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Abstract

In this article, several optimization algorithms are applied to solve the radio net-
work design problem (RND). The task is to find the best set of transmitter locations
and their best configuration parameter values in order to offer coverage to a given
geographical region at an optimal cost. This problem is of high interest in today
GSM/GPRS, UMTS and in general ad hoc wireless networks, and is also related
to many problems arising in sensor networks. A simulated annealing algorithm is
developed along with a standard genetic algorithm and a CHC algorithm to under-
stand the basic behavior and needs of this problem; three classes of problem are also
considered, each one using one different antenna technologies: ideally-squared, om-
nidirectional and sector antennae; instances of several sizes are studied for all classes
to asses the scaling properties of the algorithms as the problem dimension grows.
Results show that all three algorithms manage to solve the problem satisfyingly,
being CHC the fittest algorithm in both effectiveness and efficiency.

1 Introduction

Mobile communications is a major area in the telecommunications industry of the twenty-
first century. As customers get used to have mobility besides connectivity this kind of
services is more and more required. Mobile communications require the use of a mobile
device by the end user, the presence of an access network accessible by the mobile device
from any place the user has to be, and a backbone network that manages the connections
and communications between different users.

Also, ad hoc and sensor networks need to define a cluster responsible for communica-
tions to take place, in a dynamic and novel way of assigning data transfer functionalities
to a given terminal.

Recently, numerous companies have entered this area and began to compete in order
to offer the best services at lowest cost. Therefore, a great number of issues have arisen
as problems to be solved in order to optimize the features of the service.

In this work will develop some techniques for solving one major issue of the problem:
the design of the access network. As mentioned, this could be needed statically for
regular cellular phone networks and dynamically for networks with no infrastructure
(such as ad hoc or sensor) hence results could be of very high interest in academics and
industry. A generally accepted method for building an access network is to divide the
terrain to be covered into small cells, each of which can be covered by a single transmitter
conveniently located in a base station (BS); this solution is known as a radio network. The
problem we solve is how to achieve maximum coverage of the terrain in order to obtain
a valuable service for the customer (ideally the coverage should be complete) by placing
the lowest number of transmitters, so that the cost of the service remains competitive.
This is equivalent to selecting the optimal positions for placing the transmitters, and this

1



problem is known as the radio network design problem (it will often be referred to as the
RND problem).

Our contribution in this work is to compare several algorithms on the same large set of
instances to highlight their different advantages. Also, we will include several instances
of each class of problem, while addressing three of such classes, one for every type of
transmitter type. Finally, we also contribute to research by analyzing the scalability of
algorithms, avoiding any bias to just one instance and will show a solid statistical analysis
to sustain our claims.

This work is organized as follows: in the next section a quick review of the state of the
art in optimization for telecommunication problems and particularly RND problem will
be shown. In section three, a formal description of the RND problem will be presented.
Section four will describe the principles of the employed optimization techniques for
solving the problem. In section five we will discuss the results obtained during the
different tests. Finally, the conclusions are presented in section six.

2 State of the Art

A large number of problems have had to be solved in order to bring telecommunication
services to a wide public. Most technical and technological problems were faced during
the early ages of this industry, which have culminated in the present telecommunication
means. Now, the industry is reaching its maturity, and a new kind of problems have
to be solved: optimization problems. The technology is well known, now the goal is to
obtain the best possible way to administrate the resources so as to get the maximum
efficiency.

A large variety of optimization problems have been faced in the telecommunications
field, and also a wide variety of techniques have proven to be useful in those tasks. Most
recent work in this area has got really good results in real scenarios, and has encouraged
further investigation.

In [4], genetic algorithms are applied to optimize telecommunication networks. A set
of network nodes and end users are given as input, and the algorithm has to determine
which nodes will be multiplexers, which ones will be exchanges, and what links between
nodes are to be set up. The objective is to build a minimum cost network that satisfies the
requirements. The results obtained by the genetic algorithm surpass the ones obtained
by a standard heuristic algorithm.

A clustering problem is treated in [1]: the well known location area management.
With the aim of clustering a cellular mobile radio network so as to obtain minimum
amount of roaming information (determined by the number of cells in a frontier and the
number of users travelling between different clusters), an iterative algorithm is developed
and applied. Good results are obtained in very short times.

Some algorithms for determining the coverage of an ad-hoc sensor network are pro-
posed in [7]. Based on graph techniques, these methods achieve to obtain an estimation
of the best-case and worst-case coverage with an optimal polynomial effort.

Also, a lot of work has been done in radio network design. In [6] the focus of the
study is the parameterization of the base stations in a determined area, whereas in [2]
and [8] the main objective is to locate the base stations, so as to obtain high coverages
at low costs. Each problem provides a set L of locations for the base stations, a set P
of parameters that control the behavior of every base station, and a set T of test points
where coverage is checked in order to determine the quality of the service provided by
the network. In [6], L is a list of the locations where the base stations are placed, P
is the list of parameters that have to be optimized (in this case, orientation and tilt of
the sector antennae), and coverage is measured with the help of domain areas, which
are geographical regions determined by the position of the base stations. Both in [2]
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and [8], L is a list of locations where base stations can be placed or not, P is the set of
parameters that have to be optimized (type of antenna, emitted power, orientation, tilt,
etc) and T is a list of discrete points where the received signal has to be calculated in
order to determine the degree of coverage.

To solve the optimization problem, an iterative algorithm is proposed in [6], which ge-
ographically partitions the problem according to the domain areas and solves iteratively
the resulting subproblems using a genetic algorithm. A signal to noise criterium (deter-
mined by free-space propagation model) is employed to calculate the coverage regardless
of signal interference, for the sake of simplicity. This technique is faced to a global genetic
algorithm for the whole problem (without partition) and to a random search technique,
and improves the results obtained by both.

A similar problem is treated in [8], where a genetic algorithm is also employed. A
discrete set of locations is offered for placing base stations, and a set of reception points
is used, divided in three hierarchical categories, depending of the purpose: testing of
the signal quality (R), testing of the expected service (ST ) and traffic requirements (T ).
The objectives are to minimize the number of used sites while the amount of traffic
held by the network is maximized, and a set of constraints is defined over ST which
have to be satisfied. A multiobjective genetic algorithm is used to solve the problem,
and a realistic highway area is used for evaluating the proposed technique. The results
obtained when using a sharing technique along with the genetic algorithm are better than
those obtained with the genetic algorithm alone in terms of quality (Pareto-dominance)
and entropy (diversity). The sharing technique consists in applying a penalty to each
solution depending on the number of close neighbors (considering a predefined distance
in the space of solutions of the problem) it has in the actual solution population, thus
promoting solutions that have few neighbors and contributing to the population diversity.

In [2] the location of stations is investigated for UMTS. The third generation for
mobile telecommunications requires a different approach since its features allow for more
flexibility in its use. The cell capacity is not limited a priori -resources are shared all over
the network- and the main limitation is interference, therefore a capacity study ought
to be made. Hata’s propagation model is used to deal with realistic instances over a
rectangular service area where a set S of candidate sites is defined and another set TP
of test points is randomly determined. Two kinds of power control mechanisms (PC)
are considered: the power-based and the SIR-based, and two kinds of techniques are
employed: greedy procedures (direct and reverse) and a taboo search algorithm (TS).
Experimental results show that TS behaves better than the greedy procedures, although
differences are not too strong.

