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ABSTRACT
Radio network design (RND) is a basic problem in cellu-
lar networks for telecommunications. In these networks, the
terrain must be covered by a set of base stations (or anten-
nae), each of which defines a covering area called cell. The
problem may be reduced to figure out the optimal place-
ment of antennae on candidate sites trying to satisfy two
objectives: to maximize the area covered by the radio signal
and to reduce the number of used antennae. Consequently,
RND is a bi-objective optimization problem. Previous works
have solved the problem by using single-objective techniques
which combine the values of both objectives. The used tech-
niques have allowed to find optimal solutions according to
the defined objective, thus yielding a unique solution in-
stead of the set of Pareto optimal solutions. In this paper,
we solve the RND problem using a multi-objective version
of the algorithm CHC, which is the metaheuristic having
reported the best results when solving the single-objective
formulation of RND. This new algorithm, called MOCHC,
is compared against a binary-coded NSGA-II algorithm and
also against the provided results in the literature. Our ex-
periments indicate that MOCHC outperfoms NSGA-II and,
more importantly, it is more efficient finding the optimal
solutions than single-objectives techniques.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization
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1. INTRODUCTION
Deciding base station (or antenna) locations is a basic task

in the design and deployment of cellular networks as those
used in mobile telecommunication systems. The placement
of an antenna determines the area it covers (also called cell),
therefore taking the decision of where to deploy all the an-
tennae of a network influences the covered area, the cover-
age degree (the number of antennae covering a given region),
and the number of required antennae. Consequently, an ap-
propriate decision making affects directly the quality of the
provided service and the system cost. The problem of find-
ing optimal antenna location is known as Radio Network
Design or RND.

The use of cellular networks is continuously increasing in
the telecommunications sector: mobile telephony (with suc-
cessive generations), wireless networks and, more recently,
sensor networks. The number and complexity of the incom-
ing networks are also growing, from a few tens of antennae
in the first generations of mobile telephony networks to hun-
dreds and thousands in most modern systems (e.g., sensor
networks). As a consequence, it is necessary to make use of
accurate and fast techniques to assist the design of these net-
works, allowing to cope with complex scenarios which should
be unmanageable otherwise. Among these techniques, meta-
heuristics [3] appear as popular tools able to provide satis-
factory results to complex optimization problems in a rea-
sonable amount of time. Thus, genetic algorithms [1, 4],
simulated annealing [2], and differential evolution [12] have
been applied to solve the RND problem. The best results
have been reported using CHC (Cross generational elitist se-
lection, Heterogeneous recombination, and Cataclysmic mu-
tation) [2], a kind of genetic algorithm.

RND may be formulated as a bi-objective optimization



problem, in which two contradictory goals have to be opti-
mized: to maximize the area covered by the radio signal and
to reduce the number of used antennae. However, previous
works have solved the problem using a single-objective for-
mulation by combining the values of both objectives; as a
consequence, a unique solution is provided instead of the set
of Pareto optimal solutions. This way, the decision maker is
not provided with a number of solutions allowing to choose
out of them the most adequate one. In this paper we deal
with the bi-objective formulation of the RND and, instead
of just using well-known multi-objective metaheuristics (e.g.
NSGA-II [6] or SPEA2 [14]), we design a new multi-objective
variant of CHC algorithm called MOCHC. The motivation
driving us is to study whether MOCHC reports the better
results when solving the RND in the multi-objective do-
main in the same way as CHC obtains the best results in
the single-objective formulation of the problem. We are also
interested in comparing both versions of CHC, to determine
if reformulating the problem from single to bi-objective in-
troduces some benefits. The contributions of our work can
be summarized in the following:

• We propose a new multi-objective metaheuristic called
MOCHC, and we apply it to solve the RND problem.

• To assess the performance of MOCHC in the multi-
objective domain, we compare it against NSGA-II.

• We compare the results obtained by MOCHC with
those previously published in the literature related to
the single-objective formulation of RND.

