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ix





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I FUNDAMENTALS OF THE THESIS 7

2 Wireless Sensor Networks: Opportunities and Challenges 9
2.1 Wireless Sensor Network description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The sensor node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Wireless Sensor Network architecture . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Special characteristics of Wireless Sensor Networks . . . . . . . . . . . . . . . . 12

2.2 Sensor types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Commercial sensor nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Applications of Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Optimization problems in Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 20
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Metaheuristics 25
3.1 Definition of a metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Classification of metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Trajectory based metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Population based metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Metaheuristics for multi-objective problems . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Goals when solving MOPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Design issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Parallel and distributed metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Parallel models for trajectory based methods . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Parallel models for population based methods . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Theoretical analysis of the convergence in distributed EAs . . . . . . . . . . . . . 42

3.5 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Quality indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Performance indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Statistical analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



xii CONTENTS

4 Algorithms 51
4.1 Mono-objective techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 CHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Multi-objective techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 PAES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 SPEA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 MOCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.5 MOCHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II RADIO NETWORK DESIGN 59

5 Radio Network Design Problem 61
5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Coverage models in Radio Network Design . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Test points model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Regular grid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Literature review for the RND problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Relationship with Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Scheduling problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Literature review for scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Resolution Methodology and Results for Radio Network Design 77
6.1 Problem formulation and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Representation and operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Solution encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.2 Malaga instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Configuration of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.3 Malaga instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Self-adaptive distributed technique for RND . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5.1 Application of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.2 Results of the proposed technique . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III WIRELESS SENSOR NETWORK DESIGN 101

7 Wireless Sensor Networks Layout Optimization 103
7.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS xiii

7.2 Models employed for the coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2.1 Node coverage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2.2 Network coverage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.3 Computation of an area coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Models employed for the communications . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.1 Link level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.2 Network level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.3 Additional considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Lifetime in WSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Resolution Methodology and Results for Wireless Sensor Network Layout 121
8.1 Problem formulation and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Representation and operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.1 Solution encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 The PACO operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.1 Operator description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.2 PACO formal specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5.1 Results for the basic instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5.2 Sensibility to node density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5.3 Scalability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.5.4 Solutions obtained for the WSNL problem . . . . . . . . . . . . . . . . . . . . . 136

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

IV LOCATION DISCOVERY 139

9 Location Discovery in Wireless Sensor Networks 141
9.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 References generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2.1 Ranging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3 Position estimation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.1 Coping with errors in the measurements . . . . . . . . . . . . . . . . . . . . . . . 146
9.4 Guiding functions in LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.5 Additional considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.6 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Resolution Methodology and Results for Location Discovery 155
10.1 Problem formulation and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.2 Representation and operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2.1 Solution encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2.2 Genetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.3 Problem data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.3.1 Specific models for the used problem data . . . . . . . . . . . . . . . . . . . . . . 160

10.4 Two-Stage resolution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xiv CONTENTS

10.4.1 Guiding function consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.4.2 Two-stage Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4.3 Beacon Reinforcement Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.5 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.6.1 Impact of the Link Weighting and the Beacon Reinforcement . . . . . . . . . . . . 167
10.6.2 Influence of the beacon density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.6.3 Performance of the different algorithms . . . . . . . . . . . . . . . . . . . . . . . 169
10.6.4 Comparison of the different search processes . . . . . . . . . . . . . . . . . . . . 170

10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

V CONCLUSIONS AND FUTURE LINES OF RESEARCH 173

11 Conclusions 175

VI APPENDICES 179

A List of publications related to this thesis work 181

B Resumen en español 185
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Chapter 1

Introduction

1.1 Motivation

Every once in a while, a new technological tool appears that revolutions the scientific community as it brings
new, unseen, and exciting possibilities for researchers. Examples of this are the telescope (17th century),
the microscope (17th century), the radio (late 19th century), or the radar (during the 40’s), among others.
In this thesis work, we consider a technology that has been catalogued by Business Week as one of the
most impacting technological advances for the 21st century: Wireless Sensor Networks (WSNs). The idea
behind this technology is not completely novel, since networks of sensors exist since as soon as the 50’s.
For instance, during the Cold War the US military develop a network of acoustic sensors whose purpose was
to detect the presence of soviet submarines approaching the US coast, by establishing a detection frontier
in the northern Atlantic ocean (Sound Surveillance System, SOSUS). Later, in the seventies, the DARPA
initiated a project to develop networks of nodes for tracking applications with military purposes.

However, the modern concept of Wireless Sensor Networks holds a series of innovative concepts with
respect to its predecessors. New networks are designed from a more general purpose perspective, whereas
the previous examples were completely application-specific. The stress in new networks is put onto dis-
tributed, ubiquitous computing by small and unobtrusive devices. The system must be capable to work
autonomously, adaptively to environmental changes, in real time, efficiently, etc. Besides, the range of
possibilities and applications is no longer restricted to the military field (although it still remains one of the
most important domains), as comfort and economic profit applications begin to take form. The new form of
sensor networks is expected to become a technology of wide and general use, just the way mobile telephony
or the Internet have become during the last two decades.

Nevertheless, these new and powerful dynamic ad hoc systems also have a set of hard constraints that
need to be handled in order to achieved the desired features. This results in new optimization challenges, and
unsolved optimization problems, which often happen to be NP-hard, and cannot thus be efficiently solved by
classic optimization techniques. These problems integrate novel models, one or more opposing objectives,
and constrained resources. These constrained resources are twofold: on the one hand the object of the
resolution process, the solution itself, has to handle restrained basic resources (economic, spacial, energetic)
and achieve ambitious objectives, and on the other hand the very optimization process is also restricted,
since it must be performed in short time on a limited computation platform (the WSN). Additionally, the
solution must be used for a long term deployment on a harsh, and unpredictably changing environment.
Thus the resolution process has to be swift, without incurring a high computational cost, yet the solution
found must be robust and accurate.

There is a kind of optimization technique that has been widely used for complex optimization problems,
NP complex problems, which arguably produces near-optimal solutions in a timely fashion: Metaheuristics.

1



2 CHAPTER 1. INTRODUCTION

These techniques, which are quickly becoming more and more popular within the research community, are
typically iterative processes, which refine a (set of) candidate solution(s). Among the advantages one can
find in using metaheuristics are the following:

• Reduced computational complexity.

• Tunable computational effort (trade-off with solution quality).

• Do not require full problem knowledge, just a quality measuring function for any given candidate
solution to guide the search.

• Adaptability to handle different paradigms such as multi-objective or distributed optimization.

• Can be tailored (within some range) to fit the computation power, memory size and time limit con-
straints.

All of these features suggest that Metaheuristics are appropriate techniques to be used to solve the opti-
mization problems in the domain of WSNs. Therefore, we set as the main goal of this thesis work to prove
the feasibility of metaheuristic-based resolution techniques in this domain. For this, we identify some im-
portant optimization problems found in this domain, propose a set of metaheuristic optimization algorithms
to tackle them, and show their effectiveness through statistically assessed experimental evaluation. Our aim
when selecting the problems has a strong focus towards applicability of the results obtained; in this sense,
we avoid purely academic problems and choose problems that either can be found in real applications or
have a clear connection with problems that are currently in need of a solution.

1.2 Objectives and phases
This thesis addresses the resolution of complex optimization problems in the domain of Wireless Sensor
Networks through the use of metaheuristic algorithms. This general objective can be detailed into more
specific goals as follows:

• Identify the most important problems that arise in the new field of sensor networks. Select a set of
problems to be solved in this thesis work.

• Propose a formulation for each of the problems selected.

• Description of the optimization techniques that will be used to solve the problems.

• Propose an application method of the optimization techniques that leads to the resolution of the
problems.

• Develop novel tools or techniques that enhance the performance of current optimization techniques,
either from the perspective of the quality of the solutions produced, or from the perspective of the
computational effort required to reach them; demonstrate their effectiveness through statistically as-
sessed experimental evaluation.

In order to fulfill the thesis objectives, the work has been carried out as follows. We first review the
existing research in the field of WSNs. We revisit the principal models for sensor node and network, make
a special stress on the main features that identify WSNs, and describe some existing hardware platforms
for sensor nodes. We then portray some examples of applications of WSNs, and finally present a review of
the main optimization problems that are commonly acknowledged in the domain. Among these problems,
we select two: the Wireless Sensor Network Layout problem (WSNL) and the Location Discovery problem
(LD), and we add a third problem, the Radio Network Design (RND), which holds a resemblance to the node
scheduling problem in WSNs. All of these problems are NP hard, and thus call for the use of metaheuristic
techniques for their resolution.
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1.3 Thesis contributions
In this section we briefly list the contributions of this thesis to the research field of WSNs or optimization.
These contributions can be summed as follows:

• Thorough review of the State-of-the-art in WSNs, from a technological and application point of view.

• Establishment of a taxonomy of complex optimization problems found in WSN.

• Realistic modeling of representative problems selected: the WSN Layout optimization problem
(WSNL) and the WSN Location Discovery problem (LD).

• Creation of a large sized real-world instance for the Radio Network Design problem (RND), and
explanation of the problem’s relation with the WSN domain.

• Proposal of CHC as a high-performing algorithm for the resolution of RND. Development of the
multi-objective version of CHC, MOCHC, to tackle the multi-objective formulation of RND.

• Suggestion of an extension of the resolution procedure for RND that can be effectively applied to the
scheduling problem in WSNs.

• Development of a new automatic migration tuning technique for distributed genetic algorithm that
achieves results of similar quality as the best fixed migration schedule, while alleviating the cost of
migration parameter tuning. Experimental evaluation on the RND problem.

• Development of a new problem-specific local improvement operator that improves the quality of the
solutions produced by multi-objective optimization algorithms for the WSNL problem.

• Comparative study of the consistency of the main guiding functions in LD: the error norm and the
likelihood functions.

• Proposal of a new two-stage solving procedure for LD that combines error norm and likelihood
functions, and outperforms both individual functions.

1.4 Thesis organization
This thesis work is highly oriented towards the problem domain, and this reflects into its structure as a
document. Thus, this thesis is divided into five parts, following this introduction. In the first part we
present the fundamentals and basis for the work: the WSNs domain, Metaheuristics as a global family of
resolution techniques, and the optimization algorithms that are selected to solve the problems. The second
part is devoted to the first problem addressed, RND. Full reviews of the problem formulations, models, and
existing literature are provided. Additionally, the relationship between this problem and the node scheduling
problem is explained. The third part is devoted to the WSNL problem; all models, formulations and existing
literature are reviewed. The fourth part corresponds to the LD problem; again the models, formulations and
literature are reviewed. Finally, the fifth and last part of the thesis regroups the main conclusions drawn
throughout the work and gives global comments about the work. We describe the contents of the chapters
in greater detail below.

• Part I: Fundamentals
Chapter 2 provides a general description of WSNs and sensor nodes. The main models at node and
network levels are presented, and the main features that distinguish this kind of network from other
ad hoc networks are listed, together with a short review of existing hardware platforms. We display
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some notable examples of applications where these networks have been employed, and finish with a
review of the main optimization problems that arise with this new field of research.

Chapter 3 gives an introduction to the research field of Metaheuristics, including the main concepts
used, and the classifications that can be made over the techniques. We put special attention to some
advanced mechanisms that are used in this work: multi-objective optimization and parallel meta-
heuristics, with a special review of a theoretical analysis of the convergence in distributed popula-
tions, that is later used as the basis for the development of our automatic migration tuning. Then, the
selected algorithms that are employed to solve the problems are described in detail in Chapter 4.

• Part II: Radio Network Design

Chapter 5 presents the Radio Network Design problem (RND). The principal models employed for
the computation of the coverage are explained, and the existing literature is reviewed. Then, the node
scheduling problem in sensor networks is presented and its relationship with the RND is explained.
We propose an extension of the resolution process of RND that ca be applied to the node scheduling
problem, and review the literature of the latter.