In short, greedy, GAs, TS and in general heuristic methods seem the best tools to
solve this problem. We show a chronological summary of all these achievements in Table
1 and pass to make our new proposals.

3 The Radio Network Design Problem (RND)

The radio coverage problem amounts to covering an area with a set of transmitters.
The part of an area that is covered by a transmitter is called a cell. A cell is usually
disconnected. In the following we will assume that the cells and the area considered are
discretized, that is, they can be described as a finite collection of geographical locations
(taken from a geo-referenced grid, for example). The computation of cells may be based
on sophisticated wave propagation models, on measurements, or on draft estimations. In
any case, we assume that cells can be computed and returned by an ad hoc function.

Let us consider the set L of all potentially covered locations and the set M of all
potential transmitter locations. Let G be the graph, (M ∪ L,E), where E is a set of
edges such that each transmitter location is linked to the locations it covers and let be the
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Date Article Ref. Comments Proposed Tech-
niques

2003 Efficient Radio Net-
work Optimization

[6] Considers coverage of the
whole terrain, but BS
placement is poorly man-
aged

Hybrid iterative al-
gorithm using GA
for local search

2003 Planning UMTS
Base Station Loca-
tion

[2] Specialized in third gen-
eration mobile telephony
(UMTS), lacks a general
vision of the problem

Taboo Search
tested against
Greedy procedures

2000 A MultiObjective
Genetic Algorithm
for Radio Network
Optimization

[8] Evaluates only one tech-
nique, high terrain dis-
cretization

Genetic Algorithm

Table 1: Existing work on RND in the litterature

Figure 1: (left) Three potentially transmitter locations and their associated covered cells
on a grid, and (right) graph representing covered locations.

vector ~x a solution to the problem where xi ∈ {0, 1}, and i ∈ [1, |M |] indicates whether
a transmitter is being used or not. As the geographical area needs to be discretized, the
potentially covered locations are taken from a grid, as shown in the Figure 1.

Throughout this work we will consider different versions of the RND problem, which
will differ in the type of antennae that might be placed in every location. There will
be simple versions with antennae that will require no parameters to determine its cov-
erage, and more complex versions in which antennae will require some parameters (i.e.
direction) to determine the area covered by it.

Searching for the minimum subset of transmitters that covers a maximum surface of
an area comes to searching for a subset M ′ ⊆ M such that |M ′| is minimum and such
that |Neighbors(M ′, E)| is maximum, where

Neighbors(M ′, E) = {u ∈ L | ∃v ∈ M ′, (u, v) ∈ E}. (1)

M ′ = {t ∈ M | xt = 1}. (2)

The problem we consider recalls the unicost set covering problem (USCP) that is
known to be NP-hard. The radio coverage problem differs, however, from the USCP in
that the goal is to select a subset of transmitters that ensures a good coverage of the area
and not to ensure a total coverage. The difficulty of our problem arises from the fact
that the goal is twofold, no part being secondary. If minimizing was the primary goal,
the solution would be trivial: M ′ = ∅. If maximizing the number of covered locations
was the primary goal, then problem would be the USCP. An objective function f(~x) to
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combine the two goals has been proposed in [3]:

f(~x) =
CoverRate(~x)α

Number of transmitters selected(~x)
. (3)

where

CoverRate(~x) = 100 · Neighbors(M ′, E)
Neighbors(M,E)

. (4)

the parameter α can be tuned to favor the cover rate item with respect to the number
of transmitters. Just like Calégari et al. did[3], we will use α = 2, and 287 × 287 point
grid representing an open-air flat area.

In every instance of the problem taken here a specific kind of transmitter with an
associated cell may be placed in each location. Depending on the shape of the cell the
optimal solution will differ. For every instance the optimal solution can be determined
and offered as a possible solution to evaluate the quality of the solutions computed by
the algorithm. This shall be done by locating the set of optimal locations.

In the first instance, 49 primary transmitter locations are distributed regularly in this
area in order to form a 7× 7 grid structure to be the optimal set of locations, and each
transmitter has an associated 41× 41 point cell.

Consequently, the obtained coverage would be total if the algorithm happens to assign
one transmitter to these optimal locations known beforehand. A hundred complementary
transmitter locations have been then randomly added, associated to 41× 41 point cells.
By construction, the best solution with total coverage is the one that covers the area
with the 49 primary transmitters (giving an optimum fitness value 204.082).

In the second instance, 61 transmitter locations are distributed following an hexagonal
grid, and each transmitter has an associated circular cell of radius 22 points (so that the
area of the circular cell is similar to that of the square cell of the previous instance).
The type of transmitter used in the first two instances do not require any parameter to
determine the shape of the associate covered area (the cell). This implies that any solution
to the problem consists only of a subset of selected locations for placing transmitters.
They represent an academic benchmark and the industry problem of omnidirectional
antennae.

The third instance includes parameter-dependent transmitters, more specifically di-
rective coverage ones. Those transmitters have a cell coverage with the shape of a circle
sector, with an angle of 600. Thus, six of them are required to completely cover an
omnidirectional cell. Each transmitter requires a direction to point as a parameter to
determine which area it gives coverage to. There are six allowed directions for every
single directive transmitter, equally spaced through the 3600 by steps of 600, so that any
point (close enough to the transmitter) can be covered by one and only one configuration
of the transmitter.

4 Algorithms

The primary goal of this work is to determine which algorithm among the ones analyzed
works best for this kind of problem. The comparison will be made between simulated
annealing (SA), CHC, and a standard genetical algorithm (GA). Also, the parameters of
the algorithm will be tuned depending of the particular instance of the problem, looking
forward to establishing some relationship between the instance of the problem and the
optimal values for the algorithm’s parameters.

In the following we will briefly describe the algorithms employed in this work.
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4.1 Simulated Annealing

The first algorithm we use to solve the problem is known as simulated annealing, or SA.
This algorithm works with a single complete solution of the problem at any time, and
proceeds to improve it iteratively moving towards the optimal solution.

The pseudocode for this algorithm is shown in Figure 2.

Procedure Simulated Annealing

begin
Initialize(T,t,Sa)
while not end_condition(t,Sa)

while not cooling_condition(t)
Sn := Choose_neighbor(Sa)
Evaluate(Sa,Sn)
if Accept(Sa,Sn,T)

Sa := Sn
end if
t := t+1

end while
Cooldown(T)

end while
end

Figure 2: Pseudocode for Simulated Annealing.

As can be seen in the code, the algorithm keeps a single solution Sa. In every iteration,
a new solution Sn is made from the old one, Sa, and depending on some acceptance
criterion, it might replace it.