The paper is structured as follows. In the next section, we
detail the RND problem and its single-objective formulation.
Section 3 describes the multi-objective formulation of the
problem. The proposed multi-objective CHC algorithm is
briefly described in Section 4. The results of the experiments
are analyzed in Section 5. Finally, some conclusions and
future lines of research are discussed in the last section.

2. THE CLASSIC RND PROBLEM
Let us assume that we intend to provide radio coverage to

an urban scenario. The covered area is a key factor; ideally,
we want to cover all the surface, but the available resources
are limited and have a cost, so we would like to place as
fewer antennae as possible. The telecommunication com-
pany carries out a preliminary study to get a set of suitable
antenna locations: roofs of high buildings and places with
good visibility (with no nearby obstacles) and far from not
allowed zones (e.g., hospitals or police stations). In our ex-
ample, let us suppose that there are about one hundred of
available sites, which are distributed more or less uniformly
on the area to cover. The RND problem considered in this
work consists of selecting a subset of locations among the set
of available locations to place the antennae on them. The
goal is twofold, because on the one hand we want to maxi-
mize the covered area and, on the other hand, the number of
antennae should be minimized. Both objectives are clearly
in conflict.

To manage the problem information, Calégari et al. [4]
used a terrain discretization according to a square grid model
to represent the area to cover. This model was used in latter
works, and it is the one we use here. The grid used to model
the terrain has a square shape and it contains 287 × 287

squares, which we call target points, each of them represent-
ing an atomic portion of the surface which is either abso-
lutely covered or not. Figure 1 illustrates a simplified model
of terrain discretization using a 10 × 7 grid. The consid-
ered problem is similar to the unicost set covering problem
(USCP), which is known to be NP-hard.

The set of available location sites (ALS) to deploy the
antennae is represented by means of a list of coordinates,
indicating the squares in the grid containing the sites. A
network design consists of a subset of coordinates of the
ALS. Any valid subset is a solution to the RND problem.
The solutions are coded using binary strings having a length
equal to the cardinality of the ALS. Each bit in the string
represents a site of the ALS. A ‘1’ indicates the location of
an antenna in the corresponding site, while a ‘0’ indicates
no location.

The solution space of the problem is the set of possible
values that the solution string can have, and its size, which
depends on the number of available locations, is 2|ALS|. We
define the size of an instance of the problem as the size of
the ALS.

When an antenna is deployed in a site, it offers full cov-
erage to a set of target points centered around the antenna
(cell). In this work we assume the same model used in pre-
vious works: all the antennae produce have associated same
cell shape, independently of its location, and the shape is
a square region of 41 × 41 target points. The shape of the
cell was chosen in such a way that a full coverage (100% of
the area) could be achieved using 49 antennae arranged in
a 7 × 7 grid (7 × 41 = 287). See in Figure 2 the graphical
representation of a partial coverage (left) and a full cover-
age (right) solution for the RND problem. This problem
admits numerous extensions, like defining different types of
antennae, finding their 3D orientation, or propagating sig-
nals according to physical simulation of radio waves, what
really transform the problem in a hard real world applica-
tion [11, 13].

In the design of a cellular network, it is preferable an in-
crement of the covered area instead of using fewer antennae.
In [4] a function measuring the quality of the solutions (fit-
ness function) was defined (Equation (1)). This fitness func-
tion, which has to be maximized, allows to combine both
factors, coverage and number of antennae, into a unique
value, so single-objective techniques could be applied:

f(~x) =
Coverage(~x)α

Number of antennae(~x)
(1)

where Coverage is the ratio (in percentage) between the
covered target points and the total number of target points
(287 in our problem instance). In this formulation, the pa-
rameter α allows to adjust the ratio of importance between
coverage and number of antennae. In Calégari et al. [4] a
value α = 2 is suggested.

3. MULTI-OBJECTIVE FORMULATION
The RND problem previously described follows a single-

objective formulation: there are two parameters to optimize,
and they are combined in a unique fitness value. A multi-
objective approach raises naturally by considering each ob-
jective as a separate goal. This way, we can define two
functions to optimize, which are detailed in Equations (2)
and (3). The two functions are to be minimized.