In Chapter 6 we present our approach to solve the RND problem. We use two formulations for
the problem objectives, a mono-objective and a multi-objective one, and two formulations for the
problem type, a binary (parameterless) and an integer one (parameterized). We solve eight instances
of different complexity. We introduce our automatic migration tuning technique, which is based
on the theoretical analysis of the convergence process in distributed populations. Finally, we use
the largest instance as the test bench to assess the effectiveness of the automatic migration tuning
technique.

• Part III: Wireless Sensor Network Layout

Chapter 7 presents the Wireless Sensor Network Layout problem (WSNL). We describe the different
models existing for the coverage and the communications of the network, both at node level and
network level. We introduce the concept of lifetime, and present its most common definitions. Finally,
we provide a review of the existing literature for this problem.

In Chapter 8 we describe our multi-objective formulation of the problem, with number of nodes and
lifetime as (opposing) objectives, and coverage as a constraint. We describe the two types of genetic
operator used: random and geographic. We propose the Proximity Avoidance Coverage-preserving
Operator (PACO) as a local improvement operator that fixes local inefficiencies in the network design.
Finally, we use three instances of different size to test the effectiveness and scalability of PACO.

• Part IV: Location Discovery

Chapter 9 presents the Location Discovery problem (LD). We make a short review of the main ranging
techniques that are used to generate the references used in LD, and describe the methods used to cope
with existing errors in the measurements. Then, we present the most common functions that are used
to guide the resolution process, namely the error norm and likelihood functions. Finally, we provide
a review of the existing literature for this problem.

In Chapter 10 we describe our formulation adopted for the LD problem, and the fitness function
we take as the reference. We present the real data that serves as the basis to generate the problem
instances and the models. We show the study performed for the two most popular guiding functions,
and subsequently propose a novel two-stage approach to solve the LD problem. Finally, using 10
test instances (from as many sets of real data), we prove the effectiveness of our proposal through
experimental evaluation.
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• Part V: Conclusions and future work
Chapter 11 contains a global review of the thesis work, and regroups the main conclusions drawn for
the three problem instances. The thesis objectives and main contributions are discussed in view of the
results obtained. Lastly, the future lines of research that can be pursued following the work presented
here are briefly sketched and discussed.
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Chapter 2

Wireless Sensor Networks:
Opportunities and Challenges

Observation is the key tool for experimental sciences. As Human knowledge and Technique have developed,
so have the tools used to observe, measure, and sense. Recent advances in Micro Electro Mechanical
Systems (MEMS) have brought the possibility to produce small devices with integrated computation and
communication power. The engineering of increasingly smaller sized devices with multiple integrated
capabilities have made possible for a new generation and a new conception of networked computation to
arise. In this new conception, the central processing model that used to be found in classical computers
(such as personal computers) no longer holds; instead, it is being replaced by a new paradigm where many
small devices, with small/limited computing power, collaborate to obtain a composite computation power
similar or superior to that of the centralized unit. When these small devices are given additional tools for
interaction with their medium, a new concept appears: intelligent distributed sensing.

Wireless Sensor Networks (WSNs) are a relatively novel research field that constitutes a clear example
of the aforementioned scenario. These networks are constituted by large numbers of power-constrained,
performance-constrained devices known as sensor nodes. These sensors offer varying sensing capabilities,
computing capabilities, and communicating capabilities. All in all, the nodes in a WSN are capable of
little accomplishment when considered individually, yet they offer a wide spectrum of possibilities when
acting collaboratively. The recent success of WSNs has led to the development of many hardware platforms,
multiple sensing capabilities, and a plethora of application domains. Along with all of this came new design
constraints and new operation objectives; in short, a set of novel and complex optimization problems.

This chapter presents and describes Wireless Sensor Networks (WSNs) as a novel monitoring tool.
We describe the main characteristics and features that can be found (and that have to be looked after) in
them, both at individual sensor node level, and at network level. The main types of sensing (devices)
are presented, and a short review of existing hardware platforms (commercial models of sensor nodes) is
provided. Afterwards, some notable examples of fields of application where WSNs have been successfully
employed are presented. Lastly, we provide a short discussion on the main workhorses existing currently in
WSNs, with special attention to the optimization problems that need to be solved in this new field.

2.1 Wireless Sensor Network description
Wireless Sensor Networks are a hot topic in research in many domains (electronics, communications, com-
puter science, aerospace engineering, etc.). Many works have been published in the last years, and the
numbers keep rising year after year. Domain-specific conferences, journals, and seminars have appeared.
A number of surveys have defined the basis for current and future WSN: a survey focused towards new

9
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possibilities and applications of WSNs can be found in [53], another survey with a more technical point of
view, commenting software architectures and models, protocols and configurations of WSNs can be found
in [4]. Other general surveys on WSNs architecture, protocol issues and potential applications can be found
in [110]. We shall start by providing a short definition of a WSN:

Definition 1 (Wireless Sensor Network). A Wireless Sensor Network is an ad-hoc network of small au-
tonomous collaborating devices with one or more sensing capabilities, known as sensor nodes, and that
monitors a given phenomenon in a given place, known as the sensing field.

In this section we will first describe the main component of WSNs, the sensor node. Then, we will
present the architecture of a WSN.

2.1.1 The sensor node
The first thing to known, is that there is no sensor node, but many types of sensor nodes. Generally, sensor
nodes are tailored for the application (purpose) or scenario they will be used in. Despite there being many
common aspects shared by the majority of nodes, one can always find a given node for some specific
application that does not share it. Nonetheless, this thesis is focused on general aspects of the WSNs,
therefore we will describe the most common and widely acknowledged properties of the sensor nodes and
networks.

Definition 2 (Sensor node). A sensor node is a small device with at least sensing, computation, and
communication capabilities, that forms the basic component of a Wireless Sensor Network.

In a little more detail, a sensor node is characterized by having the following set of attributes:

• It has a small size.

• It is inexpensive.

• It has one or more sensors1.

• It has (limited) wireless communication capability.

• It has (limited) computation capability.

• It has (limited) storage capability.

• It has limited available energy.

This constitutes the basic overview of what a sensor node is. There are always exceptions, e.g., some
sensors can have large energy supplies, others may be large, and in general the part about sensors being
inexpensive is still far from becoming a reality. There are other optional capabilities a sensor node can
have, some examples are energy harvesting (e.g., solar panels) to recharge their batteries, or mobility (they
are called sensors and actuators).

Sensor nodes have an architecture that matches their properties. Figure 2.1 shows a diagram of the
typical sensor node architecture. The basic blocks of a sensor node are the sensing unit (which contains the
sensors), the processing unit (performs the computation), the transceiver (performs the wireless communi-
cations), and the power unit (stores the available energy). Additionally, the diagram in Figure 2.1 includes
three optional modules that add extra capabilities to the node: one for energy harvesting (the “Power gen-
erator”), mobility (the “Mobilizer”), and location discovery (the “Location finding system”).

1Sensors and sensor nodes are often confounded concepts. A sensor is an electronic device that is capable of measuring some
physical magnitude (e.g, temperature) and produce an electronic output accordingly. A sensor node is a larger device that acts as a
node of a WSN and is a platform containing, among other things, one or more sensors.
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Figure 2.1: Basic block diagram of a sensor node.

Figure 2.2: Basic model of a sensor node with communication radius RCOMM and sensing radius RSENS .

When used in an optimization problem, the sensor node generally needs to be modeled. The most basic
sensor node model is a device located at a given point (x, y) with sensing capacity over a disk of radius
RSENS (the sensing radius or sensing range), and communication capacity in a disk of radius RCOMM

(the communication radius or communication range). Figure 2.2 illustrates the basic model for a sensor
node that will be considered in this work. The node at the center covers the shaded area, and communicates
through a direct link with the nodes connected to it by a boldface line. Both RCOMM adn RSENS are
shown. This model is further explored and developed in Chapter 7.
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2.1.2 Wireless Sensor Network architecture
A WSN is thus a collection of sensor nodes that form a connected structure. Since the purpose of a WSN
is almost always to monitor a given terrain, the sensed information must be made accessible to the network
user or administrator. For this, there is generally an access point to the network, a special node known as
sink or High Energy Communication Node (HECN). This node acts as a gateway to the network, and is a
special node; generally, its energy resources are considered limitless (from the WSN operation perspective).
All the nodes in the network must be able to communicate (via direct link or multi-hop paths) to the HECN,
any node that does not have a path to the HECN is considered disconnected from the network and is not
taken into account for sensing purposes.

There are two basic architectures found in WSNs: the flat or plain architecture, in which all nodes are
strictly similar, and the hierarchical structure where nodes have different roles depending on which tier they
are in. We briefly describe both next.

• Flat. In a WSN with a flat or plain architecture, all sensor nodes are equal in hierarchy. Figure 2.3a
shows a simple example of the hierarchy of a plain WSN with 12 nodes. Ad-hoc WSN are plain net-
works, since all nodes are equal. Note that the networks are still multihop, hence the communication
topology of the network does not match the hierarchical organization.

• Hierarchical ([92, 108]). In a hierarchical or clustered WSN, there are a subset of the sensor nodes
that have higher hierarchy than the rest, they are known as cluster-heads. The basic clustered network
is two-tiered, but the concept can be generalized to an arbitrary number of tiers, with cluster-heads
of different levels. Figure 2.3b shows an example of a two-tiered clustered WSN. In this case the
communication structure often matches the hierarchical structure of the network, however this is
not always the case, as in some protocols the cluster-heads form a multihop network to connect
themselves to the HECN. Cluster heads can be special nodes with higher capacity than regular nodes
(specially in terms of energy and computation power), or they can be regular nodes, elected with
some protocol; in the latter case, the role of cluster head is normally rotated among the nodes in the
network so that the extra load is shared2.

In this work, we focus our attention on flat networks.

2.1.3 Special characteristics of Wireless Sensor Networks
WSNs are specifically designed to offer a new set of monitoring capabilities, yet they have to deal with
the inherent constraints imposed by the environment, the budget, or the sensor node’s technical limitations.
All of this accumulates to generate a wide field of optimization. Some of the main issues that need to be
dealt with when using WSNs come from the operation requirements of the WSN, and others come from the
hardware constraints of the sensor nodes.

A WSN is conceived to work in an automated way, that is, without the requirement of a human operator;
this feature is often referred to as unmanned operation. Thus, sensor nodes have to perform a set of tasks
ranging from topology discovery and routing, to periodic sensing and data transmission, and all of this in a
completely unattended manner.

WSNs are expected to contain large numbers of nodes in a short future, ranging from hundreds to even
thousands. Furthermore, many WSNs are deployed in hostile environments. Therefore, it is impractical
and sometimes even impossible to physically access the nodes, hence any unpredicted situation must be
handled by the network and the individual nodes on their own. Besides, the hostility of the environment
may cause frequent node failure (or even destruction); the WSN must then be able to recover from one (or
more) node failure, that is, it must have fault tolerance. In some cases it is also possible that more nodes

2It can be argued that networks where clusterhead roles rotate among the nodes are in fact a hybrid between flat and hierarchical,
sin all nodes will have the same behavior by the end.
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(a)

(b)

Figure 2.3: Network hierarchical architectures of a WSN: (a) plain and (b) clustered.

will be deployed after the WSN has been active for a period of time (in order to replace lost nodes, or to
expand the monitoring capabilities of the network); in these cases the network must be prepared to detect
on-the-fly and incorporate newly arrived nodes into itself, that is, it must reconfigure itself (and operate)
dynamically.

A WSN can be required to provide a timely picture of the monitored phenomenon. Therefore, there
must be a maximum latency between an event happens, and the event is reported. This simple requirement
supposes a complex resolution that affects the sensing policy, the data processing, and the communication
of information through the network.

