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Abstract. In this article we solve the radio network design problem
(RND). This NP-hard combinatorial problem consist of determining a
set of locations for placing radio antennae in a geographical area in order
to offer high radio coverage using the smallest number of antennae. This
problem is originally found in mobile telecommunications (such as mobile
telephony), and is also relevant in the rising area of sensor networks. In
this work we propose an evolutionary algorithm called CHC as the state
of the art technique for solving RND problems and determine its expected
performance for different instances of the RND problem.

1 Introduction

An important symbol of our present information society are telecommunications.
With a rapidly growing number of user services, telecommunications is a field in
which many open research lines are challenging the research community. Many
of the problems found in this area can be formulated as optimization tasks. Some
examples are assigning frequencies to cells in mobile communication systems [1],
building multicast routing trees for alternate path computation in large net-
works [2], developing error correcting codes for the transmission of messages [3],
and designing the telecommunication network [4, 5]. The problem tackled in this
paper belongs to this last broad class of network design tasks. When a geograph-
ically dispersed set of terminals needs to be covered by transmission antennae a
key issue is to minimize the number and locations of these antennae and cover a
large area at the same time. This is the central idea of the radio network design
problem (RND).

In order to solve RND, metaheuristic techniques are used to overcome the
large dimension and complexity of the problem, often unaffordable for exact
algorithms. In the associated literature the problem has been solved with genetic
algorithms [6, 7]. In this article, our goal is to improve existing results and
propose a state-of-the-art optimization method to solve the RND problem. In
particular, we will compare the CHC algorithm against three other techniques:
a simulated annealing (SA), a steady state genetic algorithm (ssGA), and a
generational genetic algorithm (genGA). Another objective of this work is to
extend the basic formulation of the problem to include more realistic kinds of
antenna.



In summary, the contribution of this paper consists of the application of a
an algorithm not previously used, CHC, that improves all the results in the
literature, the optimization of the algorithm parameters, the analysis of the
scaling properties of the RND problem, and the extension of the basic problem
to include more than one type of antenna.

The paper is organized as follows. In the next section we define and char-
acterize the radio network design problem. Section 3 briefly describes the CHC
algorithm. Section 4 provides the results of the tests performed either to com-
pare algorithms or analyze different types of antenna. Finally, some concluding
remarks and future research lines are drawn in Section 5.

2 The Radio Network Design Problem

The radio coverage problem amounts to covering an area with a set of antennae.
The part of an area that is covered by an antenna is called a cell. In the following
we will assume that the cells and the area considered are discretized, that is,
they can be described as a finite collection of geographical locations (taken from
a geo-referenced grid).

Let us consider the set L of all potentially covered locations and the set M of
all potential antenna locations. Let G be the graph, (M ∪L,E), where E is a set
of edges such that each antenna location is linked to the locations it covers and
let the vector x be a solution to the problem where xi with i ∈ [1, |M |] indicates
whether an antenna is being used or not at the ith available location.

Throughout this work we will consider different versions of the RND problem,
which will differ in the type of antennae that might be placed in each location.
There are simple versions using antennae that have no parameters, and more
complex versions where antennae have parameters (i.e. azimuth) that determine
the area they cover. In the last case, any solution x must also indicate which
values the parameters of the antennae have for each antenna used.

Searching for the minimum subset of antennae that covers a maximum surface
of an area comes to searching for a subset M ′ ⊆ M such that |M ′| is minimum
and such that |Neighbors(M ′, E)| is maximum, where

Neighbors(M ′, E) = {u ∈ L | ∃v ∈ M ′, (u, v) ∈ E} . (1)

The problem we consider recalls the Unicost Set Covering Problem (USCP)
that is known to be NP-hard. An objective function to combine the two goals
has been proposed in [6]:

f(x) =
Coverage(x)α

Nb. of antennae(x)
, Coverage(x) =

100 ·Neighbors(M ′, E)
Neighbors(M,E)

, (2)

where the parameter α can be tuned to favor the cover rate factor with respect
to the number of antennae. Just like Calégari et al. did [6], we will use α = 2,
and a 287× 287 point grid representing an open-air flat area.

Three different antenna types will be used in this work: a square shaped cell
antenna that covers a 41 × 41 point cell as used in [6, 7], an omnidirectional
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Fig. 1. Terrain coverages with different types of antenna

antenna that covers a 22 point radius circular cell (new contribution here), and
a directive antenna that covers one sixth of the omnidirectional cell (new contri-
bution here). When directive antennae are employed, three of them are placed
in the location site. Fig. 1 illustrates the terrain coverages obtained with the
different kinds of antenna.

3 The CHC Algorithm

The algorithm we propose for solving the RND problem is Eshelman’s CHC,
a kind of Evolutionary Algorithm (EA) surprisingly not used in many studies
despite it has unique operations usually leading to very efficient and accurate
results [8]. Like all EAs, it works with a set of solutions (population) at any time.
The algorithm works iteratively, producing new solutions at each iteration, some
of which will be placed into the population instead of others that were previously
included. The pseudocode for this algorithm is shown in Fig. 2.

