPUs
- Expressions for higher order moments (ELD of fc)
- Remove the current constraint on the oracle cost
- Connection with moments of MAX-SAT

Elementary Landscape Decomposition ssbse of the Test Suite Minimization Problem

Thanks for your attention !!!

