
Optimal Wireless Sensor Network Layout with
Metaheuristics: Solving a Large Scale Instance

Enrique Alba, Guillermo Molina

Departamento de Lenguajes y Ciencias de la Computación
University of Málaga, 29071 Málaga, Spain
eat@lcc.uma.es guillermo@lcc.uma.es

1 Introduction

Nowadays, the trend in telecommunication networks is having highly decentral-
ized, multinode networks. From small, geographically close, size-limited local
area networks the evolution has led to the huge worldwide Internet. This same
path is being followed by wireless communications, where we can already see
wireless telephony reaching virtually any city in the world.

Wireless networks started as being composed by a small number of devices
connected to a central node. Recent technological developments have enabled
smaller devices with computing capabilities to communicate in the absence of
any infrastructure by forming ad-hoc networks. The next step in wireless com-
munications begins with ad-hoc networks and goes towards a new paradigm:
Wireless Sensor Networks (WSN) [1].

A WSN allows an administrator to automatically and remotely monitor al-
most any phenomenon with a precision unseen to the date. The use of multiple
small cooperative devices yields a brand new horizon of possibilities yet offers a
great amount of new problems to be solved.

We discuss in this paper an optimization problem existing in WSN: the layout
(or coverage) problem [2, 3]. This problem consists in placing sensors so as to get
the best possible coverage while saving as many sensors as possible. A genetic
algorithm has already been used to solve an instance of this problem in [3]. In
this paper we define a new instance for this problem, and tackle it using some
metaheuristic techniques [4, 5, 6] and solve a large dimension instance.

This work is structured as follows. After this introduction, the WSN layout
problem (WSN problem for short) will be presented, and its formulation de-
scribed in Section 2. Section 3 explains the optimization techniques employed
for solving this problem. Then in Section 4 the experiments performed and the
results obtained are analyzed. Finally, Section 5 shows the conclusions and future
work.

2 WSN Problem

In this section we describe the layout problem for WSN, then present the for-
mulation employed for its resolution.



2.1 Problem Description

A Wireless Sensor Network allows to monitor some physical set of parameters
in a region known as the sensor field. When a WSN is placed in the sensor field,
every sensor monitors a region of the field; ideally the complete network is able
to monitor all the field by adding all the pieces of information together. It is the
duty of the designer to establish what is the sensor field that the WSN has to
monitor.

A node sensing area (the area that a single sensor can sense) can be modelled
with a circle whose radius RSENS -or sensing radius- indicates the sensing range
of the sensor. The value of this range is determined by both the magnitude that
is sensed and the sensor itself (hardware employed). Similarly, RCOMM , the
communication radius of a sensor, defines the circle where any other sensor can
establish a direct communication link with it. The value of this range depends
on the environment, the radio hardware, the power employed and other factors.

When a WSN is deployed in the sensor field, the sensors form a wireless ad-
hoc network in order to communicate their sensing results to a special station
called the High Energy Communication Node (HECN). The data can then be
analyzed by the HECN processor, or be accessed by the network administrator.
Any sensor unable to transmit its sensing data to the HECN is useless. The
sensing information is not sent through a direct link to the HECN, but rather a
hop by hop communication is employed. Thus, for any node to be useful, it has
to be within communication range of another useful node.

The sensing area of the WSN is the union of the individual sensing areas
of all the useful nodes. The designer wants the network to cover the complete
sensing area, or, if this is unfeasible, to cover as much of it as possible. On the
other hand, the number of sensor nodes must be kept as low as possible, since
using many nodes represents a high cost of the network, possibly influences the
environment, and also provokes a high probability of detection (when stealth
monitoring is desired).

The problem of designing the layout for a WSN can be defined as an exten-
sion of an existing problem: the radio network design problem (RND) [7]. The
objective of this problem is to maximize the sensing area of the network while
minimizing the number of sensors deployed.

2.2 Problem Formulation

For this work we employ a square terrain as the sensor field, and use a discrete
model to represent it. This model is a 287× 287 point grid as in [7], where every
point can be either monitored or not.