Figure 1: True antenna coverage (left). Discretized coverage using a grid model (right)

Figure 2: Graphical representation of a partial covered solution (left) and a full covered solution (right)

f1(~x) = Number of antennae(~x) (2)

f2(~x) = 100− Coverage(~x) (3)

Switching from a single-objective to a multi-objective per-
spective has a strong influence in the search process. Given
that we do not intend to find a unique optimal solution but
the Pareto optimal set, the search diversification must be in-
creased. This is interesting when employing metaheuristics,
but it can be harmful if it produces an imbalance in the
trade off diversification/intensification. The consequences
can be serious if there exist subsets of solutions which are
non-dominated but they are not very useful to the decision
maker. In the case of the RND problem, those solutions
having few antennae are not interesting because the result-
ing coverage is poor, and they are implicitly penalized in
the single-objective formulation (see Equation (1)) using a
value of α > 1, what makes the coverage to be the main ob-
jective instead of the number of antennae. In the proposed
multi-objective formulation, we restrict the search including
constraints indicating the range of desired values by defin-
ing two side constraints: a maximum of 60 antennae must

be used (Equation (4)), and the solutions must achieve at
least a 90% of coverage (Equation (5)). This way, we avoid
wasting time exploring unpromising regions of the search
space.

c1(~x) =


f1(~x)− 60 (f1(~x) > 60)
0 (f1(~x) ≤ 60)

(4)

c2(~x) =


f2(~x)− 10 (f2(~x) > 10)
0 (f2(~x) ≤ 10)

(5)

These constraints must be taken into account by the meta-
heuristic used to solve the problem. A foreseeable conse-
quence of these constraints is that the feasible region of the
search space is reduced, with a positive effect on the results.

The Pareto front of the RND problem studied in this work
can be obtained analytically. Let us consider the following
proposition:

Proposition 1. The Pareto front of the instances we use
in this work is composed of points

(x, y) =
“
n, 100 ·

“
1− n

49

””
(6)
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Figure 3: Pareto front of the considered RND in-
stance problem

where n ∈ [0, 49] is the number of antennae (first objec-
tive) and the second component is the percentage of uncov-
ered terrain (second objective).

Proof. For any given number n of antennae, the maxi-
mum coverage that can be achieved ideally by placing those
antennae is n times the coverage of a single antenna. This
happens if all the cells associated to these antennae are com-
pletely included inside the terrain area, and no overlap ex-
ists between any two of those cells. In our instances of the
problem, the coverage of a single antenna consist of 41× 41
target points, i.e., 1/49 (or 2.04%) of the total terrain area
(287× 287 points). Complete coverage can be achieved op-
timally using 49 antennae by placing them in the 49 prede-
fined locations (included in the ALS) such that all the cov-
erage regions are included inside the terrain, and no overlap
is produced. By definition, if we place antennae in any sub-
set of locations selected amongst those 49, all the coverage
regions will still be included in the terrain and no overlap
will be produced. Therefore, the Pareto front contains the
solutions having (n antennae, 100 ·n/49 coverage). Or, if we
express it in terms of uncoverage (terrain without coverage)
rather than coverage, we get Equation 6.

The resulting Pareto front is shown in Figure 3. The point
consisting of 49 antennae and 0% of terrain without coverage
is the optimal solution produced by the single-objective al-
gorithms. The figure also includes the lines representing the
constraints (coverage of 90%, a maximum of 60 antennae).

4. MOCHC: A MULTI-OBJECTIVE CHC
ALGORITHM

The algorithm CHC was proposed by Eshelman in 1991 [8].
It is an evolutionary algorithm which has not been widely
used in the literature, although it has reported very good
results [2, 5]. CHC works with a population of solutions,
and follows a typical iterative behavior, producing in every
step new solutions which are incorporated into the popu-
lation replacing existing ones. The pseudocode of CHC is
shown in Algorithm 1.