Some of the main special characteristics found in WSNs are listed below:

• They have an unmanned operation, i.e., they don’t require the presence/assistance of a human opera-
tor.

• They can host very large numbers of nodes; scalability of the operation thus becomes a major issue.

• They need to have automatic configuration mechanisms.

• They have to respond to dynamic changes in the environment or the network (apparition/disappearance
of nodes).

• They need lightweight general operation mechanisms, preferably locally distributed (for routing, pro-
cessing, etc.).

• They are data-centric, i.e., they provide an abstraction from the nodes structure/topology.

• They provide time and spatial integration of the sensed data (it should be possible to construct a
time-dependent map representation of the sensed data).
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• They are often deployed in harsh environments, or places with difficult access. Hence, they cannot
be maintained.

• They need to operate for long periods of time unmaintained.

• They may not have the possibility of energy restoration.

• They have to be unobtrusive, and should operate undetected.

• They need security mechanisms (authentication, encryption, etc.).

2.2 Sensor types
There are many physical magnitudes that one would like to monitor, and a WSN may just be the ideal
system. For it, many different types of sensor exist that can be integrated into the sensor node platform.
We dedicate this section to provide a review of the main types of sensors and the physical magnitudes they
sense. We provide a brief list of the main categories of sensing ([137]):

• Mechanical sensors: that rely on physical contact. Among these are:

– Piezoresistive effect-based sensors. They convert an applied strain to a change in resistance
that can be sensed using electronic circuits. The relationship is ∆R/R = Sε, where R is the
resistance, ε the strain and S the gauge factor.

– Piezoelectric effect-based sensors. They convert an applied stress (force) to a charge separation
or potential difference; this effect is reversible. The change in voltage V is given by ∆V =
k∆F , where ∆F is the change in force and k is the sensitivity.

– Tunneling sensing. The sensing depends on the exponential relationship between the tunneling
current I and the tip/surface separation z given by I = I0 exp (−kz), where k is a sensitivity
factor.

– Capacitive sensors. They typically have one fixed plate and one movable plate. When a force is
applied to the movable plate, the change in capacitance C is given as ∆C = εA/δd, with d the
resulting displacement, A the area, and ε the dielectric constant.

• Magnetic and electromagnetic sensors: they react to magnetic or electromagnetic fields (do not
require contact). Among these are:

– Magnetoresistive sensors. The Hall voltage induced in a plate of thickness T is given by VH =
RIxBz/T , with R the Hall coefficient, Ix the current flow in direction x, and Bz the magnetic
flux density in the z direction.

– Magnetic field sensors. They can be used to detect the remote presence of metallic objects.

• Thermal sensors: they sense the temperature. Among these are:

– Thermo-mechanical transduction sensors. They react to changes in temperature T , by exhibiting
(linear) thermal expansion of the form ∆L/L = α∆T , with L the length and α the coefficient
of linear expansion.

– Thermoresistive sensors. The resistance R changes with the temperature T following the rela-
tion approximately given by ∆R/R = αR∆T , with αR the temperature coefficient of resis-
tance.
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– Thermocouples. If a circuit consists of two different materials joined together at each end,
with one junction hotter than the other, a current flows in the circuit. This generates a Seebeck
voltage given approximately by V ≈ α(T1 − T2) + γ(T 2

1 − T 2
2 ), with T1, T2 the temperatures

at the two junctions.

– Resonant temperature sensors. They rely on the fact that single-crystal SiO2 exhibits a change
in resonant frequency depending on temperature change.

• Optical transducers: they convert light to a measurable quantity. Among these are:

– Photoelectric effect sensors. The photoelectric effect causes one electron to be emitted at the
negative end of a pair of charged plates for each light photon of sufficient energy. This causes a
current to flow.

– Photoconductive sensors. Photons generate carriers that lower the resistance of the material.

• Chemical and biological transducers: these cover a very wide range of devices that interact with
solids, liquids, and gases of all types. They have been effectively used for pollution detection. Among
these are:

– Chemiresistor sensors. They have two interdigitated finger electrodes coated with specialized
chemical coatings that change their resistance when exposed to certain chemical challenge
agents.

– Metal-Oxide Gas sensors. They rely on the fact that adsorption of gases onto certain semicon-
ductors greatly changes their resistivities

– Electrochemical Transducers. They rely on currents induced by oxidation or reduction of a
chemical species at an electrode surface. These are among the simplest and most useful of
chemical sensors.

– Biosensors. These devices have a biochemically active thin film deposited on a platform device
that converts induced property changes (e.g., mass, resistance) into detectable electric or optical
signals.

• Acoustic sensors: include those that use sound as a sensing medium. Doppler techniques allow the
measurement of velocities. Ultrasound can be used to get information about mechanical machinery
vibrations. Among these are:

– Acoustic Wave sensor. The surface of the device can be coated with a chemically or biologically
active thin film. On presentation of the measurand to be sensed, adsorption might cause the mass
m to change, resulting in a frequency shift given by the Sauerbrey equation ∆f = kf20 ∆m/A,
with f0 o the membrane resonant frequency, constant k depending on the device, and A the
membrane area.

2.3 Commercial sensor nodes
There are many publicly available lists and reviews of the different commercial models of sensor nodes
([22, 88]). The large number of different existing platforms (and increasing by the day) makes impossible
to give a full review of the choices commercially available to design a WSN. Therefore, in Table 2.1 we
present a short review of the principal node models, with their main features (regarding their computation,
memory, communications, and sensing).
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2.4 Applications of Wireless Sensor Networks
WSNs have been intensively used in many and varied applications. The applications that have been found
to be best suited for WSNs are those involving a difficult access, hostile environment, automated operation,
unobtrusive operation, requiring close distance measurements covering wide regions, etc. Some interesting
surveys on WSNs and their application scenarios can be found in [71, 126]. Some links to possible appli-
cations for WSNs are provided in [110]. We present in this section a brief review of the main application
fields where WSNs have been used.

• Military applications. Military applications have been the main driving force behind the develop-
ment of WSNs, especially at its earliest stages. This kind of application includes reconnaissance,
enemy detection and tracking. For instance, a counter-sniper detection system for urban warfare sce-
narios was presented in [135], and a WSN for target data acquisition in [169]. Multi-vehicle tracking
in the context of a pursuit-evasion game using a WSN is described in [193].

• Surveillance. Surveillance applications are generally target detection and tracking; they are mostly
related to military or high security areas, where all access and presence have to be controlled, but is
slowly being generalized to less critical scenarios, such as personnel localization inside a facility, or
object inventorying in large depots. A target detection application with classification and tracking is
presented in [14].

• Civil engineering. This kind of application includes mostly the monitoring of the health state of
large structures, such as skyscrapers or bridges. In [220], a WSN is proposed for structural health
measurements. Bridge monitoring in railways is performed by the Brimon WSN in [37].

• Health applications. Health applications involve the use of small sensors to measure biometric
quantities in human beings. The sensors have very strict safety requirements, and can be external or
internal (placed inside the body). Some examples of WSNs in this field are health data monitoring
in [227], or biomedical sensors for artificial retina in [183].

• Human-centric applications. Also known as ambient intelligence. This kind of application can be
described as “comfort” applications, and indoor environmental. They are not critical applications,
but can be offered as services to customers. Such applications include domotics (automatic air con-
ditioning control), object location in a house/office as in [225], and the like. Another possibility is
traffic control, as in [94] where a WSN is deployed in a highway to monitor the traffic. A WSN for
monitoring a heating and air conditioning plant is presented in [203].

• Industry. Industrial WSNs may be used to control the state of heavy machinery, automatic quality
control of products, or physical measurements to monitor some chemical/mechanical process (hu-
midity, heat, light, pressure, pH, etc.) ([23]). For example, the condition of pumps at gas stations, oil
and gas drilling monitoring ([100]), the heat of the rolls used in paper production, and the vibrations
in semiconductor fabrication ([125]) have been all monitored by WSNs.

• Agriculture. WSNs have also been employed in agriculture; they generally sense the humidity and
richness of the soil and provide automated management of crops (for lower costs). They have been
used to monitor vineyards in [27]. Another example is [130], where a WSN is used for precise
agriculture (and the main problems encountered are listed and described as lessons learned).

• Environmental. Environmental applications mainly refer to the unobtrusive observation of (possibly
endangered [19]) animal or vegetal species, their environmental conditions and the variations of that
environment (possibly by the hand of man). Habitat monitoring by WSNs is discussed in [150]; in
it, a WSN that was deployed in Great Duck Island (Maine) for habitat monitoring of the storm petrel
is described. Another environmental application of WSNs is forest fire prevention ([162]). A WSN
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to monitor the environmental conditions (light, humidity) in the forests of California, home to the
redwood trees, is described in [53].

• Disaster relief. Disaster relief are on-the-fly deployed WSNs that can be used to locate missing
persons or detect safe and dangerous areas in an earthquake, flooding, volcano eruption, etc. Other
WSNs may be used as prevention devices, in order to predict such events before they happen to allow
the proper measures to be taken. For instance, in [212] a WSN is deployed on an active volcano. A
WSN called FLOODNET is presented in [116] to measure water level at the River Crouch, in order
to predict possible flooding.

• Exploration. WSNs can also be deployed on remote places, or environments of difficult access. For
instance, the ocean floor, or outer space ([67]).

2.5 Optimization problems in Wireless Sensor Networks
Optimization problems have naturally arisen within the context of WSNs, mainly due to the confrontation
between the application purposes, and the design constraints, many of which are novel. There already exists
a number of surveys about the optimization problems defined (and solved) for WSNs. These problems
have been defined and approached in many heterogeneous ways; some authors have proposed specific
heuristics to solve given problems, while others employ linear programming, and finally metaheuristics
have come into the scene. An interesting survey on evolutionary approaches applied to WSNs is [166];
in it, five optimization problems are identified as the most representative of WSNS: resource management
for lifetime optimization, position estimation of nodes, multi-sensor fusion, energy-efficient routing, and
node placement and layout optimization. Location discovery and routing are also presented and discussed
in [18]. We note that in this thesis work we address two of the main problems found in WSNs directly,
namely the position estimation of nodes (location discovery, chapters 9 and 10) and the node placement and
layout optimization (WSN layout, chapters 7 and 8); additionally we solve a problem that is closely related
to the resource management (radio network design, chapters 5 and 6, which can be expanded to solve the
scheduling problem).

We propose the following general classification of optimization problems for WSNs that can be found
in the literature:

• Sensor deployment and layout optimization. This problem amounts to designing the geographic
configuration of the WSN; that is, the locations where the nodes will be placed. Some WSNs can be
placed manually, therefore the position of each node should be carefully calculated; in other networks
the nodes cannot be placed individually, but there is some deployment mechanism that can be coarsely
designed according to their resulting node positions (e.g., dropping nodes from a plane, one can
decide when and where to drop more nodes, when and where to drop less). The number of nodes
may be a fixed or a variable amount. The aimed objectives in this problem include the coverage
achieved (to be maximized), the energy efficiency, a balanced network topology, and the number
of deployed sensor nodes (to be minimized). Proper literature review for this problem is shown in
Section 7.5.

• Location discovery or localization in WSNs. Location information is a basic feature in sensor
networks. It holds an enormous importance for routing, scheduling, and of course spatial integration
of the sensed data. For instance, in an intrusion detection mechanism, one needs to know where
the intruder has been detected; similarly, in a forest fire prevention application, the location of the
fire is an essential information in order to coordinate the response. Typically, a small subset of the
nodes know their location (either by manual insertion, GPS, or other methods); these nodes are called
beacon or anchor nodes. The GPS is not generalized to all the nodes in the network due to its
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high cost. The rest of nodes use then a set of references consisting in node-to-node and node-to-
beacon measured distances, from which they derive their own location. The sought objectives are
to minimize the node location errors and to have topology consistency (that is, the node’s relative
locations are consistent with the network topology). Proper literature review for this problem is
shown in Section 9.6.