Sensor nodes can only be placed in some of those field points. If a sensor can
communicate with the HECN, then a discretized circular area around its location
is considered to be monitored. The available field points for placing the sensors
are given as an ordered list (the Available Location Sites, ALS for short) that
constitutes the specific problem instance. Figure 3 shows a graphical example of
a WSN instance (left) and a solution layout with its underlying topology (right).



t:= 0;
Initialize(T,Sa);
while not end condition(t,Sa) do

while not cooling condition(t)
Sn := Choose neighbor(Sa);
Evaluate(Sa,Sn);
if Accept(Sa,Sn,T) then

Sa := Sn;
end if
t := t+1;

end while
Cooldown(T);

end while

Fig. 1. Pseudocode for SA

The WSN problem can be reduced to selecting from the list of available
points a subset of locations that form the optimal sensor network. The list is
ordered so that any bit string of the same length a the ALS represents a solution
attempt to the problem (the ’1’s in the string indicating the chosen locations).

From the previous definition of the problem, a fitness function that combines
both objectives is employed [7] (Equation 1). The objective is to maximize the
fitness value of the solution.

f(x) =
Coverage(x)2

Nb. of sensors(x)
, Coverage(x) = 100 · Covered points

Total points
(1)

3 Optimization Techniques

In this section, we describe the two techniques used to solve the problem: simu-
lated annealing and CHC.

3.1 SA Algorithm

Simulated annealing is a trajectory based optimization technique. It was first
proposed by Kirkpatrick et al. in [5]. SA is a fairly commonly used algorithm
that provides good results and constitutes an interesting method for comparing
results and test other optimizing methods. The pseudocode for this algorithm is
shown in Fig. 1.

The algorithm works iteratively and keeps a single tentative solution Sa at
any time. In every iteration, a new solution Sn is generated from the old one,
Sa, and depending on some acceptance criterion, it might replace it.

The acceptance criterion is the true core of the algorithm. It works as follows:
both the old (Sa) and the new (Sn) solutions have an associated quality value
- determined with a fitness function. If the new solution is better than the old
one, then it will replace it. If it is worse there is still some chance that it will
replace it. The replacing probability is calculated using the quality difference
between both solutions and a special control parameter T named temperature.



The acceptance criterion ensures a way of escaping local optima by choosing
solutions that are actually worse than the previous one with some probability.
That probability is calculated using Boltzmann’s distribution function:

P =
2

1 + e
fitness(Sa)−fitness(Sn)

T

(2)

As iterations go on, the value of the temperature parameter is progressively
reduced following a cooling schedule, thus reducing the probability of choosing
worse solutions and increasing the biasing of SA towards good solutions. In
this work we employ a geometric rule, such that every k (Markov chain length)
iterations the temperature is updated as T (n + 1) = α · T (n), where 0 < α < 1
is called the temperature decay.

3.2 CHC Algorithm

The second algorithm we propose for solving the RND problem is Eshelman’s
CHC (Cross generational elitist selection, Heterogenous recombination, and Cat-
aclysmic mutation), a kind of Evolutionary Algorithm (EA) surprisingly not used
in many studies despite it has unique operations usually leading to very efficient
and accurate results [6]. Like all EAs, it works with a set of solutions (population)
at any time. The algorithm proceeds iteratively, producing new solutions at each
iteration, some of which will be placed into the population replacing others that
were previously included. The pseudocode for this algorithm is shown in Fig. 2.

The algorithm CHC works with a population of individuals (solutions) that
we will refer to as Pa. In every step, a new set of solutions is produced by select-
ing pairs of solutions from the population (the parents) and recombining them.
This selection is made in such a way that individuals that are too similar can not
mate each other, and recombination is made using a special procedure known as
HUX (Half Uniform crossover). This procedure copies first the common infor-
mation for both parents into both offspring, then it translates half the diverging
information from each parent to each of the offspring. This is done in order to
preserve the maximum amount of diversity in the population, as no new diver-
sity is introduced during the iteration (there is no mutation operator). The next
population is formed by selecting the best individuals among the old population
and the new set of solutions (elitist criterion).