4.1 Classic CHC Algorithm
CHC was designed to work with binary-coded solutions.

The algorithm works with a population of individuals (Pa

Algorithm 1 CHC

t← 0
Initialize(Pa, convergence count, k) // Pa: population
while not ending condition(t, Pa) do

Parents← Selection parents(Pa, convergence count)
Offspring ← HUX(Parents)
Evaluate(Offspring)
Pn← Elitist selection(Offspring, Pa) // Pn: new pop.
if not modified(Pa,Pn) then

convergence count← convergence count− 1
if convergence count ≤ −k then

Pn← Restart(Pa)
Initialize(convergence count)

end if
end if
t← t + 1
Pa← Pn

end while

in Algorithm 1). In every step, a new set of solutions (Pn) is
produced by selecting pairs of solutions from the population
(the parents) and recombining them. This selection is made
in such a way that individuals which are too similar cannot
mate each other. CHC can be viewed as a kind of genetic
algorithm which does not apply mutation to produce new
solutions, but only a recombination mechanism called HUX.
This procedure copies first the common information of both
parents into both offspring, then copies half of the diverging
information from each parent to each of the offspring, so that
the Hamming distance among offspring and parents is the
maximum. This is done in order to preserve the maximum
amount of diversity in the population, as no new diversity is
introduced during the iteration because there is no mutation
operator. The next population is formed according to an
elitist criterion, based on selecting the best individuals in
the old population, and adding the new set of solutions Pn.

The absence of mutation and the selection elitist crite-
rion make the population to converge. To delay this pro-
cess, CHC applies an incest prevention mechanism: parent
selection is carried out choosing individuals randomly, but
the recombination is only performed if the parents are not
very similar, i.e., if the Hamming distance between them
is greater than a given threshold value (convergence count
in Algorithm 1). As the execution of the algorithm pro-
gresses, the population becomes more homogeneous and the
number of solutions fulfilling the incest condition augments;
as a consequence, the incest threshold has to be progres-
sively decreased. Whenever an iteration has finished and
the population remains unchanged, the convergence count
is decreased in one unit.

When the incest threshold gets to 0 (the minimum dis-
tance to combine two solutions is 0), after k iterations with
no new individuals in the population it is assumed that the
population has converged and the algorithm is stalled. A
mechanism is then used to generate new diversity in the
population: a restart. When restarting, the best solutions
remain unchanged, and the rest are significantly (cataclysmi-
cally) modified using a bit-flip mutation with very high prob-
ability (in [8] a probability of 35% is suggested).

4.2 Multi-Objective CHC
The multi-objective version of the CHC algorithm that we

propose, called MOCHC, is based on the algorithm previ-
ously described. The most important modification concerns



Table 1: Parameter settings of MOCHC
Population size 100
Crossover HUX
Cataclysmic mutation Bit flip, Pm = 35%
Preserved population 5%
Initial convergence count 25% of the problem instance size
Convergence value k 1
Parent selection Random with incest threshold
New generation selection Elitist selection
Ordering criterion Ranking and crowding distance

Table 2: Parameter settings of NSGA-II
Population size 100
Mutation Bit flip, Pm = 1/L

(L = string length)
Crossover SPX, Pc = 0.95
Parent selection Binary tournament
New generation selection Elitist selection
Ordering criterion Ranking and crowding distance

the elitist selection mechanism; instead of ordering the so-
lutions according to a single scalar value, in MOCHC the
solutions are ordered using a ranking and a crowding dis-
tance estimator similar to those used in NSGA-II [6]. Thus,
the non-dominated solutions in the population are selected
and removed from it, constituting the subset of rank 1. This
process is iteratively repeated on the remaining individuals
to obtain the subsets of rank 2, 3, and so on; the stopping
condition is that the sum of the individuals in the obtained
subsets is equal or greater than the population size. In the
second case, the crowding distance estimator is applied to
the solutions in the last subset to choose among them those
having the bigger distance values.

When the population is stalled the restarting is applied
by using a high disruptive mutation to all the solutions ex-
cept to the best ones. In the single-objective CHC the solu-
tions having best fitness were selected; in the multi-objective
version this would mean to preserve the non-dominated so-
lutions. Our approach to the restart process is to keep a
percentage of the solutions which are selected after order-
ing them by ranking and crowding distance. The number
of preserved solutions is a parameter of the algorithm; after
performing a number of preliminary experiments, we choose
a value of 5%. We include in Table 1 the parameter settings
of MOCHC in this work.