The acceptance criterion is the true core of the algorithm. It works as follows: both
the old (Sa) and the new (Sn) solutions have an associated quality value - determined
with a fitness function applied during the evaluation of the solutions. If the new solution
turns out to be better than the old one, then it shall replace it. If it is worse there is
still some chance that it will replace it: the replacing probability is calculated from the
quality difference between both solutions and a special control parameter T , namely the
temperature.

This way the algorithm is biased towards finding better and better solution until
ultimately reaching the best one. The acceptance criterion ensures a way of escaping local
optima by choosing solutions that are actually worse than the previous one with some
probability. The probability of choosing a bad solution over a good one is larger the larger
T is, and is smaller the bigger the quality difference between them is. The probability of
choosing a solution that is actually worse is calculated using the Boltzmann’s distribution
function:

P =
2

1 + e
fitness(Sa)−fitness(Sn)

T

(5)

As can be seen in Equation 5, the probability of choosing Sn over Sa is 100% if both
have the same value of fitness, and decreases as the fitness value for Sn gets lower than
the one for Sa.

As iterations go on, the value of the temperature parameter is progressively reduced
following a cooling schedule, thus reducing the probability of choosing worse solutions
and increasing the biasing of the algorithm towards good solutions.
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4.2 CHC

The second algorithm that will be employed is Eshelman’s CHC. It is a population based
method, which works with a set of solutions (population) at any time. The algorithm
also works iteratively, producing new solutions at each iteration, some of which will be
placed into the population instead of others that were previously included.

The pseudocode for this algorithm is shown in Figure 3.

Procedure CHC

begin
t:=0
Initialize(Pa,distance)
while not ending_condition(t,Pa)

Parents := Selection_parents(Pa)
Offspring := HUX(Padres)
Evaluate(Pa,Offspring)
Pa := Elitist_selection(Offspring,Pa)
if not_modified(Pa)

distance := distance-1
if (distance == 0)

Restart(Pa)
Initialize(distance)

end if
end if
t := t+1

end while
end

Figure 3: Pseudocdigo del CHC.

The algorithm CHC works with a population of solutions that we will refer to as
Pa. In every step, a new set of solutions is produced by selecting pairs of solutions (the
parents) and recombining them. This selection is made in such a way that individuals
that are too similar can not mate each other, and recombination is made using a special
procedure known as HUX. This is done in order to preserve the maximum amount of
diversity in the population, as no diversity is introduced during the iteration. The next
population is formed by selecting the best individuals among the old population and the
new set of solutions (elitist criterium).

Because of this, at some point of the execution convergence is achieved, so the normal
behavior of the algorithm should be to stall on it. A special mechanism is used as a way
of producing diversity when needed: a restart mechanism. This works as follows: all of
the solutions but the very best ones are significantly modified (cataclysmically). This
way, the best results of the previous work are maintained and the algorithm can proceed
again.

4.3 Genetic Algorithm

Genetic Algorithms (GAs) are archetypical evolutionary algorithms. They include, in
major or minor grade, all the characteristics of evolutionary algorithms. A pseudocode
for a genetic algorithm is shown in Figure 4.

A genetic algorithm works with a population of solutions and iteratively produces new
solutions (offspring) from the old ones, adds new diversity to them, and finally selects
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Procedure Genetic Algorithm

begin
t:=0
Initialize(Pa)
while not ending_condition(t,Pa)

Parents := Father_selection(Pa)
Offspring := Reproduction_operator(Parents)
Offspring := Diversity_operator(Offspring)
Evaluate(Pa,Offspring)
Pa := Population_selection(Offspring,Pa)
t := t+1

end while
end

Figure 4: Pseudocode for a Genetic Algorithm.

the individuals for the next population from the old population and the newly made
solutions. Genetic algorithms exist in countless versions, depending on the selection
methods used for both selecting the parents and the new population, the operators for
making new solutions, and the values of the parameters used by all these methods and
operators.

In this work we shall reproduce the results obtained in the previous work [5], using
the parameter values shown in Table 2.

Population Size 512
Selection roulette wheel
Crossover dpx prob = 1.0
Mutation bit-flip prob = 0.00671
Replacement least fitted
Stop Criterion find a solution

Table 2: Parameters of the algorithm being used.

A slight variation will be made in the study. Whereas in [5] the GA used was a steady-
state one (only one offspring per iteration) in this work we will compare two kinds of
GA. One will be the steady-state, the other one will be a generational one, in which the
number of offspring produced in every iteration will be equal to the population size (512
offspring per iteration). This is intended to be a simple way to determine whether the
granularity of the execution has some importance over the algorithm’s performance.

5 Tests and Results

In this section we present the results of performing an assorted set of tests by using the
three described algorithms to solve the RND problem.

We will solve all kind of instances (varying in the type of transmitter used) with
different sizes. The size of an instance is the number of transmitter locations that can
be selected by the algorithm for placing those transmitters. The primary instance will
have 149 transmitter locations, and there will be bigger instances increasing by steps of
50 locations until reaching the final 349 transmitter location size. We will focus on the
number of visited locations and wall clock time required by the algorithm to measure the
effort needed to solve the problem.
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In the primary instance a parametric study will be made for the SA and CHC al-
gorithm, determining how their execution’s parameters influence the algorithm’s perfor-
mances, while the GA algorithm will be let in a standard configuration for comparing
against the first two. Each result will be averaged over 50 independent runs.

The parameters and their ranges are shown in Table 3.

Algorithm SA
Independent runs 50
Number of evaluations1 2500000
Markov-chain length 50
Temperature decay 0.9∼0.9999
Probability of mutation(%) 0.5∼97

Algorithm CHC
Independent runs 50
Number of evaluations1 2500000
Crossover probability 0.8
Diverge(%) 1∼35
Size of population 50∼2000

Algorithm GA
Independent runs 50
Number of evaluations1 2500000
Size of population 512
Size of offspring 1 ∼ 512
Selection of parents\offspring roulette\best
Probability of mutation(%) 0.671∼1

Table 3: Values of the parameters of the algorithms.

The results for each experiment will be considered to be the mean number of visited
solutions among the 50 independent runs (and the time spent during the execution) as
well as the percentage of successful executions (the proportion of executions that actually
reach the optimal solution of the total number of executions). Thus we consider both
the effort and the effectiveness of the algorithm.

Also, a statistical analysis of the data will be realized in order to confirm that the
differences between the algorithms are really meaningful and not a random dropout of
a non-deterministic process. The results of that analysis will be mentioned only when
they add some important information to the comments.

5.1 RND with Squared shaped Cell Transmitters

The first instance of the problem is solved using all algorithms. Here we analyze the
importance of parameters for CHC and SA since for GA the have been studied elsewhere
[5].

In this instance, each transmitter placed offers coverage to a square shaped area cen-
tered in the location site. Figure 5 shows an example of a terrain with such transmitters
placed.

5.1.1 Parametrical study for the basic instance (149 transmitter locations)

The results of the experiments are shown in tables 4 and 5 for the algorithm SA. The
perturbation parameter is hold while the decay has been swept in the experiments shown
in Table 4; then the best value found for decay has been kept and the perturbation
parameter has been swept in the study shown in Table 5.