• WSN scheduling for lifetime optimization. The scheduling or resource allocation in a WSN is
the process that assigns tasks to processing elements, or more generally to available task-performing
resources. Since WSNs are generally considered to provide a monitoring of the field that is continuous
from a timeline point of view, the tasks are considered to be the sensing process at the different
time periods, and the resources are the nodes themselves. Therefore, scheduling corresponds to
assigning time periods during which a node will be sensing and communicating (it is said to be
in an active state), while the rest of the time, it will be in a power-saving mode (which is usually
called sleeping state). From a network point of view, the scheduling consists in selecting at each
time the subset of nodes that need to be active, while the rest can be put to sleep. A scheduling may
be performed in a centralized manner (using all the information of the network, producing a single
schedule and broadcasting it to all nodes), or in a distributed manner (each node, or a local subgroup
of nodes, independently decide their own schedule using only local information). The objectives
of the scheduling process are to maximize the network’s lifetime by having the nodes sleep for the
maximum possible time, subject to the constraints of maintaining the coverage and connectivity.
Proper literature review for this problem is shown in Section 5.4.2. A problem related to scheduling,
the optimal sampling rate assignment, is discussed in [116, 144].

• Inter-sensor synchronization in WSNs. This problem consists in obtaining a shared synchroniza-
tion among the nodes. There are methods aimed at obtaining a shared clock reference among the
nodes. Alternatively, other procedures are aimed at providing clock-independent functioning, that
is, processes that work properly even in the absence of such a synchronization. The objective of
synchronization is to minimize the difference among the different nodes internal clocks, or minimize
the effect of that difference. Global clock synchronization for WSNs is discussed in [200]. Fault-
tolerant clock synchronization is discussed in [200], and energy-efficient synchronization in [201].
Synchronization-robust angular location discovery is discussed in [167].

• Topology control. This problem includes several aspects. In topology control the network must
make sure it stays connected; one available mechanism it has for this is transmission power control.
Another aspect of topology control is that the resulting connectivity graph of the WSN has to be
energy-efficient and adequate for the routing protocol that shall be used. For instance, if geographic
forwarding is used (see Section 7.3.2), a topology with many geographic local optima is very harm-
ful. Clustering methods are a special kind of topology control mechanisms. The SPAN protocol
was proposed for topology control in [38]. In [140], a pruning method is devised for WSN in order
to reduce the number of links to alleviate the charge due to neighbors in some nodes and the band-
width stress; Relative Neighborhood Graph, Gabriel Graph, Delaunay triangulation, and Yao Graph
are used. A planar spanning of the network is searched in [26]. Fault-tolerant topology control is
discussed in [89, 109, 154]. The effect of radio irregularity and the resulting asymmetric links is
studied in [233]. Asymmetric link detection is also performed in [91]. Transmission power control is
employed in [96, 234].

• Routing in WSNs. The routing problem amounts to deciding the routing strategy for data collecting
that is employed within the WSN (we recall that the sensed data have to be accessible to the user or the
application), and for the coordination among the nodes. Routing algorithms generally include both
a general behavior specification and a distributed (node-sized) implementation to achieve that be-
havior. This problem has been extensively addressed in the literature, and is one of the five problems
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described in [166]. The main concerns in routing are the energy-efficiency (to maximize the lifetime),
the latency of the data transmissions (to obtain timely responses), and the reliability (so that the data
is effectively transmitted even though the medium is intrinsically unreliable). Some proposed routing
protocols are Geographic Forwarding (GF, [112]), Symmetric Geographic Forwarding (SGF, [233]),
Ad-hoc On-demand Distance Vector routing (AODV, [176]), Dynamic Source Routing (DSR, [99]),
Efficient Greedy Geographic Routing ([228]), Greedy Perimeter Stateless Routing (GPSR, [26, 39]).
A routing algorithm to balance energy consumption and latency is proposed in [128]. Geographic-
informed routing is discussed in [222]. Other specific routing algorithms can be found in [199].
Routing in heterogenous WSNs is discussed in [149]. Other approaches to data collection in WSNs
include the use of a mobile observer that retrieves directly (by direct link communication) the infor-
mation from the nodes in [36].

• Data-fusion in WSNs. This problem is often intertwined with the routing; data-fusion calls for the
establishment of a technique that allows one or a local set of nodes to encode their data, typically
to reduce the raw bandwidth and storage requirements, and also to provide them with some prepro-
cessing that alleviates posterior post-processing. Data-fusion ranges from simple data compression
at node level to complex multi-sensor data integration, where data of multiple natures are combined
into higher-level indicators. Data-fusion is one of the five main problems in WSNs ([166]). The
main objective sought by data fusion is to reduce the amount of transmitted data through the network
without losing information, in order to reduce the required energy for transmissions and to respect
the bandwidth restrictions of the WSN. A review of the most common aggregation methods in WSNs
is found in [45]. Two data coding schemes, joint-entropy and Slepian-Wolf, are used in [80]. In [91],
data-fusion is used to reduce false alarms. Correlated information is considered in [90, 199]

• Security in WSNs. Security issues can be crucial in WSNs depending on the application at hand. For
instance, in a military application, the WSN must be absolutely protected from attacks, unauthorized
intrusions or hearings. Therefore, the network must provide mechanisms for authentication of the
nodes and users, data encryption and intrusion detection3. The issue of security in Location Discovery
is discussed in [41, 132]. In the first, three types of attack are contemplated (Sybil, wormhole, and
compromised entity); in the second, signal strength attacks are described. Security from radio attacks
(by producing interference) is granted by a surfing strategy in [221].

We note that there is a list of issues that are transversal to most of these problems, that is, many problems
are concerned with them and have to cope with similar constraints. Many issues are related and have a
common ground, rendering this separation not entirely clear at times. The main issues of this kind are the
following:

• Energy efficiency and lifetime. This is perhaps the most widespread concern in WSN. Due to size
and cost constraints, sensor nodes have small batteries (generally, one or two AA batteries) and thus
small energy; nevertheless, WSNs need to provide continuous service for long periods, without access
to extra energy resources (energy harvesting is scarcely used –and generally provides little power–,
and batteries are almost never replaced in a WSN). Therefore, energy conservation during the WSN
operation is one of the most important objectives in practically all applications of WSNs, for lifetime
maximization. There is an almost endless list of works where the lifetime of the network is one of
the optimization objectives, to name a few [36, 52, 80, 95, 96, 128, 140, 144, 184, 188, 199, 234].
Lifetime from a theoretical point of view is studied in [62, 103, 201, 229]. A survey on energy-
efficient coverage problems is made in [34]. Energy-harvesting nodes are used in [97]. A general

3Intrusion detection can be understood in two ways in the context of WSNs. The first one refers to the physical detection, location
and tracking of a target in the secure area corresponding to the sensor field, much like the alarm of a house detects a robber; hence this
is a design objective of some WSNs and has to be maximized. The second sense corresponds to the infiltration of a virtual agent in the
logical domain of the WSN, getting access to restricted information or information modification, command capacity, or a combination
of the previous; hence, this is an undesired risk that WSNs are exposed to and has to be minimized.
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survey on energy sources for sensor nodes is given in [211]. Energy models are reviewed or proposed
in [24, 46, 114, 129, 155, 189].

• Detection probability and false alarm rate. The detection probability is a coverage estimator and
is usually one of the parameters considered in WSN problems (for instance, in scheduling or layout
optimization) for maximization. However, sometimes, due to the random nature and the noise of
measurements, an undesired effect know as false positives or false alarm can happen: in this case the
network notifies an event when in reality there is nothing happening; this has to be minimized. False
positives (false alarm) are considered in [144, 191]. Detection rates are considered in [96, 134, 135,
231].

• Latency of the WSN response. Many WSNs are deployed to monitor critical events and need real-
time response to events. This means that the time between an event happens and that event is reported
by the WSN must be upper bounded (the value of the bound should depend on the nature of the mon-
itored phenomenon). The latency of the WSN has the following components: latency of the detection
(includes scheduling and sensor hardware-intrinsic latency), latency of the process (includes dis-
tributed detection and data fusion), and latency of the reporting (includes data transmission, routing).
A broadcast protocol for controlled latency is proposed in [184]. Latency is also optimized in [128].
Other works that consider latency are [62, 135, 221, 225].

• Distributed operation. The distributed execution of the algorithms (employing only local resources)
is a fundamental item for the scalability of WSNs; considering that these networks are expected to
contain in the order of hundreds or thousands of nodes, scalability is not a minor concern. Some
problems require intrinsically distributed solutions, like routing or data aggregation; others, like lay-
out optimization, scheduling or location discovery admit both centralized and distributed approaches.
There are also several degrees of distribution, for instance an application can be clustered (each
clusterhead performs a “centralized” process for its cluster), or it can be entirely distributed (ev-
ery node performs its own computation). Distributed solutions are provided for location discovery
in [49, 141, 174, 208], for scheduling in [95], for sampling rate in [116]. Cooperative solutions for
location discovery are commented in [138], for detection in [107]. Clustered solutions for congestion
control are shown in [108].

• Efficient use of reduced computation and storage capabilities. The proposed solutions, save ex-
ceptions, will have to run on the execution platform provided by a sensor node (since they should be
distributed whenever they can, according to the previous point). Therefore, software tools and solu-
tions (including operating systems, protocols and algorithms) should be as lightweight as possible.

• Efficient use of reduced communication capabilities (transmission range, bandwidth). On the
one hand, WSNs operate in narrow bands, on the other hand, sensor nodes have limited storage
capacity and need to transmit their data frequently; these two facts, combined with the large number
of nodes and their continuous monitoring operation mode, can easily cause congestion in the network:
too much data is transmitted at the same time, and the transmission medium does not have enough
capacity for it. This problem affects mainly the sampling and routing protocols (they cannot store
large routing tables). Controlled information rates for congestion control, and limited bandwidth are
considered in [36, 42, 43, 108, 140, 144, 230].

• Robustness against harsh conditions and hostile environments. As said before, WSNs are often
deployed in unfriendly or hostile environments (sometimes they are deployed precisely because the
environment is hostile and other methods cannot be used). This produces, among other undesired
effects, unreliable communications. Radio irregularity is studied in [233]. Lossy links are considered
in [228]. Robustness in data transmissions (reliability) is considered in [184], protection against radio
interference is proposed in [221], signal strength attacks to location discovery are commented in [41].
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• Robustness against node errors and node failures. This issue is closely related to the preceding
one, since the harsh conditions of the environment can cause node malfunction, failure or even de-
struction. Furthermore, sensor nodes are cheap and need to be manufactured in large numbers, hence
the (physical) robustness is not their strong point: sensor nodes are considered to be error-prone de-
vices (they may break, they may run out of energy and stop functioning). As said before, a common
assumption in WSNs is that, for one reason or another, nodes cannot be replaced. Therefore, the
WSN must be able to cope with the failure of nodes in the best possible way. Localization errors are
considered in [219]. Robustness against node failures in ensured by k-connectivity in [96, 134]. Ro-
bustness in clock synchronization is discussed in [200]. A cut detection method is proposed in [191],
to detect cuts in the WSN. Robustness in clustering and topology control is considered in [109, 154].

We defer a more thorough discussion about the use of metaheuristics and other optimization techniques
to solve the optimization problems found in WSNs selected to be solved in this thesis, to their corresponding
chapters.

2.6 Conclusions
In this chapter, we have presented a global picture of WSNs. We have first defined the sensor network and
sensor node concepts, and described the most currently used models from the architectural and functional
points of view for both entities; a special stress is put in highlighting the specific features found in WSNs
that make them different from other kinds of ad hoc network, including both their possibilities, and their
constraints. We have provided a review of existing sensor types, and of available sensor nodes. Then, we
have briefly discussed the main types of applications for which WSNs are being used to the date, providing
some examples for each category. Finally, we have presented and described the principal optimization
problems that have to be solved in order to achieve an operational WSN.