To cope with the constraints presented in our formula-
tion of the RND problem, we apply the same mechanism
used in NSGA-II: when two solutions are to be compared,
the one having less overall constraint violation is preferred;
otherwise, a Pareto dominance test is applied.

5. EXPERIMENTS
The RND instances solved in this work are the same used

previously in [1] and [2]. All of them are RND instances
using antennae providing a square coverage, as it was de-
scribed in Section 2. The smaller instance has 149 transmit-
ters, and additional random transmitter locations are added
to get four new instances with 199, 249, 299, and 349 loca-
tions. In all the instances the optimum solution is the same
as for the canonical 149 problem, and the random transmit-
ters are added to deceive the solvers.

For each experiment, 50 independent runs have been exe-
cuted to ensure statistical confidence. We include the mean
and standard deviation in the tables (Tables 3 and 4), and

the best result has a grey color background. Since we are
dealing with stochastic algorithms, the following statistical
analysis has been performed in all this work [7]. Firstly,
a Kolmogorov-Smirnov test is performed in order to check
whether the values of the results follow a normal (gaussian)
distribution or not. If so, an ANOVA test is done, other-
wise we perform a Kruskal-Wallis test. We always consider
in this work a confidence level of 95% (p-value under 0.05)
in the statistical tests, which means that the differences in
the results cannot have occurred by chance with a probabil-
ity of 95%. Successful tests are marked with “+” symbols
in the last column in the tables; conversely, “−” means that
no statistical confidence was found (p-value > 0.05).

The stopping condition is to find the optimal solution
described in [1] (100% coverage with 49 antennae) or to
perform one million of function evaluations; this way, we
can make a comparison between the results obtained by
MOCHC and among those presented in [1] and [2].

All the instances include the coordinates of the 49 loca-
tions allowing a coverage of 100% with the minimum num-
ber of antennae. As it was previously commented, these
locations provide the optimal solution found in previous
works, and they allow us to decide that the problem has
been solved. The fitness function defined in Equation (1)
applied to these solutions produces a value of 204.082.

To determine how competitive the proposed multi-objective
CHC algorithm is, we have made two types of studies. On
the one hand, we compare MOCHC against NSGA-II [6], a
state-of-the-art multi-objective optimization algorithm. We
have used a binary-coded NSGA-II with the parameter set-
tings shown in Table 2. The mutation and crossover opera-
tors are, respectively, bit flip and SPX (single point crossover).
The mutation probability Pm is 1/L, where L is the chro-
mosome length (the length of the ALS in the case of RND),
and the crossover probability Pc is 0.95. On the other hand,
we compare the results obtained by MOCHC against those
obtained by single-objective metaheuristics in [1]: classic
CHC, simulated annealing (SA), and dssGA8 (an eight is-
land distributed genetic algorithm).

5.1 Metrics
To compare MOCHC and NSGA-II we use the hypervol-

ume metric. This metric calculates the volume (in the ob-
jective space) covered by members of a non-dominated set
of solutions Q (the region enclosed into the discontinuous
line in Fig. 4, Q = {A,B,C}) for problems where all ob-
jectives are to be minimized [15]. Mathematically, for each
solution i ∈ Q, a hypercube vi is constructed with a ref-
erence point W and the solution i as the diagonal corners
of the hypercube. The reference point can simply be found
by constructing a vector of worst objective function values.
Thereafter, a union of all hypercubes is found and its hy-
pervolume (HV ) is calculated:

HV = volume

0@ |Q|[
i=1

vi

1A . (7)

Algorithms with larger values of HV are desirable. Since
this metric is not free from arbitrary scaling of objectives,
we have evaluated the metric by using normalized objective
function values.