During our studies, both the decay of the temperature and the perturbation have
proved to be important parameters for the execution of the algorithm. Considering the
ranges of variation employed, the larger variations of performance occur when changing
the probability of mutation rather than the decay.

The best combination found for SA is a value of decay α = 0.99 and a perturbation of
p = 1%. Using this configuration, SA can solve the RND at full reliability in 68.76 seconds
after making 86, 781 fitness function evaluations. Any distance from this configuration

1Fitness function evaluations
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Covered Area

Number of transmitters
Coverage degree     -->

Figure 5: Sample terrain coverage offered by square shaped cell transmitters

Decay Fitness Evaluations Time (sec) Hit ratio (%)
0.9 204.082 118085 185.09 100
0.98 204.082 101798 82.17 100
0.99 204.082 86781 68.76 100
0.995 204.082 92231 75.49 100
0.999 204.082 92203 76.96 100
0.9995 204.082 113226 96.77 100
0.9999 204.082 287487 266.59 100

Table 4: Performance of SA algorithm depending on the decay for a perturbation of 1%
(Evaluations).

Perturbation (%) Fitness Evaluations Time (sec) Hit ratio (%)
0.5 204.082 202250 159.87 100
1 204.082 86781 68.76 100

1.5 204.082 91650 73.09 100
2 204.082 106505 85.11 100
3 204.082 205349 168.11 100
4 204.082 496175 400.26 100
5 203.068 872289 707.89 56
25 133.940 2500000 - 0
50 116.859 2500000 - 0
97 103.359 2500000 - 0

Table 5: Performance of SA algorithm depending on the mutation for a decay of 0.99.
(Evaluations)

will result in a loss a reliability (almost 50% reliability is lost if the perturbation is set
at 5% instead of 1%), efficiency, or both.

The results of the experiments with the algorithm CHC are shown in tables 6 and 7.
Table 6 shows the performance of CHC depending on the values used for the divergence
and the population size whereas Table 7 presents the hit percentages obtained for those
values.

We can conclude from the results that the size of the population is a much more
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div\pop. 50 100 200 400 600 800 1200 2000 2800 10000
0.01 639055 483867 334925 53291 38339 40015 55992 91600 127288 441600
0.05 - 110006 80479 33614 34223 42255 56712 92240 125944 437400
0.15 - 135245 70995 30319 34043 41023 56400 91280 127344 441400
0.25 - 138864 82037 50805 39683 48415 57024 90840 126056 442000
0.35 188193 181370 71200 50429 31667 40223 55656 91280 126952 440600

Table 6: Performance of CHC algorithm (Evaluations).

div\pop. 50 100 200 400 600 800 1200 2000 2800 10000
0.01 74 100 100 100 100 100 100 100 100 100
0.05 - 100 100 100 100 100 100 100 100 100
0.15 - 100 100 100 100 100 100 100 100 100
0.25 - 100 100 100 100 100 100 100 100 100
0.35 100 100 100 100 100 100 100 100 100 100

Table 7: Effectiveness of CHC algorithm (Hit ratio(%)).

relevant parameter than the divergence. The best values are 400 for the size of the
population with a divergence of 15%, resulting in a number of solutions visited of 30, 319
showing 100% hit ratio. Bigger populations result in progressively greater required effort
but has no effect on the quality of the solution produced by the algorithm (as long as we
allow CHC the perform that effort). Smaller populations quickly result in bigger solving
effort, and often in worse solution quality.

5.1.2 Scalability Study

In this section we will study how the algorithms react to an increase in the problem’s
dimension. We want to find out the robustness of exactly the same algorithm when faced
to unseen instances of large dimensions. Hence, we will be able of better understanding
the importance of our final claims. Starting from the basic instance of 149 we will
consecutively solve instances of 199, 249, 299 and 349 transmitter locations.

There is a twofold objective for this study:

• Analyze the relationship between the size of the problem and the effort required to
the algorithms.

• Analyze the relationship between the size of the problem and the best values for
the parameters of the (SA and CHC) algorithms.

In order to achieve both objectives, a quick parametrical study will be done for every
problem size in order to find a reasonably good estimation of both the best combination
of values for the parameters and the slightest effort required to solve the problem. The
results are shown in Table 8 and illustrated in figure 6. .

As expected, the effort required to solve the RND increases when the size of the
instance grows, no matter which algorithm we are employing. Both SA and CHC manage
to solve the RND for all instance sizes with 100% hit ratio. None of the implemented
GA has been able to do so, given the restrictions made upon the algorithms’s executions
(5 million evaluations at maximum).

CHC has always got the best effort results, roughly solving RND at 50% of the effort
required with SA, considering the best parametric configurations for both algorithms.
Both of our genetic algorithms and the distributed genetic algorithm from Chicano &
Alba [5] achieve efforts that are several orders of magnitude worse than those obtained
by tuned SA and CHC. We can state therefore that CHC is the best algorithm to solve
the RND problem, when squared coverage antennae are to be used.

Numerical analysis has shown that the number of evaluations required for CHC to
solve the problem grows as a cubic function on the size of the instance.
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Algorithm Size Fitness Effort Normalized Time (sec) Normalized
(evaluations) effort time

SA 149 204.082 86761 1.00 68.76 1.00
SA 199 204.082 196961 2.27 158.32 2.30
SA 249 204.082 334087 3.85 282.98 4.12
SA 299 204.082 637954 7.35 541.11 7.87
SA 349 204.082 810755 9.34 729.61 10.61

CHC 149 204.082 30319 1.00 25.59 1.00
CHC 199 204.082 78624 2.59 76.66 3.00
CHC 249 204.082 148595 4.90 146.21 5.71
CHC 299 204.082 228851 7.55 237.38 9.28
CHC 349 204.082 380183 12.53 427.81 16.72
ssGA 149 204.082 239305 1.00 525.50 1.00
ssGA 199 204.082 519518 2.17 1181.79 2.25
ssGA 249 204.082 978573 4.09 2496.94 4.75
ssGA 299 204.082 1872463 7.82 5219.36 9.93
ssGA 349 204.034 3460110 14.46 10461.82 19.91
gGA 149 204.082 141946 1.00 118.19 1.00
gGA 199 204.082 410531 2.89 346.21 2.93
gGA 249 204.082 987074 6.95 818.62 6.93
gGA 299 204.082 1891768 13.33 1551.39 13.13
gGA 349 204.038 3611802 25.44 3424.11 28.97

dssGA8 149 - 785893 1.00 80.00 1.00
dssGA8 199 - 1467050 1.87 174.00 2.17
dssGA8 249 - 2480883 3.16 378.00 4.73
dssGA8 299 - 2997987 3.81 463.00 5.79
dssGA8 349 - 4710304 5.99 927.00 11.59

Table 8: Results of the scalability study.
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Figure 6: Evolution of the effort required to the different algorithms.

5.2 RND with Omnidirectional Transmitters

To further increase the realism of the problem, the squared-like model for the transmit-
ter coverage is substituted by a realistic model: an omnidirectional transmitter, whose
coverage area has the shape of a circle. Figure 7 shows an example of a terrain with such
transmitters placed.