The algorithm CHC works with a population of individuals (solutions) that
we will refer to as Pa. In every step, a new set of solutions is produced by selecting
pairs of solutions from the population (the parents) and recombining them. This
selection is made in such a way that individuals that are too similar can not
mate each other, and recombination is made using a special procedure known as
HUX. This procedure copies first the common information for both parents into
both offspring, then translates half the diverging information from each parent to
each of the offspring. This is done in order to preserve the maximum amount of
diversity in the population, as no new diversity is introduced during the iteration
(there is no mutation operator). The next population is formed by selecting the
best individuals among the old population and the new set of solutions (elitist
criterion).

As a result of this, at some point of the execution population convergence
is achieved, so the normal behavior of the algorithm should be to stall on it.
A special mechanism is used to generate new diversity when this happens: the
restart mechanism. When restarting, all of the solutions except the very best
ones are significantly modified (cataclysmically). This way, the best results of
the previous phase of evolution are maintained and the algorithm can proceed
again.



t:=0;
Initialize(Pa,convergence count);
while not ending condition(t,Pa) do

Parents := Selection parents(Pa);
Offspring := HUX(Parents);
Evaluate(Offspring);
Pn := Elitist selection(Offspring,Pa);
if not modified(Pa,Pn) then

convergence count := convergence count-1;
if (convergence count == 0) then

Pn := Restart(Pa);
Initialize(convergence count);

end if
end if
t := t+1;
Pa := Pn;

end while

Fig. 2. Pseudocode for CHC

4 Experiments

In this section we briefly present the results of performing an assorted set of
experiments to solve the different RND problems using CHC. First we solve
RND problems where antennae have no parameters. In this part, CHC will be
faced against three other algorithms: SA, ssGA, and genGA, and the results
will be compared to the best results of the literature [7] (dssGA8). Afterwards,
we tackle the problem using antennae with parameters that shape the coverage
cell. Only CHC will be employed in this part. Its behavior when facing different
problem types will be studied here.

For each experiment, we will analyze the number of evaluations required
to solve the problem if the execution is performed until an optimal solution is
found (whenever possible). We perform 50 independent runs of each experiment.
A statistical analysis is driven to validate the results obtained during the tests.
The values of the parameters employed for CHC are shown in Table 1. When
a range of values is shown instead of a single value, it means either that the
parameter is tuned (population size) or that the value is selected to be adequate
for each problem instance (maximum evaluations).

Table 1. Parameters of the CHC algorithm

Maximum evaluations 2,500,000−50,000,000
Crossover probability 0.8
Restarting mutation probability(%) 35
Size of population 50−10,000

4.1 RND with Squared and Circular Cell Antennae

In squared and circular cell antennae instances a solution is encoded with a
bit string, where each bit relates to an available location site and determines



whether an antenna is placed there (1) or not (0). Let L be the problem size
(the number of available location sites), the size of the solution space for these
instances is 2L. For each instance the optimal solution is known beforehand.

The scalability of the problem is also studied by solving instances of sizes
ranging from 149 to 349 available locations. Every time an algorithm is applied
to solve an instance, we perform a parameter tuning in order to obtain the best
possible performance from that algorithm. For the CHC algorithm the parameter
tuned is the population size.

The results of the experiments are shown in Table 2 for square shaped cell
antennae and Table 3 for omnidirectional antennae. All the algorithms were
able to solve the problem with very high hit ratio (percentage of executions
where the optimal solution is found) except a few exceptions (highlighted in
italics), therefore only the number of evaluations is shown. The best results
obtained are highlighted in in boldface. A Student t-test shows that all differences
between CHC and the rest of algorithms are statistically significant with 95% of
confidence.

Table 2. Comparison of the number of evaluations required by the different algorithms
in RND with square shaped coverage antennae

Algorithm
Size

149 199 249 299 349

CHC 30,319 78,624 148,595 228,851 380,183
SA 86,761 196,961 334,087 637,954 810,755

ssGA 239,305 519,518 978,573 1,872,463 3,460,110
genGA 141,946 410,531 987,074 1,891,768 3,611,802

dssGA8 [7] 785,893 1,467,050 2,480,883 2,997,987 4,710,304

Table 3. Comparison of the number of evaluations required by the different algorithms
in RND with omnidirectional antennae

Algorithm
Size

149 199 249 299 349

CHC 45,163 344,343 817,038 2,055,358 3,532,316
SA 83,175 262,282 913,642 2,945,626 6,136,288

ssGA 365,186 1,322,388 2,878,931 9,369,809 9,556,983
gGA 206,581 1,151,825 3,353,641 8,080,804 19,990,340

CHC proves to be the best technique among the four: it gets the lowest solv-
ing costs for all instances. In the first case (square shaped coverage) it improves
the second best technique, SA, by costing less than 50%. In the second case
(omnidirectional), the cost reduction regarding the second best technique (SA)
is comprised between 10% and 40% (in the 199-size instance SA has a lower
solving cost, but gets a low hit ratio). In both cases the increase of the num-
ber of evaluations is clearly superlineal, however, numeric approximations have
returned subexponential models.