As a result of this, at some point of the execution, population convergence
is achieved, so the normal behavior of the algorithm should be to stall on it.
A special mechanism is used to generate new diversity when this happens: the
restart mechanism. When restarting, all of the solutions except the very best
ones are significantly modified. This way, the best results of the previous phase
of evolution are maintained and the algorithm can proceed again.

4 Tests and Results

In this section we describe the experiments and present the results obtained
using the two algorithms described in Section 3. The results are then analyzed



t:=0;
Initialize(Pa,convergence count);
while not ending condition(t,Pa) do

Parents := Selection parents(Pa);
Offspring := HUX(Parents);
Evaluate(Offspring);
Pn := Elitist selection(Offspring,Pa);
if not modified(Pa,Pn) then

convergence count := convergence count-1;
if (convergence count == 0) then

Pn := Restart(Pa);
Initialize(convergence count);

end if
end if
t := t+1;
Pa := Pn;

end while

Fig. 2. Pseudocode for CHC

rigorously in order to determine the statistical confidence of the observed differ-
ences.

The instance solved in this work is a very large instance (1000 available
locations), specially if compared with the previously existing work [7] where the
biggest instance had only 349 available locations. The sensor field is modelled
by a 287 × 287 point grid. All sensors behave equally and both their sensing
and communication radii are set to 22 terrain points. The ALS is formed by
1000 locations randomly distributed over the sensor field following a uniform
distribution. Figure 3 illustrates the instance of the problem, and shows a random
solution for this instance using 167 sensors and covering 56.76% of the sensor
field. The low quality achieved by random search, the NP nature of the problem,
and its high dimensionality clearly suggest the utilization of metaheuristics.

The models and parameters employed in our problem instance are summed
up in Table 1.

Concept Model
Sensor Field 287× 287 point grid
ALS 1000 points, uniform distribution
Solution Bit string (1000 bits)
RSENS 22 points
RCOMM 22 points

Table 1. Models and parameters

The problem is solved using simulated annealing (SA) and CHC. The same
instance of the problem is used for both algorithms, and a parameter tuning is
made to get good results from them (the values of the parameters can be seen
in Table 2). We will analyze the algorithm’s effectiveness for solving the prob-
lem by inspecting the fitness obtained. The influence of the number of solution
evaluations will also be studied by running several experiments with both algo-



T
e
rr

a
in

 p
o
in

ts
 (

ro
w

s
)

Terrain points (columns)
0 50 100 150 200 250

0

50

100

150

200

250

HECN

T
e
rr

a
in

 p
o
in

ts
 (

ro
w

s
)

Terrain points (columns)
0 50 100 150 200 250

0

50

100

150

200

250

HECN

Fig. 3. Available sites in the problem instance (left), random solution (right)

rithms using increasingly higher number of allowed evaluations. The number of
evaluations will range from 100, 000 up to 1, 000, 000.

Algorithm CHC Algorithm SA
Population size 100 Mutation Bit flip prob. 1/Length
Crossover HUX Markov-Chain length 50
Cataclysmic mutation Bit flip with prob. 35% Temperature decay 0.99
Incest threshold 25% of instance size Initial temperature 1.05
Selection of parents Random
Selection of next generation Elitist

Table 2. Parameters of the algorithms

For every experiment the results are obtained by performing 30 independent
runs, then averaging the fitness values obtained in order to ensure statistical
confidence. Table 3 summarizes the results obtained for this study. Analysis of
the data using Matlab’s ANOVA/Kruskal-Wallis test plus Multcompare function
has been used to get statistical confidence on the results with a confidence level
of 95%. A minimum mean square error approximation function is calculated
(from a list of standard functions) to estimate the relation between the average
fitness value and the allowed number of evaluations, for both SA and CHC.