Because of the shape of the cell, there is no obvious best solution for the problem in
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Covered Area

Number of transmitters

Coverage degree     -->

Figure 7: Sample terrain coverage offered by omnidirectional transmitters

this case. As theory says, the fittest solution turned out to be a regular hexagonal net. It
is impossible to cover the whole terrain without spilling resources (that is, having some
terrain covered by more than one transmitter), so the fitness function has been slightly
modified in order to punish that spilling. This has been done by assigning a value to
the terrain depending on the coverage degree (the number of transmitters that actually
cover that terrain) in such a way that single coverage terrain is the most valuable one,
followed by multi-covered terrain, and finally non covered terrain, which has no value.

Let C be the degree of coverage every bit of terrain has, the resulting fitness function
is as shown in Equation 6.

f(~x) =

(
Cover Rate(~x)|C=1 + 0.5 · Cover Rate(~x)|C>1

)2

Number of transmitters
(6)

The chosen fitness solution gives terrain covered by more than one transmitter only
half the value terrain with coverage by a unique transmitter has. Using this new specifi-
cation, we will repeat the experiments done for the previous one, and afterwards compare
both. This means we will start by making a complete parametrical analysis for SA and
CHC algorithms on the basic instance of the problem (149 provided locations), and a
after that we will study the behavior of the algorithms when the size of the problem
increases, by steps of 50 locations, until having 349 possible locations.

5.2.1 Parametrical Study for the Basic Instance (149 Transmitter Locations)

The results of the experiments are shown in tables 9 and 10 for the algorithm SA. Table
9 shows the analysis done for the decay (maintaining a constant value of 1% for the
mutation probability) while in Table 10 we keep the best value found for decay and show
the analysis done for the mutation probability.
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Decay Fitness Evaluations Time (sec) Hit ratio (%)
0.9 147.029 174188 162.75 78
0.99 147.568 86883 81.98 94
0.995 147.380 95217 90.13 88
0.996 147.442 79523 75.81 90
0.997 147.693 83175 79.69 98
0.998 147.693 97142 93.48 98
0.999 147.693 127236 123.48 98
0.9991 147.755 135962 131.86 100
0.9992 147.708 128627 135.70 98
0.9993 147.755 155551 151.60 100
0.9994 147.755 162444 158.25 100
0.9995 147.755 184848 194.59 100
0.9999 147.755 613066 598.62 100

Table 9: Performance of SA algorithm on RND with omnidirectional transmitters de-
pending on the decay for a mutation of 1%.

Mutation (%) Fitness Evaluations Time (sec) Hit ratio (%)
0.25 147.630 478185 414.53 96
0.5 147.755 136511 119.86 100
1 147.693 83175 79.69 98

1.5 147.755 107363 95.46 100
2 147.755 95456 85.20 100
3 147.630 191834 171.20 96
4 147.630 683079 611.25 96
5 147.065 1249574 1126.74 80

Table 10: Performance of SA algorithm on RND with omnidirectional transmitters de-
pending on the mutation for a decay of 0.997.

Both parameters have proven to be important for the performance of SA. We can now
better appreciate the influence of the decay (and not only the probability of mutation).
The best values found are 0.997 for the decay, and 1% for the probability of mutation.
Using this parametric configuration, SA can solve the RND problem with omnidirectional
antennae with 98% reliability in 79.69 seconds and making 83, 175 evaluations.

The results of the experiments with the algorithm CHC are shown in tables 11 and
12. Now, both the divergence and the population size are varied within each table, but
Table 11 only shows the number of visited solutions resulting while Table 12 shows the
hit percentage for each configuration (considering the execution restrictions shown in
Table 3).

div\pop. 100 200 400 600 700 800
0.01 543569 496097 209695 125491 105136 50879
0.05 166656 131913 101594 65206 49489 60255
0.15 204437 142029 78836 64546 45163 69967
0.25 212815 139158 90819 54707 68137 63567
0.35 293822 212688 125561 60574 59205 73951

div\pop. 1200 2000 4000 6000 10000
0.01 72767 111520 214800 318360 520800
0.05 73175 110480 213520 317400 524000
0.15 72767 110960 214480 318120 522400
0.25 84455 110640 214800 319440 519200
0.35 86039 113240 214720 317040 522400

Table 11: Performance of CHC algorithm on RND with omnidirectional transmitters
(Evaluations).

Once again, the size of the population seems to be the most important parameter
for CHC. The best results have been obtained for a population of 700 individuals and a
divergence of 15%. The average effort needed with the optimal combination of parameters
is 45, 163 visited solutions, showing 100% hit ratio.
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div\pop. 100 200 400 600 700 800 1200 2000 4000 6000 10000
0.01 66 100 100 100 100 100 100 100 100 100 100
0.05 98 100 100 100 100 100 100 100 100 100 100
0.15 100 100 100 100 100 100 100 100 100 100 100
0.25 96 100 100 100 100 100 100 100 100 100 100
0.35 100 100 100 100 100 100 100 100 100 100 100

Table 12: Effectiveness of CHC algorithm (hit ratio (%)) on RND with omnidirectional
transmitters.

5.2.2 Scalability Study

For this new instance of the problem we will repeat the scalability study. The results
will be compared to the ones obtained with square-shaped coverage transmitters. The
results for this study can be seen in Table 13. The are illustrated in Figure 8.

Algorithm Size Fitness Effort Normalized Time (sec) Normalized
(evaluations) effort time

SA 149 147.755 83175 1 79.69 1
SA 199 147.668 262282 3.15 253.59 3.18
SA 249 147.372 913642 10.98 896.08 11.24
SA 299 147.755 2945626 35.41 3918.92 49.18
SA 349 147.808 6136288 73.78 10346.30 129.83

CHC 149 147.755 45163 1 43.71 1
CHC 199 147.755 344343 7.62 366.95 8.40
CHC 249 147.755 817038 18.09 870.82 19.92
CHC 299 147.755 2055358 45.51 2414.17 55.23
CHC 349 147.832 3532316 78.21 4009.85 91.74
ssGA 149 147.567 365186 1 802.48 1
ssGA 199 146.829 1322388 3.62 3169.41 3.95
ssGA 249 144.691 2878931 7.88 7863.59 9.80
ssGA 299 142.075 9369809 25.66 28462.50 35.47
ssGA 349 141.415 9556983 26.17 30911.70 38.52
gGA 149 147.755 206581 1 189.62 1
gGA 199 147.266 1151825 5.58 1021.03 5.38
gGA 249 145.182 3353641 16.23 3009.53 15.87
gGA 299 144.263 8080804 39.12 7828.76 41.29
gGA 349 141.445 19990340 96.77 19713.43 103.96

Table 13: Results of the scalability study for RND with omnidirectional transmitters.

Once again, CHC manages to solve the problem with 100% hit percentage for all
instance sizes. SA gets close, but does not always reach the optimum, producing high
quality solutions even when not getting to the optimum nevertheless. The two configu-
rations of GA manage to solve the smallest instances of the problem quite correctly, but
perform poorly for instances with sizes greater than 199. In the biggest instances, they
get much worse solutions than SA or CHC after running for much longer times.