The second metric we use is the computational effort (CE),
which will allow us to compare MOCHC (and NSGA-II)
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Figure 4: The hypervolume enclosed by the non-
dominated solutions.

against single-objective metaheuristics. This metric is de-
fined as the number of solutions that have to be evaluated
to solve the problem (to find the optimal solution). Lower
values of CE are desirable: when comparing different tech-
niques, the one having the lowest CE value is the most
efficient one. Although were are dealing with two differ-
ent types of techniques, single and multi-objective, we can
compare them using CE because all of them use the same
stopping condition (to find the optimal configuration defined
in [1]).

5.2 Results
We analyze first the results obtained with the CE metric

by all the algorithms, which are included in Table 3. At a
first glance, it can be observed that the multi-objective al-
gorithms are more efficient than the single-objective ones.
MOCHC achieves a CE reduction compared against the
classic CHC between 40% (149-size instance) and 59% (349-
size instance). If we compare MOCHC against SA, the
improvements are between 75% and 80%. If we take into
account NSGA-II, this algorithm performs worse than the
classic CHC in the 149-size instance (24% worse), but in
the rest of the instances the improvements oscillate between
5% (199-size instance) and 24% (349-size instance). The
comparison against SA is clearly favorable (improvements
between 57% and 69%). In general, it can be observed that
the larger the instance size (and, consequently, the problem
complexity) the better the results obtained by the multi-
objective metaheuristics.

We proceed now to analyze the two multi-objective meta-
heuristics. Considering the CE metric, MOCHC achieves
better results than NSGA-II with statistical confidence: its
CE values are better than the ones of NSGA-II in a range
between 43% and 52%. The HV metric (see Table 4) in-
dicates also that the non-dominated solution sets obtained
by MOCHC produce statistically better Pareto fronts than
NSGA-II.

In Figure 5 we include an execution trace of the two multi-
objective metaheuristics. In both cases, we represent the
populations in the objective space in different phases of the
execution of the algorithms, corresponding to the initial pop-
ulation and the solutions obtained after 2000, 6000, 14000,
and 30000 (only NSGA-II) evaluations.

We can observe that the behavior of the two algorithms
is similar: first, the populations concentrate inside the non-
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Table 3: Computation effort (CE) metric values (number of evaluations)
Instance size Single-objective techniques Multi-objective techniques

SA [2] CHC [2] dssGA8 [1] MOCHC NSGA-II
149 8, 676e+4 5,12e+4 3, 032e+4 2,84e+4 7, 859e+5 1, 814e+4 6,50e+3 3, 745e+4 8,17e+3 +
199 1, 970e+5 8,54e+4 7, 862e+4 5,95e+3 1, 467e+6 3, 998e+4 1,07e+5 7, 479e+4 1,55e+4 +
249 3, 341e+5 1,13e+5 1, 486e+5 9,67e+4 2, 481e+6 7, 723e+4 2,29e+4 1, 418e+5 5,95e+4 +
299 6, 380e+5 1,80e+5 2, 289e+5 1,85e+5 2, 998e+6 1, 136e+5 3,24e+4 1, 987e+5 4,46e+4 +
349 8, 108e+5 2,75e+5 3, 802e+5 2,03e+5 4, 710e+6 1, 574e+5 4,68e+4 2, 871e+5 8,15e+4 +

Table 4: Hypervolume (HV ) metric values
Instance Size MOCHC NSGA-II

149 4, 672e-1 1,90e−2 4, 605e-1 2,16e−2 +
199 4, 726e-1 1,00e−2 4, 669e-1 2,11e−2 +
249 4, 699e-1 1,54e−2 4, 701e-1 1,17e−2 –
299 4, 730e-1 1,00e−2 4, 726e-1 6,20e−3 +
349 4, 731e-1 8,40e−3 4, 714e-1 9,60e−3 +

penalized search region and then, once inside it, they expand
to explore the search space, converging progressively to the
Pareto front. As it can be seen in Figure 5, MOCHC con-
verges faster than NSGA-II, approaching the Pareto front
after computing about 14000 function evaluations, while
NSGA-II requires around 30000. We also observe that, when
the non-penalized region has been reached, MOCHC main-
tains a more diversified population while NSGA-II tends to
concrete all the population in a front of solutions.