Evals. 50,000 100,000 200,000 300,000 400,000 500,000 1,000,000

SA 74.793 76.781 78.827 79.836 80.745 81.602 84.217
CHC 75.855 83.106 87.726 89.357 90.147 90.974 92.107

Table 3. Fitness results



0 1 2 3 4 5 6 7 8 9 10 11

x 10
5

70

75

80

85

90

95

Evaluations

F
it
n

e
s
s

SA
Approximation

0 1 2 3 4 5 6 7 8 9 10 11

x 10
5

70

75

80

85

90

95

Evaluations

F
it
n

e
s
s

CHC
Approximation

Fig. 4. Results obtained with SA and approximation (left), results obtained with CHC
and approximation (right)

From the results in Table 3 we can state that the average fitness obtained
with either SA or CHC improves when the number of evaluations is increased. In
the first case (SA) the average fitness goes from 74.793 for 50, 000 evaluations to
84.217 for 1, 000, 000 evaluations. In the second case (CHC) it goes from 75.855
to 92.107. Analysis of the data shows that the increment of the fitness values is
meaningful for both algorithms when the difference in number of evaluations is
bigger than 100, 000.

When it comes to comparing the two algorithms, CHC outperforms SA. The
average fitness value obtained for any number of evaluations is greater using
CHC than using SA. The analysis of the data confirms that CHC’s results are
significantly better than SA’s for any number of evaluations except 50, 000, for
which they are equivalent. Furthermore, the executions using CHC have outper-
formed the ones using SA that performed five times more solution evaluations.
CHC with 100, 000 and 200, 000 evaluations has outperformed SA with 500, 000
and 1, 000, 000 evaluations respectively (though analysis couldn’t show the sig-
nificance at 95% confidence). CHC with 200, 000 and 500, 000 evaluations is sig-
nificantly better than SA with 500, 000 and 1, 000, 000 evaluations respectively.

The improvement obtained augmenting the number of evaluations is sublineal
and is best modelled for this range of values using a logarithmic function for both
SA and CHC. Figure 4 shows the average fitness obtained by both algorithms
in the different experiments as well as the mathematical models calculated for
them. Equations 3 and 4 show the mathematical models for the fitness values
obtained using SA and CHC respectively.

SAfitness(evals) = 3.556 · log(evals/100, 000 + 0.287) + 75.733 (3)
CHCfitness(evals) = 3.155 · log(evals/100, 000− 0.459) + 85.867 (4)



5 Conclusions

We have defined a coverage problem for wireless sensor networks with its in-
nate connectivity constraint. A very large instance containing 1, 000 available
locations has been solved for this problem using two different metaheuristic
techniques: simulated annealing and CHC.

CHC has been able to solve the problem more efficiently than SA. In our ex-
periments CHC has been able to reach high fitness values with an effort (number
of performed solution evaluations) less than five times smaller than the effort
required by SA to reach that same fitness. The average fitness obtained by any
of the algorithms improves if the allowed number of evaluations per execution is
increased within the range employed for our experiments (50, 000 to 1, 000, 000
evaluations), however their growths are sublineal. Mathematical models for this
dependence have been calculated for both algorithms, resulting in logarithmic
functions modelling SA’s and CHC’s fitness growth.

In future work the effect of the relation between sensing and communication
radii will be studied. We also plan to redefine the problem so as to be able to
place the sensors anywhere in the sensor field (instead of only in the available
positions), and also take into account the power constraints existing in WSN
(much harder than in other systems).

Acknowledgements

This paper has been partially funded by the Spanish Ministry of Education and Sci-

ence and by European FEDER under contract TIN2005-08818-C04-01 (The OPLINK

project, http://oplink.lcc.uma.es). Guillermo Molina is supported by grant AP2005-

0914 from the Spanish government.

References

[1] Akyildiz, I., Su, W., Sankasubramaniam, Y., Cayirci, E.: A survey on sensor net-
works. IEEE Communications Magazine (2002)

[2] Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: INFOCOM. (2001) 1380–1387

[3] Jourdan, D., de Weck, O.: Layout optimization for a wireless sensor network us-
ing a multi-objective genetic algorithm. In: Proceedings of the IEEE Semiannual
Vehicular Technology Conference. Volume 5. (2004) 2466–2470

[4] Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer Verlag,
Berlin Heidelberg (1998)

[5] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 4598(220) (1983) 671–680

[6] Eshelman, L.J.: The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. In: Foundations of Ge-
netic Algorithms, Morgan Kaufmann (1991) 265–283

[7] Alba, E., Molina, G., Chicano, F.: Optimal placement of antennae using meta-
heuristics. In: Numerical Methods and Applications (NM&A-2006), Borovets, Bul-
garia (2006)