In terms of measured effort, CHC gets always the best results. Only for the 199 size
instance can SA solve the problem performing fewer evaluations, but not as reliably as
CHC does. The efforts required by the GAs are many times worse than either CHC’s or
SA’s.

Numerical analysis has shown that the number of evaluations required for CHC grows
as a cuadratic function on the size of the instance.

From the studies of RND with square-shaped and omnidirectional coverage transmit-
ters we conclude that in a general manner CHC is the fittest algorithm to solve RND-like
problems. During our experiments, CHC has got simultaneously the lowest effort and the
greatest effectiveness (100%). Because of this, we claim that CHC is the best algorithm
out of the techniques tried here to solve the RND problem.

The study will now be problem-oriented, as we intend to see how the problem’s
characteristics affect the resolution capability of the algorithm. For the next instances of
the problem, complexity will be increased by rising the degrees of liberty of the problem,
so no scalability study will be done.

15



150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

E
va

lu
at

io
ns

Problem size

Comparative study of the problem growth

SA
CHC
gGA
ssGA

Figure 8: Evolution of the effort required to the different algorithms with omnidirectional
transmitters.

5.3 RND with Directive Transmitters

In mobile telecommunications the coverage areas of transmitters have many other shapes
out of the ones analyzed here. In general, they are designed to have a directional (some-
times even irregular) coverage, resulting in a sectorial shape (like e.g. in GSM networks).
In this section, we will ge a step further into complexity and model our transmitters as
directional ones.

Every transmitter used in this section will be assigned a coverage area that amounts
to 1/6 of the coverage area of an omnidirectional transmitter. Its shape will be a sector of
the circle with an angle of 600 and there will be 6 permitted directions, separated by 600

also. Several transmitters will be allowed in every location site. To avoid an overgrowth
of the space of solutions, we will limit the number of transmitters per location site to 3
or none.

The geometrical features of this instance of the problem hold the same pros and cons
than the ones of omnidirectional antennae. Because of this, the fitness function employed
in this case will be the same but for one detail: it will count the number of used locations
instead of the number of transmitters employed (which is three times bigger). Also, the
allowed locations for placing the transmitters will be maintained. Thus, if C is the degree
of coverage every bit of terrain has, the resulting fitness function is as shown in Equation
7.

f(~x) =

(
Cover Rate(~x)|C=1 + 0.5 · Cover Rate(~x)|C>1

)2

Number of used location sites
(7)

As the possibility of choosing a direction for the antenna adds one more degree of
freedom to the RND problem, several distinct solutions may bring equivalent good results.
An initial analysis of the problem has shown us that it can be considered solved for any
solution whose fitness value surpasses 75.75. Considering that every location is able
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to cover only half the area it could cover with omnidirectional transmitters (the ratio
between the coverage areas for one omnidirectional antenna to three directive antennas
is 2), this value would correspond to fitness value of 151.50 in the previous instance of
the problem. This shows that the best solution found using directive antennae is better
than the best solution found using omnidirectional transmitters.

Covered Area:

Number of transmitters:

Coverage degree     -->

Covered Area:
Number of transmitters:

Coverage degree     -->

Figure 9: Sample terrain coverages offered by directive antennae. (a) Simple version, (b)
Complex version.

We will define two versions of the problem depending on the allowed directions for
the transmitters:

• Simple version: the area covered by the three transmitters from one unique location
must form a solid half-circle.

• Complex version: the three transmitters from one unique location can point in any
direction (out of the 6 possible ones) as long as any two of them do not point in
the same direction.

An illustration for each version can be seen in Figure 9.
In the first version, 7 possibilities are offered for each location site: one for every one

of the six directions plus another with no transmitter. In the second version, the number
of possibilities per location site amounts to 21 (there are 20 different combinations for 6
possible directions if we take 3 at a time plus another with no transmitter).

This means that for a number of permitted locations of 149, the search space size for
the problem is:

• 7149 = 8.3 · 10125, for the simple version of the problem.

• 21149 = 1.025 · 10197, for the complex version of the problem.

Those sizes correspond to binary cases (where the only decision to be made is whether
a transmitter is placed or not) of 418 and 655 location sites respectively. Thus, the
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complexity of the instances considered for the RND problem with directive transmitters
is greater than the complexity of the same problem with square shaped coverage and
omnidirectional transmitters, even for their most complex instances (349 location sites).

Nevertheless, the desired solutions of those instances are not unique. Reconfiguring
the hexagonal radio network can be done in many equivalent ways considering the set
of available location sites. Every circular cell can be reconstructed in several ways using
sectorial cells. In the simple version, each of the 52 cells can be covered in 6 different
ways with directive transmitters, in the complex version, there are up to 20 different
ways of covering each cell.

If we consider the number of solutions in the solution space for each desired solution,
we have:

• 7149/652 = 2.86 · 1085, for the simple version of the problem.

• 21149/2052 = 2.28 · 10129, for the complex version of the problem.

Those sizes correspond to binary cases of 284 and 430 location sites respectively.

5.3.1 Codification of the Solutions

Up to this point, binary strings have been sufficient for coding any solution of the problem.
For each one of the offered locations, a bit indicates whether the will be an antenna placed
in it (with a value of 1) or not (with a value of 0). Mutation has been done by bit reversing
and recombination and two point crossover and HUX have been directly applied to the
binary string.

This is no longer true. The decision adopted for every location is not binary when
directive antennas are used. Besides the decision of placing or not an antenna, the
direction of the antenna has to be determined.

We will define a gene as the codification of the decision take upon one location site.
The gene is constituted by three natural numbers (a, b, c) where each number represents
either the direction pointed to by one of the directives antennas, if its value is comprised
between 1 and 6 (every one of the six directions is assigned a value in this range), or the
absence of that antenna, if its value is 0.

Every solution of the RND problem with directive antennae will be coded by a gene
string with length equal to the number of available locations.

As the problem restricts the number of antennae per location to three or none, either
all three numbers composing one gene are equal to zero, or none is. Every gene is
therefore able to code 7 different situations if the problem is of the simple version, and
21 if the problem is of the complex version.

5.3.2 Parametrical Study

As said before, only CHC algorithm is used to solve the RND with directive transmitters.
Once again tuning of the algorithm’s parameters is done in order to get both the best
results and information about the relation between problem complexity and parameter
values.

During the study done with square and omnidirectional coverage transmitters the
divergence parameter of CHC didn’t show to be a key parameter for the performance
of the algorithm. Therefore, the parametrical study will now restrict to the size of the
population handled by CHC. The divergence will be kept at a value of 35%, which is
an accepted standard value that assures that the restarting process is strong enough to
ensure sufficient diversity.