Chapter 3

Metaheuristics

A heuristic technique or heuristic (from the greek “Euρiσκω” meaning “find” or “discover”) is a rule of
thumb, an educated guess, a simple and intuitive technique that produces close to optimal solutions for a
given complex problem. Sometimes that problem exact solution is unknown, or maybe the technique for
obtaining it is just too heavy (i.e., time consuming); in these cases, having a heuristic comes in handy, since
it offers a solution to the problem, albeit not necessarily the optimal one.

However practical, heuristics have the drawback of being problem-specific techniques, thus a good
heuristic for some given problem will help little when solving a different problem. Therefore, a necessity
for more general-purpose optimization techniques arises that made way for the appearance of higher-level,
general-purposed techniques which capitalized on most of the heuristics benefits: Metaheuristics. This new
brand of techniques is fairly recent, with the initial developments in the field being during the late 50’s and
60’s, and has taken root until becoming a wide research tool, and even a research topic. Metaheuristics
are generally conceived as high level heuristics, and use some heuristics at atomic step level, which in turn
belong to a bigger, more complex process.

This chapter serves as a general introduction to metaheuristics. In it, the metaheuristic techniques
utilized to solve the optimization problems of this work will be presented for their latter description in
the next chapter. The application of metaheuristics to multi-objective problems, as well as the issue of
distributed metaheuristics are explained. Finally, the quality indicators and the statistical tests used to
assess their significance are described.

3.1 Definition of a metaheuristic
A metaheuristic is a high level technique or algorithm for solving complex optimization problems. They
are stochastic algorithms which do not guarantee to obtain the optimal solution of the problem, but when
properly tuned obtain near-optimal solutions with bounded computation effort. We shall begin with a formal
definition of optimization. Assuming, without loss of generality, a minimization case, the definition of an
optimization problem is as follows:

Definition 3 (Optimization problem). An optimization problem is defined as a pair (S, f), where S 6= ∅ is
called the solution space (or search space), and f is a function named objective function or fitness function,
defined as:

f : S → R . (3.1)

Thus, solving an optimization problem consists in finding a solution i∗ ∈ S such that:

f(i∗) ≤ f(i), ∀ i ∈ S . (3.2)

25
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Note that assuming either maximization or minimization does not restrict the generality of the results,
since an equivalence can be made between the two cases in the following manner ([15, 86]):

max{f(i)|i ∈ S} ≡ min{−f(i)|i ∈ S} . (3.3)

Depending on the domain where S belongs, we can speak of binary optimization problems (S ⊆ B∗),
integer (S ⊆ N∗), continuous (S ⊆ R∗), or heterogeneous (S ⊆ (B ∪ N ∪ R)∗).

A simple classification of the optimization methods used throughout the history of computer science
is shown in Figure 3.1. Initially, the techniques can be classified into exact and approximate. The exact
techniques, which are based on the mathematical extraction of the optimal solution, or an exhaustive search
until the optimum is found, guarantee the optimality of the solution obtained. These techniques present
some drawbacks, however. The time they require, though bounded, is generally very long, especially for
NP-hard problems. Furthermore, it is not always possible to find such an exact technique for every problem.
This makes exact techniques not to be the right choice in many occasions, since both their time and memory
requirements can become unreasonably high for large problems. Therefore, approximate techniques have
been often used by the international research community in the last few decades. These methods sacrifice
the guarantee of finding the optimum in favor of providing some satisfactory solution within reasonable
time.
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Figure 3.1: General classification of the optimization techniques.

Among approximate algorithms, one can find two types: ad hoc heuristics, and metaheuristics. We
focus this chapter on the latter. Ad hoc heuristics can in turn be divided between constructive heuristics and
local search methods.



3.1. DEFINITION OF A METAHEURISTIC 27

Constructive heuristics are usually the swiftest methods. They construct a solution from scratch by iter-
atively incorporating components until a complete solution is obtained, which is returned as the algorithm
output. Finding some constructive heuristic can be easy in many cases, but the obtained solutions are of
low quality. In fact, designing one such method that actually produces high quality solutions is a nontrivial
task, since it mainly depends on the problem, and requires thorough understanding of it. For example,
in problems with many constraints it could happen that many partial solutions do not lead to any feasible
solution.

Local search or gradient descent methods start from a fully complete solution. They rely on the concept
of neighborhood to explore a part of the search space defined for the current solution until they find a local
optimum. The neighborhood of a given solution s, denoted as N(s) is the set of solutions (neighbors) that
can be reached from s through the use of a specific modification operator (generally referred to as move-
ment). A local optimum is a solution equal or better than any other solution in its own neighborhood. The
process of exploring the neighborhood, finding and keeping the best neighbor, is repeated in a process until
the local optimum is found. Complete exploration of a neighborhood is often unapproachable, therefore
some modification of the generic scheme has to be adopted. Depending on the movement operator, the
neighborhood varies and so does the manner of exploring the search space, simplifying or complicating the
search process as a result.

Lastly, during the 70’s, a new class of approximate algorithms appeared whose basic idea was to com-
bine several heuristic methods at a higher level to achieve an efficient and effective search of the search
space. These techniques are called metaheuristics. The term was first introduced by Glover ([83]). Until
the term was ultimately adopted by the scientific community, these techniques were named modern heuris-
tics ([178]). This class of algorithm includes many diverse techniques such as ant colony, evolutionary
algorithms, iterated local search, simulated annealing or tabu search. A survey of metaheuristics can be
found in [21, 85]. Out of the different descriptions of metaheuristics that can be found in the literature,
some fundamental properties can be highlighted:

• Metaheuristics are general strategies or templates that guide the search process.

• Their goal is to provide an efficient exploration of the search space to find (near) optimal solutions.

• Metaheuristics are not exact algorithms and their behavior is generally non deterministic (stochastic).

• They may incorporate mechanisms to avoid visiting non promising regions of the search space.

• Their basic scheme has a predefined structure.

• Metaheuristics may use specific problem knowledge for the problem at hand, by using some specific
heuristic controlled by the high level strategy.

In short, a metaheuristic is a high level strategy that employs different methods to explore the search
space. In other words, a metaheuristic is a general template for a non deterministic process that has to
be filled with specific data from the problem to be solved (solution representation, specific operators to
manipulate them, etc.), and that can tackle problems with high dimensional search spaces.

In these techniques, the success depends on the correct balance between diversity and intensity. The
term diversity refers to the evaluation of solutions in distant regions of the search space (with some distance
previously defined for the solution space); it is also known as exploration of the search space. The term
intensity refers to the evaluation of solutions in small bounded regions, or within a neighborhood (exploita-
tion of the search space). The balance between these two opposed aspects is of the utmost importance, since
on the one hand the algorithm has to find quickly the most promising regions (exploration), and on the other
hand those promising regions have to be thoroughly searched (exploitation).

We can distinguish two kinds of search strategy in metaheuristics. First, there are “intelligent” exten-
sions of local search methods (trajectory-based metaheuristics in Figure 3.1). These techniques add some
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mechanism to escape local optima to the basic local search method (which would otherwise stick to it). Tabu
Search (TS), Iterated Local Search (ILS), Variable Neighborhood Search (VNS) or Simulated Annealing
(SA) are some techniques of this kind. These metaheuristics operate with a single solution at a time, and
one (or more) neighborhood structures. A different strategy is followed in Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), or Evolutionary Algorithms (EAs). These techniques operate with a
set of solutions at any time (called population, swarm or colony depending on the case), and use a learning
factor as they, implicit or explicitly, try to grasp the correlation between design variables in order to identify
the regions of the search space with high-quality solutions (population-based techniques in Figure 3.1). In
this sense, these methods perform a biased sampling of the search space.

Formally, a metaheuristic is defined as a tuple of elements that, depending on how they are defined,
result in some technique. This formal definition was developed in [148] and later extended in [44].

Definition 4 (Metaheuristic). A metaheuristicM is a tuple consisting of eight components as follows:

M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 , (3.4)

where:

• T is the set of elements operated by the metaheuristic. This set contains the search space, and in
many cases they both coincide.

• Ξ = {(ξ1, D1), (ξ2, D2), . . . , (ξv, Dv)} is a collection of v pairs. Each pair is formed by a state
variable of the metaheuristic and the domain of said variable.

• µ is the number of solutions operated byM in a single step.

• λ is the number of new solutions generated in every iteration ofM.

• Φ : T µ×
v∏
i=1

Di×T λ → [0, 1] represents the operator that produces new solutions from the existing

ones. The function must verify for all x ∈ T µ and for all t ∈∏v
i=1Di,∑

y∈T λ
Φ(x, t, y) = 1 . (3.5)

• σ : T µ×T λ×
v∏
i=1

Di×T µ → [0, 1] is a function that selects the solutions that will be manipulated

in the next iteration ofM. This function must verify for all x ∈ T µ, z ∈ T λ and t ∈∏v
i=1Di,∑

y∈T µ
σ(x, z, t, y) = 1 , (3.6)

∀y ∈ T µ, σ(x, z, t, y) = 0 ∨ (3.7)
∨σ(x, z, t, y) > 0 ∧

(∀i ∈ {1, . . . , µ} • (∃j ∈ {1, . . . , µ}, yi = xj) ∨ (∃j ∈ {1, . . . , λ}, yi = zj)) .

• U : T µ × T λ ×
v∏
i=1

Di ×
v∏
i=1

Di → [0, 1] represents the updating process for the state variables of

the metaheuristic. This function must verify for all x ∈ T µ, z ∈ T λ and t ∈∏v
i=1Di,∑

u∈
∏v
i=1Di

U(x, z, t, u) = 1 . (3.8)
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• τ : T µ ×
v∏
i=1

Di → {false, true} is a function that decides the termination of the algorithm.

The previous definition recollects the typical stochastic behavior of metaheuristics. In fact, the functions
Φ, σ and U should be considered as conditional probabilities. For instance, the value of Φ(x, t, y) is the
probability to generate the offspring vector y ∈ T λ, since the current set of individuals in the metaheuristic
is x ∈ T µ, and its internal state is given by the state variables t ∈ ∏v

i=1Di. One can notice that the
constraints imposed over the functions Φ, σ and U enable them to be considered as functions that return the
conditional probabilities.

Definition 5 (State of a metaheuristic). Let M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 be a metaheuristic and Θ =
{θ1, θ2, . . . , θµ} the set of variables containing the solutions handled by the metaheuristic. We shall note
as first(Ξ) the set of state variables of the metaheuristic, {ξ1, ξ2, . . . , ξv}. A state s of the metaheuristic
is a pair of functions s = (s1, s2) with:

s1 : Θ→ T , (3.9)

s2 : first(Ξ)→
v⋃
i=1

Di , (3.10)

where s2 verifies
s2(ξi) ∈ Di, ∀ξi ∈ first(Ξ) . (3.11)

We denote with SM the set of all states of a metaheuristicM.

Finally, once the state of a metaheuristic is defined, we can define its dynamics.

Definition 6 (Dynamics of a metaheuristic). Let M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 be a metaheuristic and
Θ = {θ1, θ2, . . . , θµ} the set of variables containing the solutions handled by the metaheuristic. We denote
as Θ the tuple 〈θ1, θ2, . . . , θµ〉 and as Ξ the tuple 〈ξ1, ξ2, . . . , ξv〉. We extend the definition of a state in
order to apply it onto element tuples, that is, we define s = (s1, s2) where:

s1 : Θn → T n , (3.12)

s2 : first(Ξ)n →
(

v⋃
i=1

Di

)n
, (3.13)

and

s1(θi1 , θi2 , . . . , θin) = 〈s1(θi1), s1(θi2), . . . , s1(θin)〉 , (3.14)
s2(ξj1 , ξj2 , . . . , ξjn) = 〈s2(ξj1), s2(ξj2), . . . , s2(ξjn)〉 , (3.15)

for n ≥ 2. We call r a successor state of s if there exists t ∈ T λ such that Φ(s1(Θ), s2(Ξ), t) > 0,

σ(s1(Θ), t, s2(Ξ), r1(Θ)) > 0 and (3.16)
U(s1(Θ), t, s2(Ξ), r2(Ξ)) > 0 . (3.17)

We denote with FM the binary relationship “being successor of” defined for the set of states of a
metaheuristicM. That is, FM ⊆ SM × SM, and FM(s, r) if r is a successor state of s.