If we compare the two variants of RND (differing on the kind of antenna
employed), we observe that the one using omnidirectional antennae seems to be
more difficult to solve, since for the same instance size the required number of



evaluations is higher. Furthermore, the problem becomes less tractable when its
size grows, and the gap between efforts for solving the two kinds of problem
increases.

In summary, CHC is better suited for solving RND than SA or any of the
GAs. It is the best for the basic instance and allows a better scalability than
the other two. The change of the antenna cell shape modifies the complexity
of the optimization problem, but does not change the fact that the best results
are obtained with the CHC algorithm. Therefore, from this point we will only
employ CHC to solve the new instances of RND.

4.2 Complex RND Variants

Two variants of the RND are solved in this section: RND using directive antennae
and RND using all kinds of antenna. When directive antennae are used, either
three of them or none are placed in each available location. When three of them
are placed, they are subject to one of the following restrictions: all antennae of
the same location site must point in consecutive directions (case 1) or in different
directions (case 2). When all kinds of antenna are employed, the restriction over
the directive antennae is the second one (case 2).

The number of available locations of the instances considered is limited in
both cases to only 149 as a base line for future research. For practical means,
we will use the binary equivalent length (minimum length of a binary string
that can store all the possible values of the solution space) as the instance size
measure. Table 4 shows CHC’s performance for all the problem instances solved
in this work.

Table 4. Comparison of CHC’s best performances for all the problem instances

Problem Binary Fitness Optimal Running Hit
Instance Size Evaluations Population Time(sec) Rate(%)

149 149 30,319 400 25.59 100
199 199 78,624 1,200 76.66 100

Square 249 249 148,595 1,400 146.21 100
299 299 228,851 1,800 237.38 100
349 349 380,183 2,800 427.81 100

149 149 45,163 700 43.71 100
199 199 344,343 2,800 374.01 100

Omnidirectional 249 249 817,038 4,000 870.82 100
299 299 2,055,358 8,000 2437.51 100
349 349 3,532,316 10,000 4009.85 100

Directive
case 1 419 2,383,757 4,000 4186.38 96
case 2 655 4,736,637 8,000 9827.60 88

All antennae 675 829,333 10,000 1284.05 100

Fig. 3 illustrates the cost and size of all the different problem instances solved
in this work: those using squared cells (unlabelled squared points), those using
circular cells (unlabelled circular points), the ones using directional antennae
under the first restriction (RND-3) and the second restriction (RND-4), and the



variant using all antenna kinds (RND-5). Minimal mean square error approxi-
mations for the problems using squared cells and circular cells are also shown.
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Fig. 3. Comparison of the evaluations performed by CHC for several problem instances

The problem variant using directive antennae seems to have a cost-size re-
lation comprised between those of the variants using squared cell antennae and
omnidirectional antennae. However, problem instances using only directive an-
tennae do not have one single optimal solution (as the previous variants do), but
a set of optimal solutions instead: 652 and 2052 for the instances under the first
and the second restriction respectively. Therefore the complexity reduction of
this RND variant regarding the omnidirectional antennae variant might be due
to the existence of many optimal solutions.

The variant of the problem using all antenna kinds simultaneously seems to
have a cost-size relation lower than any of the other variants: for a binary length
of 675 (93% higher than the 349 squared coverage instance) its solving cost is
only 829, 333 (118% higher). This would approximately correspond to a lineal
growth, yet the measured growth has been estimated to be superlineal.

Therefore, the studied RND problems can be classified into two main different
categories depending on their cost-size relation: a low complexity kind (x3 law),
and a high complexity kind (x4 law). The geometry of the cell shape seems to
be the decisive factor: both directive and omnidirectional antennae share the
circular geometry so the two belong to the high complexity kind. The square
shaped cells problem variant belongs to the low complexity kind. The variant of
the problem where all antenna kinds are used simultaneously takes advantage
of the possibility of using both geometries and achieves a complexity lower than
any of the other variants.



5 Conclusions

We have established CHC as the best technique so far for solving the RND
problem. This has been proven empirically by comparison with SA, ssGA, and
genGA in two different scenarios: use of square shaped cell antennae and use of
omnidirectional antennae. The cost of solving the problem has been estimated to
grow in a subexponential manner as the size of the problem increases. The nature
of that increase is mainly determined by the geometrical features of the antennae,
being x3 for square shaped cell and x4 for circular shaped cell antennae. When
directive antennae are placed, the fact of having many optimal solutions results
in a cost reduction with respect to the RND using omnidirectional antennae.
When several antennae are offered, the algorithm takes advantage of it and is
able to solve the problem at lower cost.
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