All the tests are done for instances with 149 available location sites. Their results
considering the simple version of the problem are shown in table 14, those obtained
considering the complex version are shown in table 15.
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Population Fitness Evaluations Time (s) Hit ratio (%)
2000 75.758 2536057 4435.79 60
4000 75.832 2383757 4186.38 96
6000 75.804 3064800 5658.63 94
8000 75.852 3999840 7230.46 100
10000 75.900 5492000 10260.17 100

Table 14: Results of the study for CHC using directive transmitters (simple version).

Population Fitness Evaluations Time (sec) Hit ratio (%)
2000 74.022 6699409 12978.32 56
4000 74.049 3964632 7751.32 68
6000 74.088 4994156 10130.26 80
8000 74.106 4736637 9827.60 88
10000 74.056 7195598 15430.55 72

Table 15: Results of the study for CHC using directive transmitters (complex version).

As can be seen, CHC is able to solve reliably both cases. In the simple version, the
hit percentage attains 100% if the population size surpasses 6, 000 individuals; in the
complex version, full hit percentage has not been attained, nevertheless for populations
ranging from 6, 000 to 8, 000 individuals it is above 80% and the expected outcome of
the algorithm is of very high quality even when it does not find the optimum.

In the simple version, both the expected solution quality and the hit percentage clearly
improve as the size of the population grows, from 2, 000 to 10, 000 individuals. However,
if we consider the algorithm’s effort for solving the problem, the best configuration seems
to be a population of 4, 000 individuals, because it gets very high hit percentage (96%) at
very low efforts (only 2, 383, 757 evaluations are required). We can save over 40% required
evaluations (and over 42% computing time) by sacrificing only 4% of the hit percentage
if we employ a population of 4, 000 individuals instead of one of 8, 000 individuals, not
to mention the memory requirements improvement.

The behavior of CHC is slightly different for the complex version. The outcome of
the algorithm improves as the size of the population increases until it reaches 8, 000 indi-
viduals, then it gets worse when the populations goes from 8, 000 to 10, 000 individuals:
the average fitness shrinks from 74.106 to 74.056 and the hit percentage decreases by
12%. The best tradeoff between outcome quality and required effort is obtained for a
population of 8, 000 individuals, with 4, 736, 637 evaluations and 88% hit percentage.

In both cases, we can say that an optimum value exists for the size of the population
in CHC, and moving away from it makes the algorithm produce worse results, either in
the outcome quality, in the effort required, or both.

The values of the tables 14 and 15 are illustrated by Figure 10.

5.4 RND with All Kinds of Transmitter

Finally, in the last version of the problem we permit all kind of transmitters to be placed
in any available location site. This will presumably influence the problem in two opposite
ways:

• On one hand, the size of the space of solutions will increase, as the possible com-
binations for each location site grow. This contributes to further complicate the
problem.

• On the other hand, the solver has more freedom to solve the problem since more
transmitters are available. This should contribute to simplify the process.

The size of the space of solutions is 23149 = 7.9 · 10202, which corresponds to a binary
case problem size of 675 site locations. This means that, considering the space of solutions
size, this instance is the most complex in our study.
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Figure 10: Influence of CHC’s population size for solving RND problem with directive
transmitters in (top) consecutive directions (bottom) any non-repeated directions.

As we know, the three different kinds of antenna have three different coverage areas
(cell). Square and omnidirectional coverage transmitters can offer coverage to the same
amount of terrain (only with different shape), but one directive transmitter covers only
one sixth of that amount of terrain. Because covering a larger area requires a larger
power consumption, it produces higher operating costs for the transmitter that should
be considered when designing the radio network.

Thus, in a attempt to give more fairness to the design problem, a new concept is
introduced into the fitness function for this version of the problem: the transmitter cost.
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Every transmitter type has an associated cost which will be the parameter to minimize,
instead of simply minimizing the number of transmitters.

The fitness function for this instance of the RND will be as shown in Equation 8.

f(~x) =

(
Cover Rate(~x)|C=1 + 0.5 · Cover Rate(~x)|C>1

)2

Total cost of the employed transmitters
(8)

For our study, we will employ a cost value with a fixed part corresponding to the
cost of installing the transmitter, and a proportional part corresponding to the power
consumption (which is proportional to the size of the cell corresponding to the antenna).
The cost values are shown in Table 162.

Transmitter Installation Operating Total
Coverage cost cost cost
Squared 0.2 0.8 1
Omnidirectional 0.2 0.8 1
Directive 0.2 0.4 0.6

Table 16: Values of the costs employed for the different transmitter types.

5.4.1 Codification of the Solutions

Neither the binary strings used for RND with square and omnidirectional coverage trans-
mitters, or the gene string used for RND with directive transmitters are adequate for
codifying the solutions of this version of RND. We will extend the gene definition to make
it suitable for this problem.

A gene will now be defined as follows:

Gene = {Transmitter type, Parameters}

The first field can get four different values, whose significations are the following:

• 1: Square coverage transmitter.

• 2: Omnidirectional coverage transmitter.

• 3: Directive coverage transmitter.

• 0: No transmitter placed.

The second field will only be meaningful when a directive transmitter is placed in
the corresponding location site. It consists in a directive transmitter gene (a,b,c) coding
the directions of the three directive transmitter. Only the complex case for directive
transmitters is considered in this instance. When no directive transmitter is placed, the
parameter field is set to (0,0,0) by default.

5.4.2 Parametrical Study

We will carry the same study already performed for the directive transmitter instance,
in this last and more complex instance of the problem. Only the 149 size instance will
be solved.

The divergence parameter of CHC will be maintained at a 35% value while the pop-
ulation size will be swept from 2, 000 to 10, 000 individuals. The set of locations we

2For the case of directive transmitter, the cost shown corresponds to a 3-transmitter-pack instead of
a single transmitter
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will use for this problem is the one employed for the RND with only omnidirectional
transmitters. In that version, the best fitness value found was 147.755. Here, the same
solution would bring the same fitness value, and the new transmitters are fairly included,
so that no one is cost-effectively superior to the others.

The results obtained for this instance are shown in Table 17. Figure 11 illustrates
them.

Population Fitness Evaluations Time (sec) Hit ratio (%)
2000 153.599 1806994 2088.40 17
4000 153.984 1107732 1538.84 57
6000 154.032 574400 751.13 77
8000 154.147 774933 1079.30 90
10000 154.201 829333 1284.05 100

Table 17: Results of the study for CHC using all kind of transmitters.
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Figure 11: Influence of CHC’s population size for solving RND problem with all kind of
transmitters.

At first glance we notice that the best solution found by CHC for this instance gets
a higher fitness value (154.201) than the best one when only employing omnidirectional
transmitters (147.755 for the 149 size instance, 147.832 in the best case for the 349 size
instance). The use of more transmitter types help getting better solutions, as expected.

Also, it can be seen that the response of the algorithm improves as the size of the
population increases. The best performance is obtained for the highest population size,
10, 000 individuals: 100% hit ratio and 829, 333 fitness function evaluations.

CHC seems to work best with this instance if the population size is around 10, 000
individuals. We can see that there is a stagnation in the effort required for any population
greater than 6, 000 individuals, and full hit ratio is attained with a 10, 000 individual
population, so bigger populations3 are unlikely to improve the algorithm’s performance.