Definition 7 (Execution of a metaheuristic). An execution of a metaheuristic M is a finite or infinite
sequence of states s0, s1, . . . in which FM(si, si+1) for all i ≥ 0 and:

• if the sequence is infinite, it verifies that τ(si(Θ), si(Ξ)) = false for all i ≥ 0 and

• if the sequence is finite, it verifies that τ(sk(Θ), sk(Ξ)) = true for the last state sk and, τ(si(Θ), si(Ξ)) =
false for all i ≥ 0 such that i < k.
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3.2 Classification of metaheuristics

There are many ways to classify metaheuristics ([21]). Depending on the chosen features one can obtain
different taxonomies: nature inspired vs. non nature inspired, memory based vs. memoryless, one or
several neighborhood structures, etc. One of the most popular classifications distinguishes trajectory based
metaheuristics from population based ones. Those of the first type handle a single element of the search
space at a time, while those of the latter work on a set of elements (the population). This taxonomy is
graphically represented in Figure 3.2, where the most representative techniques are also included. The next
two sections describe these kinds of metaheuristic in turn.

Figure 3.2: Classification of metaheuristics.

3.2.1 Trajectory based metaheuristics

This section serves as a brief introduction to trajectory based metaheuristics. The defining feature of these
methods is the fact that they start from a single solution, and, by successive neighborhood explorations,
update that solution, describing a trajectory through the search space. According to the notation in the
Definition 4, this corresponds to µ = 1. Most of the algorithms of this kind are extensions of simple
local search methods, which receive some additional mechanism for escaping local optima. This results
in a more complex stopping condition than the simple detection of a local optimum. Some widely used
stopping criteria are completing some predefined number of iterations, finding some acceptable solution, or
reaching some stagnation point.

Simulated Annealing (SA)

Simulated Annealing (SA) is one of the oldest techniques among metaheuristics and the first algorithm with
an explicit strategy for escaping local optima. Its origins can be found in a statistical mechanism, called
metropolis ([157]). The main idea in SA is to simulate the annealing process of a metal or crystal. SA
was first introduced in [117]. To avoid getting stuck in a local optimum, the algorithm always allows the
selection of a solution with worse fitness value than the current one with some probability. The mechanism
works as follows: in each iteration a solution s′ is extracted from the neighborhoodN(s) of current solution
s; if s′ has better fitness value than s, then s is discarded and s′ is kept instead, otherwise s is replaced by s′

only with a given probability that depends on a dynamic parameter T called temperature, and the difference
between the fitness values of the two solutions, f(s′)− f(s).
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Tabu Search (TS)

Tabu Search (TS) is one of the metaheuristics that has been most successfully used to solve combinatorial
optimization problems. The basics of this method were introduced in [83], and they rely on the ideas
formulated in [82], where the technique and its components are properly explained. The main idea in TS
is the use of an explicit search history (short term memory), that serves both for escaping local optima
and for enhancing the diversity of the search process. This short term memory is called the tabu list, and
keeps record of the last visited solutions, preventing the algorithm from visiting them again. At the end of
each iteration, the best solution among the allowed ones is included in the list. From the perspective of the
implementation, keeping a list of full solutions is inefficient due to wasted memory consumption. Therefore,
a commonly adopted alternative is to register the movements performed by the algorithm instead. In any
case, the elements in the list can be used to filter the neighborhood, producing a reduced set of eligible
solutions named Na(s). Storing movements instead of complete solutions is more efficient, but causes a
loss of information as well. In order to avoid this problem, an aspiration criterion is defined that permits the
inclusion of a solution in Na(s) despite that solution being in the tabu list. The most widely used aspiration
criterion is to permit solutions with better fitness values than the best fitness found so far.

GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP, [74]) is a simple metaheuristic that combines
constructive heuristics with local search. GRASP is an iterative procedure with two phases: first, a solution
is constructed, second, the solution undergoes an improvement process. The improved solution is the final
result of the search process. A randomized heuristic is used for the construction of the solution in the first
phase. Step by step, different components c are added to the partial solution sp, initially empty. Each added
component is randomly selected from a restricted list of candidates (RCL). This list is a subset of N(sp),
the set of permitted components for the partial solution sp. The components of the solution in N(sp) are
sorted according to some problem dependent function η in order to generate the list. The RCL list consists
of the α best components in the set. In the extreme case of α = 1, only the best component found is
added to the list, thus resulting in a greedy construction method. In the other extreme, α = |N(sp)|, the
component is chosen in a totally random way among all available components. Hence, α is a key parameter
that determines how the search space is going to be sampled. The second phase of the algorithm consists in
a local search method to improve the previously generated solutions. A simple local search method can be
employed, or some more complex technique like SA or TS.

Variable Neighborhood Search (VNS)

The Variable Neighborhood Search (VNS) is a metaheuristic proposed in [161], that uses an explicit strategy
to switch among different neighborhood structures during the search. It is a very generic algorithm with
many degrees of freedom to design variations or particular instances. The first step is to define the set of
neighborhood descriptions. There are many ways this can be done: from random selection up to complex
mathematical equations deduced using problem knowledge. Each iteration contains three phases: selection
of a candidate, improvement phase, and finally, the movement. During the first phase, a neighbor s′ is
randomly chosen in the kth neighborhood of s. This solution s′ acts then as the starting point for the second
phase. Once the improvement process is over, the resulting solution s′′ is compared with the original, s. If
s′′ is better then it becomes the current solution and the neighborhood counter is reset (k ← 1); if it is not
better, then the process is repeated for the next neighborhood structure (k ← k + 1). The local search can
be considered as the intensity factor, whereas the switches among neighborhoods can be considered as the
diversity factor.
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Iterated Local Search (ILS)

The Iterated Local Search (ILS) metaheuristic ([145, 198]) is based on a simple yet effective concept. In
each iteration, the current solution is perturbed and, to this new solution, a local search method is applied,
to improve it. An acceptance test is applied to the local optimum obtained from the local search to deter-
mine whether it will be accepted or not. The perturbation method has an obvious importance: if it is not
disruptive enough, the algorithm may still be unable to escape the local optimum; on the other side, if it
is too disruptive, it can act as a random restarting mechanism. Therefore, the perturbation method should
generate a new solution that serves as the starting point for the local search, but not so far away from the
current solution as to be a random solution. The acceptance criterion acts as a balance method, since it
filters which new solutions can be accepted depending on the search history and the characteristics of the
local optimum.

3.2.2 Population based metaheuristics

Population based methods are characterized by working with a set of solutions at a time, usually named
population, unlike trajectory based methods, which handle a single solution. Population based methods
have generally µ > 1 and/or λ > 1.

Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) are loosely inspired on the theory of the natural evolution of the species. The
techniques in this wide family follow an iterative stochastic process that operates a population of solutions,
each solution being referred to within this context as individual. Initially, the population is generated in a
random way (or with some constructive heuristic). The general template of an EA has three phases, named
after their natural equivalents: selection, reproduction and replacement. The whole process is repeated until
some stopping criterion is met (generally, after a certain number of operations has been performed). The
selection phase selects the fittest individuals from the current population, to be recombined later during the
reproduction phase. The resulting individuals from the recombination are modified by a mutation operator.
Finally, the new population is formed with individuals from the current one, and/or the best newly generated
individuals (according to their fitness values). This new population is used as the current population in the
next iteration of the algorithm. A well known example of EA is the Genetic Algorithm (GA).

Estimation of Distribution Algorithms (EDAs)

The Estimation of Distribution Algorithms (EDAs, [165]) have similar behaviors to the previously presented
EAs, and many authors even consider EDAs as a special kind of EA. Like EAs, EDAs operate on a popu-
lation of candidate solutions, but, unlike them, do not use recombination and mutation to generate the new
solutions, but a probability distribution mechanism instead. Graphic probabilistic models are commonly
used tools to represent in an efficient manner the probability distributions when working with EDAs. Some
authors ([131, 175, 196]) propose the use of bayesian networks to represent the probability distributions in
discrete domains, while Gaussian networks are most often applied for continuous domains ([214]).

Scatter Search (SS)

The Scatter Search (SS, [84]) is another metaheuristic whose basic principles were presented in [82], and
is currently receiving an increasing deal of attention from the research community ([127]). The algorithm’s
fundamental idea is to keep a relatively small set of candidate solutions (called the reference set, or Ref-
Set for short), characterized by hosting diverse (distant in the search space) high-quality solutions. Five
components are required for the complete definition of SS: initial population creation method, reference set



3.3. METAHEURISTICS FOR MULTI-OBJECTIVE PROBLEMS 33

generation method, subsets of solutions generation method, solution combination method, and improvement
method.

Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO, [63, 64]) algorithms are inspired by the foraging behavior of real ants
in the search for food. This behavior can be described as follows: initially, ants explore the surrounding area
of their nest or colony in a random fashion. As soon as an ant finds a food source, it starts carrying that food
to the nest; as it does this, the ant continuously deposits a chemical substance known as pheromone in its
path. This substance can be detected by other ants, thus guiding them to the food. This indirect communi-
cation among ants also serves to find the shortest path between the nest and the food. ACO methods intend
to simulate this behavior to solve optimization problems. These techniques have two main phases: con-
struction of a solution following a single ant’s behavior, and update of the artificial pheromone trace. There
is no a priori planning or synchronization between the phases, which can even be done simultaneously.

Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO, [115]) algorithms are inspired in the social behavior of bird flocks
or fish schools. PSO keeps a set (called swarm) of solutions (called particles), initialized randomly through-
out the search space. Each particle has position and speed, both constantly changing during the search. The
movement of a particle is determined by its current speed, and the relative position of the particle itself and
some reference particles in its neighborhood. Within PSO, the neighborhood of a article is defined as a
subset of particles from the swarm; this concept of neighborhood is different from the one previously used
in trajectory based methods. The neighborhood of a particle can be global when all particles are considered
neighbors, or local when only close particles are considered neighbors.

3.3 Metaheuristics for multi-objective problems
Most of the real world optimization problems require to optimize two or more objective functions which
usually are in conflict with each other. Problems of this kind are usually referred to as multi-objective
Optimization Problems (MOPs). Due to the lack of accurate methodological approaches, MOPs have been
tackled as mono-objective optimization problems (e.g., making use of aggregative functions) in the past.
However, the working principles guiding mono-objective and multi-objective optimization are completely
different. When solving MOPs, we are interested in the best possible trade-offs (or compromises) among the
different objectives (i.e., solutions in which it is not possible to improve one objective without worsening
another). This is so because, in the absence of any further information, all the objectives of a MOP are
considered equally important. Thus, the solution to a MOP is not a single solution but a set of them.
As a consequence, to solve a MOP typically involves two different phases: on the one hand, to optimize
the objective functions, and, on the other hand, a decision making procedure to choose the most accurate
solution (giving a set of preferences or external context, [47]). Paying attention on how both phases are
faced, multi-objective optimization techniques can be classified as follows ([48]):

• A priori: when decisions are taken before finding the solutions.

• Progressive: when both, the decision making and the search, are integrated.

• A posteriori: the decision making takes place after finding the solutions.