5.3 Discussion
The CHC algorithm was the best technique to solve the

single-objective RND problem in [2], where other four meta-
heuristic algorithms were studied (a simulated annealing,
a steady-state genetic algorithm, a generational genetic al-
gorithm, and a distributed steady-state genetic algorithm).
The results presented in the previous section have shown
that the multi-objective version of CHC is even better, re-
quiring less computational effort than the classic CHC algo-
rithm to find the same optimal solution in all the considered
problem instances.

This better performance of MOCHC can be explained ac-
cording to several facts. First, the inclusion of two side con-
straints in the multi-objective formulation certainly restricts
the search space, what works in favor of the multi-objective
algorithms. Second, we have to consider the concept of
multi-objectivization, introduced by Knowles, Watson, and
Corne in [10]. The idea is that defining a multi-objective
formulation of a single-objective optimization problem can
implicitly reinforce diversification, so the search for the op-
timal solution is less likelihood of becoming trapped in a
local minimum. Multi-objectivization was studied in [10]
in the context of hill-climbing solvers; our experiences with
CHC indicate that this behavior may possibly be extended
to other metaheuristics. Finally, we have to consider that
we implemented MOCHC from scratch, instead of taking as
starting point the CHC implementation used in [2], so there
may some differences in the behavior of the two algorithms.

Deeping in the concept of multi-objectivization, we have
to consider that the RND problem is multi-objective in na-
ture, so there is no need of finding artificial or helper objec-
tives [9]. Furthermore, in [10] it was stated that the relation
expressed in Equation (8) should hold:

∀~xopt ∈ ~Xopt, ∃~x∗ ∈ ~X∗/~x∗ = ~xopt (8)

where ~xopt is an optimal solution to the single-objective
problem, ~Xopt is the set of such solutions, and ~x∗ and ~X∗

have the same meaning considering the multi-objective for-
mulation of the problem. This expression implies that the
global optimum of the single-objective problem is one of the
solutions of the Pareto optimal set in the multi-objective
problem. This condition holds in the case of RND; in fact,
the stopping condition of the multi-objective algorithms is
to reach a solution fulfilling Equation (8).

In multi-objective optimization metaheuristics convergence
in the populations is not a big problem, since the Pareto
front is inherently formed of diverse points; thus, the restart
mechanism of MOCHC can be freely modulated for the
problem at hands (even disabled).

6. CONCLUSIONS AND FUTURE WORK
In this paper we solve the RND problem using a multi-

objective formulation of the problem. Our main contribu-
tion is MOCHC, a multi-objective version of CHC, a kind
of genetic algorithm. We have evaluated MOCHC against
NSGA-II, a state-of-the-art algorithm for multi-objective
optimization, and the obtained results have been compared
with those reported in the literature using single-objective
metaheuristics.

The experiments carried out reveal that the multi-objective
formulation of the RND is particularly adequate, because
the existing results have been improved. The profit of using
this approach is twofold: first, the optimal solutions are ob-
tained using a less number of function evaluations; second,
instead of a single solution, the Pareto optimal set is ob-
tained, thus allowing the decision maker to choose the best
coverage/cost tradeoff solution.

MOCHC has proven to be more efficient than NSGA-II,
requiring about a 50% of less computation effort to get the
Pareto front. Furthermore, the accuracy of MOCHC is also
better than for NSGA-II in four out of the five instances
solved (with statistical confidence).

Some lines of future work include solving more complex
formulations of the RND, considering different types of an-
tennae, as well as comparing MOCHC against other state-



of-the-arts metaheuristics to study whether the feature of
fast convergence shown in this work also holds when solving
other multi-objective optimization problems different from
RND.
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Juan M. Sánchez Pérez. Proceedings of the Second
IEEE International Conference on e Science, and Grid
Computing. A differential evolution based algorithm
to optimize the radio network design problem. In
Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing., 2006.

[13] Larry Raisanen and Roger Whitaker. Comparison and
evaluation of multiple objective genetic algorithms for
the antenna placement problem. Mobile Networks and
Applications, 10:79–88, 2005.

[14] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland, 2001.

[15] E. Zitzler and L. Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the
Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.