3Executions with bigger populations couldn’t be realized due to computer memory restrictions
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5.5 Comparison of Different Problem Instances

In this section we will compare the results obtained by CHC applied to different instances
of the problem. Those instances are different both in their formulation (the type of
transmitter employed) and in size (number of available location sites). Therefore, they
will require different costs from the algorithms to be solved. That means that they are
of different complexity.

In this section, we will perform a study on the nature of the RND problem (considering
it is solved with CHC): the size of the solution space depending on the problem size
and the type of transmitter employed, the relationship existing between each instance
characteristics, the effort (number of fitness function evaluations) necessary to solve it,
and the best parametric configuration of CHC for solving it4.

The problem instances selected for comparison are the following:

1. RND with square shaped cell coverage transmitters, with sizes 149 and 349. (RND-
1).

2. RND with omnidirectional transmitters, with sizes 149 and 349. (RND-2).

3. RND with directive transmitters placed in consecutive directions, size 149. (RND-
3).

4. RND with directive transmitters placed in free directions, size 149. (RND-4).

5. RND with all kind of transmitters, size 149. (RND-5).

The effort and hit percentage reached by CHC for the different problem instances is
shown in figures 12 and 13, with their values related to the size of the population used
in CHC.

We observe the same behavior (with some small differences) for every instance:

• Cost: the cost of resolving the problem improves when the size of the population is
increased until it achieves its minimum value, afterwards it increases at a constant
rate. This behavior is not observed in the RND-2 instance of size 349, since the
cost is still decreasing when the maximum population size is reached.

• Hit percentage: the hit percentage of CHC algorithm increases as the population
size increases until reaching full hit ratio (100%), then stays unchanged. There is
one exception seen in RND-4 when shifting the size of the population from 8, 000
to 10, 000, the effectiveness falls from 88% to 72%.

When no other information is available, the first way to get some knowledge about
the complexity of a problem instance is from its space of solutions, specially its size: the
bigger the size of the solution space, the more complex the instance is.

Furthermore, the more complex a problem instance is, the larger the cost needed to
solve it.

Besides that, a complex problem usually has many local optima, thus the algorithm
employed to solve it will require a big capability of escaping such optima. In CHC
this capability is mainly determined by the size of the population (and the divergence
parameter which is not studied here for reasons previously explained), meaning a more
complex problem will be better solved with a bigger population.

We have hence three ways of measuring the complexity of an instance of a problem:

• The size of the solution space.
4Only the population size will be studied, because tuning the divergence parameter does not produce

a clear improvement on the algorithm’s performance. The former will be kept at a value of 35%
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Figure 12: Relation between CHC’s population size and RND solving cost (fitness func-
tion evaluations) for several problem instances.
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Figure 13: Relation between CHC’s population size and RND solving hit percentage for
several problem instances.

• The number of fitness function evaluations necessary to solve it (cost).

• The optimum size of CHC’s population for solving it.

These three measures are presented for the different selected instances in Table 18.
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Instance Binary size Best cost Optimal size
achieved of population

RND-1 (149) 149 30319 400
RND-2 (149) 149 45163 700
RND-1 (349) 349 380183 2800
RND-2 (349) 349 3532316 10000
RND-3 418 (284) 2383757 4000
RND-4 655 (430) 4736637 8000
RND-5 675 829333 10000

Table 18: Complexity measures for different RND instances solved with CHC.

At first glance we expect some relationship between the measures of the complexity.
Any increase in one of those values is expected to be followed by another increases in
the other two. This can be thought of as an intuitive rule for the problem complexity.
Clearly this rule does not apply, at least not in every case, as we explain next.

Between different instances of the same problem kind (using one specific kind of
transmitter), the rule applies. It can be seen both in RND-1 (square shaped cells),
RND-2 (circular shaped cells) and even between RND-3 and RND-4, that an increase
in the number of location sites produces an increase in both the cost and the size of
the optimum population in CHC. In RND-1 the instance with 149 available location
sites is best solved with a population of 400 individuals evaluating 30, 319 solutions,
while the instance with 349 locations requires a population of 2, 800 a 380, 183 visited
solutions. In RND-2 the instance with 149 available location sites can be optimally solved
evaluating 45, 163 solutions if a population of 700 individuals is used, but it is necessary
to evaluate 3, 532, 316 solutions and use a population of 10, 000 (maximum size allowed
by the memory limitations of the computers) to solve the instance with 349 available
locations.

However, when compared to each other, RND-1 and RND-2 do not follow the intuitive
complexity rule. For a same number of available locations (and hence of the size of the
solution space), the other complexity measures of the RND-1 instance are clearly lower
than the ones of the RND-2 instance: both the number of evaluation solutions and the
size of the optimum population are larger in RND-2 than in RND-1.

In fact, there seems to be two kind of RND problems, regarding their complexity
(effort required to be solved). The first and simpler kind is the one where transmitters
employ a square geometry cell (i.e. RND-1). The second one includes all instances
where circular geometry is employed (RND-2, RND-3 and RND-4). Inside each kind
there is some consistency in the relationship between the size of the space of solutions,
the optimal population size and the number of evaluated solutions. But when instances
of both kinds are compared, a relationship rule for the complexity is hard to determine.

Figure 14 shows all instance solving costs faced to their equivalent binary size. Two
major groups can be established: RND instances using squared geometry and RND
instances using circular geometry. Numerical approximations have been determined for
both groups, showing potential function growths when the binary size of the problem
increases. The second group (circular geometry) contains instances that are clearly more
difficult to solve, its growth factor is an x4 factor, while the growth factor for the square
geometry group is x2.88. The instance with all kinds of transmitters is closer to the
squared geometry group than to the circular geometry group.
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Figure 14: Comparison of the required evaluations with CHC for several problem in-
stances.

6 Conclusions

In this work several metaheuristics have been successfully applied to solve the RND
problem.

In the first part of this work, an algorithm-focused study has been carried. Several
instances of the problem, differing both in the kind of transmitters permitted and the
problem size (number of available location sites) have been solved using three main
algorithms: simulated annealing (SA), CHC and genetic algorithm (GA). The parameters
of SA and CHC have been tuned for every instance to obtain the best possible results,
while GA has been used for means of comparison with existing work done on RND [5]. At
the end of this part, it has been concluded that CHC is the fittest algorithm for solving
RND-like problems.

In the second part of this work, a problem-focused study has been carried, using
only CHC to solve the problem. New instances more complex than the previous ones
have been solved, and the focus has been on the nature of the problem. This part has
confirmed the robustness of the algorithm, and shown some information about the nature
of the complexity of the problem. The cost of solving an instance of RND has shown to
be dependant on two features:

• The geometrical restrictions of the coverage cells.

• The size of the solution space (or binary size).

The first feature controls the dependency of the solving cost with the size of the solution
space. In our work, two groups have been identified: square geometry instances and
circular geometry instances.

Another instance has been solved where all kinds of transmitters could be employed.
Its cost has been below both the square geometry and the circular geometry estimated
costs for its binary size.
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