Each group has different advantages and drawbacks which make each different technique more accurate
than the others in some particular scenarios, and vice-versa ([47, 57]). Nevertheless, the first two groups are
strongly influenced by the decision of an expert (decision maker) who determines the degree of importance
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of an objective over the others, which could restrict the search space in a arbitrary way failing to find the
optimal solution to the problem. On the other hand, a posteriori techniques make a wider exploration of the
search space in order to compute as many compromise solutions as possible. Once this phase has finished,
the decision making procedure takes place. This last group of algorithms has been intensively used in the
field of metaheuristics and, particularly, in the field of evolutionary computation ([47, 57]). Specifically, the
most advanced a posteriori techniques make use of the Pareto optimality concept ([173]), which as a matter
of fact is the approach adopted for the MOPs considered in this work. Hence, this section is structured as
follows. First, we introduce some basic concepts for multi-objective optimization, from the perspective of
Pareto optimality. The next subsection presents the goals that all multi-objective optimization techniques
should achieve. Finally, the third subsection is aimed at discussing different design aspects which should
be considered when designing metaheuristics following those principles.

3.3.1 Basic concepts
In this section, we include some background on multi-objective optimization. Informally, a MOP can be
defined as the problem consisting in finding a vector of decision variables which satisfies a set of constraints
and optimizes a number of objective functions. Those functions define a set of performance criteria which
are in conflict with each other. Thus, the term “optimization” refers to the search of such a vector, which
has acceptable values for all the objective functions ([172]).

From the mathematical point of view, the formulation of a MOP extends the classic definition of mono-
objective optimization by considering the existence of two or more objective functions. Thus, there is not
a single solution but a set of them. This set is found by considering the Pareto Optimality Theory ([68]).
More formally, a general multi-objective optimization problem (MOP) can be defined as follows:

Definition 8 (MOP). A multi-objective optimization problem is defined as a tuple 〈S, f, g, h〉, where S 6= ∅
is called the solution space (or search space), f = [f1, f2, . . . , fk] is a vectorial function, where fi : S →
R, are the objective functions, and g = [g1, g2, . . . , gm] and h = [h1, h2, . . . , hp] are vectorial functions,
where gi : S → R and hi : S → R are the constraint functions. Thus, solving an optimization problem
consists in finding a set of solutions X∗ ⊆ S such that, for all x∗ ∈ X∗:

fj(x
∗) ≤ fj(x), ∀ x ∈ S . (3.18)

for some 1 ≤ j ≤ k, subject to:

gi(x
∗) ≤ 0 i = 1, 2, . . . ,m , (3.19)

hi(x
∗) = 0 i = 1, 2, . . . , p , (3.20)

where gi, hj : S → R, i = 1, ...,m, j = 1, ..., p are the constraint functions of the problem.

Definition 9 (Pareto dominance). Given two vectors ~x, ~y ∈ Rk, we say that ~x ≤ ~y if xi ≤ yi for i =
1, ..., k, and that ~x dominates ~y (denoted by ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 10 (Non-dominance). We say that a solution x ∈ S is non-dominated with respect to S, if
there does not exist another x′ ∈ S such that f(x′) ≺ f(x).

Figure 3.3 illustrates graphically both concepts, Pareto dominance and Non-dominance. Specifically,
it shows two distinct sets of solutions computed for a multi-objective problem where the two objective
functions, f1 and f2, are to be minimized. Since both objectives are equally important, it is not trivial to
decide which solution is better. Considering the previous definitions, we can say that a is better than b in
the picture on the left as f1(a) < f1(b) and f2(a) < f2(b), i.e., a is better in all the objective functions;
thus, we say that a dominates b (a ≺ b). The same can be said with respect to a and c: f1(a) < f1(c) and
f2(a) < f2(c), thus a ≺ c. Let’s compare now solutions b and c. In this case, we can observe that c is better
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than b in the f1 objective function, but b is better than c in f2 (f2(b) < f2(b)). According to Definition 9,
we cannot say that b dominates c, nor c dominates b. In this case, the solutions are said to be non-dominated
within respect to one another. In the right side graphic of Fig. 3.3, we show four non-dominated solutions,
where none can be said to be better than the others.

Figure 3.3: Dominance in multi-objective optimization: (left) solution ‘a’ dominates ‘b’ and ‘c’, (right) non
dominated solutions.

Thus, solving a MOP consists in computing the set of solutions that dominates every other point in the
solution space; this means that the solutions in that set are optimal for that problem. Formally:

Definition 11 (Pareto Optimality). We say that a solution x∗ ∈ F (F ⊆ S is the feasible region) is Pareto
optimal if it is non-dominated with respect to F .

Definition 12 (Pareto Optimal Set). The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal} . (3.21)

It is important to note that while Pareto optimal solutions belong in the variable space (S), their vector
components belong in the objective space (Rk). Those solutions are usually referred to as non inferior,
acceptable, or efficient. The Pareto front can then be defined, as:

Definition 13 (Pareto Front). The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ Rk|x ∈ P∗} . (3.22)

That is to say, the Pareto front is composed of the values in the objective space corresponding to the
solutions of the Pareto optimal set. Generally, it is not easy to find an analytic expression of the curve or
surface containing those points, and in many cases it is downright impossible. Figures 3.4 and 3.5 show the
formulation and the corresponding Pareto fronts of problems Binh2 and DTLZ4 ([47]). In the first case, it
is a bi-objective problem having two decision variables x1 and x2, and two constraints, g1 and g2. As for
the DTLZ4 problem, it has three objective functions and no restriction.

3.3.2 Goals when solving MOPs
When solving a MOP the main goal is to compute its Pareto optimal set (and Pareto front). In theory, this set
(front) could contain a large number of (or even infinitely many) points. In practice, a usable approximate
solution will only contain a limited number of points; thus, an important goal is that the corresponding front
should be as close as possible to the exact Pareto front and uniformly spread, otherwise, it would not be



36 CHAPTER 3. METAHEURISTICS

Min F = (f1(~x), f2(~x))
f1(~x) = 4x2

1 + 4x2
2

f2(~x) = (x1 − 5)2 + (x2 − 5)2

Subject to:

g1(~x) = (x1 − 5)2 + x2
2 − 25 ≤ 0

g2(~x) = −(x1 − 8)2 − (x2 + 3)2 + 7.7 ≤ 0
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Figure 3.4: Formulation and Pareto front for the Bihn2 problem.
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Figure 3.5: Formulation and Pareto front for the DTLZ4 problem.

very useful to the decision maker. Closeness to the Pareto front ensures dealing with optimal solutions,
while a uniform spread of the solutions means a good exploration of the search space, and that no regions
are left unexplored. Thus, we seek Pareto fronts meeting the following goals:

1. As close as possible to the optimal Pareto front (convergence).

2. As diverse as possible (diversity).

While the first goal, convergence towards the optimal solution, is a requirement in every optimization
problem (independently of the number of objectives), the second one is specific of problems involving the
optimization of more than one objective.

Figure 3.6 shows different fronts depicting the concepts of convergence and diversity. The uppermost
front shows an example of good convergence but poor diversity: the approximation set contains Pareto op-
timal solutions but there are some unexplored regions of the optimal front. The approximation set depicted
in the middle illustrates poor convergence but good diversity: it has a diverse set of solutions but they are
not Pareto optimal. Finally, the lowermost front depicts an approximation front with both good convergence
and good diversity.

3.3.3 Design issues

The use of Pareto optimality based techniques means, on the one hand, dealing with a set of non-dominated
solutions, which requires some specific mechanisms to handle them, and, on the other hand, finding a set of
Pareto optimal solutions which must be diverse enough to cover the whole front. Although depending on
the algorithm there are many different issues to cope with, the following ones are commonly found in many
of the existing techniques: fitness function, diversity management, and constraint handling mechanisms.
Next, we discuss these points.
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Figure 3.6: Examples of Pareto fronts. From top to bottom: (a) good convergence and bad diversity, (b) bad
convergence and good diversity, and (c) good convergence and diversity.
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Figure 3.7: Example of sorting (ranking) of solutions in a bi-objective MOP.

Fitness function

In the life-cycle of any metaheuristic technique there always exists a phase in which all the solutions must
be sorted to pick one (or more) of them. Examples of these phases are the selection and replacement
mechanisms in EAs, or the reference set updating procedure in scatter search algorithms. In single-objective
optimization, the fitness is a single (scalar) value, and thus, the sorting is done according to it. However, in
the multi-objective field, the fitness consists of a vector of values (one value per objective function), and as
a consequence, the sorting is not straightforward.

The dominance relationship (Definition 9) is the key issue in Pareto optimality based techniques since
it allows us to sort all the solutions. Actually, this relation defines a partial order relationship, since it
is not reflexive, symmetric, but an anti-symmetric, transitive relationship. Thus, different methods have
been proposed in the literature ([47, 57]), which basically transform the fitness vector into a single value.
Actually, this kind of strategy was first proposed by Goldberg in [86] for guiding a GA population towards
the Pareto front of a given MOP. The basic idea behind it consists in successively finding solutions that
are non dominated by other solutions (the best ones according to the dominance relationship). The highest
possible value is assigned to those solutions. Then, the next fitness value is assigned to the solutions that
become non-dominated after the previous ones are removed from the population. The procedure continues
until there is no solution left in the population. Figure 3.7 depicts an example of the behavior of this sorting
mechanism (where f1 and f2 are the objective functions which should be minimized). This strategy is
known as ranking.

The above described procedure is the most basic one. Other advanced schemes, such as the strength of
SPEA2 ([235]), take into account the number of solutions dominating each other as well.

Diversity management

Even though the Pareto dominance based fitness function guides the search towards the Pareto front, this ap-
proximation is not enough when a MOP is tackled. As we mentioned in Section 3.3.2, besides convergence,
we seek for diversity in the front for it to be useful to the decision maker.

Although different approximations exist in the literature ([47]), many of the state-of-the-art ones are
based on complementing the dominance based fitness function with a density estimator, which measures
the crowd around a solution inside the objective space. Thus, given two solutions with the same fitness
function value (ranking, strength), the density estimator discriminates between them attending to their
diversity. Let’s consider the set of solutions in Figure 3.8. In this figure, solution 1 can be considered as the
best one regarding the density of solutions since it is in the less crowded area. On the other hand, solution
3 is the worst one due to it being surrounded by many other close solutions. Some well-known density
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Figure 3.8: Density estimator example for non-dominated solutions in a bi-objective MOP.

estimators are: niching of MOGA ([79]) and NSGA ([197]), the adaptive grid of PAES ([118]), crowding
of NSGA-II ([59]), and the k-nearest neighbor distance of SPEA2 ([235]).

Constraints handling mechanism

The MOP definition (Equation 8) presented in Section 3.3.1 explicitly includes constraints, as they are
present in the typical scenario when considering real world problems, such as the ones tackled in this thesis.
Constraints can be divided into two types: hard or weak constraints. A constraint is said to be hard when it
should be satisfied in order for a solution to be acceptable. Meanwhile, a constraint is weak when it can be
relaxed somehow in order for a solution to be accepted.

In multi-objective optimization, the scheme used by most of the state-of-the-art metaheuristics consists
in considering that feasible solutions (those which do not violate any constraint) are better than non-feasible
ones, regardless of their objective values ([56, 57]). Thus, given two solutions there are three possible cases:

1. If both solutions are feasible, the fitness function explained in Section 3.3.3 should be used to dis-
tinguish between them; in case of being non-dominated (they have the same fitness value), a density
estimator must be applied.

2. If only one of them is a feasible solution, it should be considered as the best one.

3. If both solution are infeasible, the one which less violates the constraints is considered to be the best.

Finally, it is important to explain how to measure the amount of restriction violation by a solution. The
most used scheme in the literature consist in transforming all the restriction to greater-or-equal-than zero
type: gi (~x) ≥ 0, according to the MOP definition (Equation 8, [57]). This can be considered as a kind of
normalization, in such a way that the value gi (~x) is considered to measure the constraint violation. The
main drawback of this strategy is produced by the equality restriction hi (~x) = 0. For weak constraints, it
can be relaxed to hi (~x) ≥ 0. However, when dealing with hard constraints the transformation is not that
easy (specially with non-linear restrictions). As shown in [55], it is possible to convert those hard equality
restrictions into weak ones carrying a loss of precision. This is an important result, since it allows to consider
all the restrictions as being of the same type. There exist many other constraint handling mechanisms ([47,
57]), but we have only detailed the one used in this thesis.
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3.4 Parallel and distributed metaheuristics
Even though the use of metaheuristics alone can significantly reduce the complexity and time length of the
search process, still that time remains large for some real problems that need to be solved. With the recent
development of cheap efficient platforms for parallel computation, it comes as natural to leverage on their
power to accelerate the resolution process for these complex problems. There is an extensive literature on
parallelization of metaheuristic techniques ([6, 50, 54, 147]), since it constitutes an interesting approach for
not only reducing computation times, but also even obtaining higher performances of the solution process
(i.e., solutions of higher quality). This improvement is due to a new search model that enables a finer tuning
between intensity and diversity. Furthermore, many researchers use these parallel models on non parallel
execution platforms for they offer better performances than their sequential counterparts.

This section serves as a general introduction for the most common parallelization techniques and is-
sues found with metaheuristics. As such, since both trajectory based metaheuristics and population based
metaheuristics have parallel models proposed in the literature, these will be presented in sections 3.4.1
and 3.4.2, respectively, for the sake of completeness, albeit only the latter is used in the work of this thesis.
Additionally, a theoretical analysis of the migration properties and its effect on the convergence process of
a population based parallel metaheuristic is presented in 3.4.3; this study will later serve as the basis for the
proposed automatic tuning strategy for distributed GAs.

3.4.1 Parallel models for trajectory based methods

The parallelization methods for trajectory based metaheuristics found in the literature can be classified
into three types: parallel execution of several methods (multiple executions model), parallel exploration of
the neighborhood (parallel movements model), and parallel computation of the fitness function (movement
acceleration model). They are briefly outlined next.

• Multiple executions model: this model corresponds to the parallel execution of several homoge-
neous or heterogeneous subalgorithms, all being trajectory based ([10, 146]). There are different
possible configurations, depending on whether the subalgorithms collaborate during their execution
time or not. The simplest case in which all executions are completely independent is widely used for
its simplicity; in this case the parallel execution is equivalent to a set of sequential executions, but
still has the advantage of the parallel execution (i.e., less total wall clock time). On the other side,
in the cooperative case (right side of Figure 3.9), the different subalgorithms exchange information
during their execution time. In this case the behavior of the parallel algorithm differs largely from the
one of the sequential counterpart. Typical parameters that need to be set for this kind of technique
include the selection method for the exchanged information, the use of the received information, and
the schedule for these exchanges.

• Parallel movements model: trajectory based methods have to explore the neighborhood in each
iteration and select a solution from it. This step is particularly costly (computationally speaking),
since a full neighborhood usually contains a large number of individuals that have to be evaluated.
This model aims to accelerate this process by a parallel exploration of the neighborhood (left side
of Figure 3.9). Under a master-slave model, the master (which is actually running the main algo-
rithm) transfers the current solution to every slave. Each slave explores then only a fraction of the
neighborhood, then returns the most promising solution found. Among all the received solutions, the
master selects one to continue the process. The behavior of the algorithm is the same as the sequential
counterpart, but its execution is accelerated.

• Movement acceleration model: in the majority of cases, the most computationally expensive pro-
cess of the optimization algorithm is the evaluation of a solution, that is, the calculation of the fitness
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Figure 3.9: Parallel models for trajectory based methods. Left: parallel movements model, where the neigh-
borhood is explored in parallel. Right: multiple executions model, where several cooperating subalgorithms
are executed in parallel.

function. This calculation can, sometimes, be broken down into smaller independent parts that pro-
duce the global fitness by some simple combination. This model makes use of this property (when
found) and has the different parts of the fitness function calculated in parallel by different proces-
sors, hence obtaining the fitness value faster. Again, this model produces the same behavior as the
sequential counterpart.

3.4.2 Parallel models for population based methods

When handling populations, parallelism comes out in a natural way, as different individuals may be oper-
ated independently. Hence, the performance of population based algorithms tends to improve as they are
executed in parallel. From a high level viewpoint, parallel strategies for this kind of method can be classified
into two categories: (1) parallel computation, where the individual operations are performed in parallel, and
(2) parallel population, where the algorithm’s population is structured into smaller subpopulations.

One of the most frequently used models that follows the first strategy is the so called master-slave
model (also known as global parallelization). Within this model, the central process –the master– performs
the population-scale operations (such as the selection method of an EA), while the slaves perform the
independent individual-scale operations (such as the individual fitness value computation, mutation, and
sometimes the recombination as well). In this model, the global behavior of the algorithm does not diverge
from the sequential counterpart, but its computation wall clock time is reduced. This kind of strategy is
mostly used in scenarios where the fitness value computation is a costly process (in computation time).
Another popular strategy consists in accelerating the computation time by performing multiple independent
executions at a time (with no interaction among them) in that many computers; upon completion of all
the executions, the best solution found among all is kept. Again, this process does not change the global
behavior of the algorithm, but reduces the computation wall clock time.

Besides the master-slave model, most parallel population based algorithms found in the literature use
some kind of structure for their population of individuals. This kind of model is specially used with EAs.
Among the most popular models for structured populations are the distributed model or coarse grained, and
the cellular model or fine grained ([12]).

In the case of distributed algorithms ([5]) (right side of Figure 3.10), the global population is divided
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Figure 3.10: Structured population models: (left) cellular and (right) distributed.

into a set of smaller subpopulations or islands, each of which is then handled in parallel by a sequential
metaheuristic. Islands cooperate by exchanging information (typically individuals); this cooperation is used
to introduce new diversity into the subpopulations, keeping them from stagnating around local optima. The
parameters required for the complete definition of this model include: the topology, which determines the
directions of the logical communication channels among islands; the migration schedule, which determines
at which moments of the execution the information exchanges will take place (since the communications are
typically periodic, this parameter is normally reduced to the value of the migration period); the migration
ratio, which determines the amount of information (i.e., number of individuals) exchanged; the selection
and replacement criteria, which determine, in the case of migrating individuals, which individuals enter
and leave each island. Finally, the communication among islands can be made to be synchronous, or
asynchronous.

Alternatively, cellular metaheuristics ([65]) (left side of Figure 3.10) are based on the concept of neigh-
borhood1. Each individual has a set of close individuals or neighbors according to some virtual super-
imposed regular structure (like in a crystal or a beehive) with which the exploitation of solutions will be
performed. Exploration and diffusion of solutions to the rest of the population happens in a smooth fashion,
due to the continuous overlap existing among the different neighborhoods, which lets high quality solutions
to propagate over the population.

Besides these two basic models, there are many existing hybrid models in the literature that combine
two-tiered strategies. For instance, a commonly found strategy is one in which coarse grain is used in the
higher tier, and a cellular model is used within each subpopulation.

3.4.3 Theoretical analysis of the convergence in distributed EAs

In [11], the authors proposed an iterative mathematical model for calculating the growth curve of distributed
genetic algorithms (dGAs) with panmictic islands. The growth curve represents the percentage of the global
population that has been “occupied” by the optimal solution at any time during the execution (a single
optimal solution is present in the initial population), using only selection mechanisms and reproduction.
The time by which the complete population is occupied is known as “takeover time”, and is a relevant
value. It is based in the seminal idea that each island converges according to a logistic model, and that
the entire population grows up as a sum of the growth of each component island according to the specific
configuration of the migration policy (the migration topology and period are explicitly considered in the
equation). Specifically, the growth P (t) at instant t can be obtained as:

1Once more, the concept of neighborhood for a cellular metaheuristic is different from the ones previously mentioned for different
contexts, such as trajectory based methods or particle swarm techniques.
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Figure 3.11: Predicted growth curves for a dGA using different migration period values (SUM), confronted
against the real experimental growth curves.

P (t) =

i=d(T )∑
i=1

1/N

1 + a · e−b·(t−per·(i−1)) +
N − d(T )/N

1 + a · e−b·(t−per·d(T ))
, (3.23)

where per is the migration period, N is the number of islands, and d(T ) is the length of the longest path
between any two islands (known as diameter). This model is an extension of the logistic model proposed
by Sarma and De Jong for cellular EAs ([181]). In fact, in the panmictic case (d(T ) = 0, per = 0, and
N = 1), this equation simplifies to the logistic one.

Later, from the growth curve equation (3.23) a closed equation for the takeover time calculation can be
extracted (Eq. 3.24):

t∗ = per · d(T )− 1

b
· ln

(
1

a
· ε

N − d(T )− ε ·N

)
, (3.24)

where t∗ is the takeover time value, and ε is the desired level of accuracy of the mathematical model (a
small value near zero).

After an experimental analysis of the growth curves and takeover regime of dGAs, the results showed
how the models appropriately captured the effects of the most important parameters of the migration policy:
migration period, rate, and topology (see Figure 3.11).

This model is taken as the basis for a self-adaptive migration mechanism developed for a distributed
GA. The application of the model is discussed in Section 6.5.1.
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3.5 Evaluation of the results

As was said before, metaheuristics are non-deterministic techniques, hence different executions of the same
algorithm over the same problem instance can produce different results. This can cause inconveniences to
researchers at the time of evaluating and assessing those results, and when comparing different algorithms.

Although there are works that tackle the theoretical analysis of many heuristic methods and prob-
lems ([87, 113]), this kind of theoretical analysis still involves a great deal of complexity, therefore a most
commonly adopted approach is to establish the comparisons on the basis of empirical data. For this, some
indicators have to be defined that enable such comparisons. In a wide sense, there are two kinds of indica-
tors. On the one hand, there are indicators that measure the quality of the obtained solutions. Since both
mono-objective and multi-objective problems are solved in this thesis work, specific indicators have to be
defined for both approaches. On the other hand, there are indicators that measure the performance of the
algorithms in terms of their required computation time or the amount of resources they use. Although the
following discussion comments the two types of indicator separately, they are closely related and are often
used together for the evaluation of metaheuristics, since the purpose of the latter is twofold: finding high
quality solutions within reasonable time.

Once the indicators have been established, a given number of unrelated or independent executions of the
experimental configuration (algorithmic configuration and problem instance) are required to obtain statisti-
cally consistent results. A value of 30 executions is a commonly adopted and accepted minimum, though
higher values (such as 100) are recommended. The mere use of mean value and standard deviation, albeit
quite frequent in the literature, is not sufficient and can lead to wrong conclusions. Thus, a global statistical
analysis should be applied on the results before stating whether the observed differences are meaningful,
and not just the result of the inherent randomness of the techniques.

This section contains the discussion of the indicators used in the first place (for quality and perfor-
mance), then the statistical tests that are used to assess the significance of the results.

3.5.1 Quality indicators

Quality indicators or metrics are of paramount importance when evaluating a metaheuristic. They are
defined in many ways depending on whether the optimal solution is known or unknown for the problem at
hand (in a benchmark or a classic literature problem the optimum is often known, but for real problems this
is hardly the case). As stated before, there are specific indicators for mono-objective and multi-objective
problems.

Quality indicators for mono-objective problems

When the optimum is known beforehand, a simple and intuitive quality indicator for the metaheuristic
is the expectancy of actually finding the optimum, or hit rate. This indicator is defined as the ratio or
percentage of the number of executions in which the optimum is found over the total number of independent
executions that have been performed. Unfortunately, knowing the optimum is not the common case for real
problems or, even if they were known, sometimes they are so difficult to obtain that no execution of the
experiment achieves it; in fact, experiments with metaheuristics are normally tailored to finish after a given
computational effort has been spent (like visiting a maximum number of points of the search space, or
running for a given time).

For these cases in which the optimum is not known in advance, or that the hit rate cannot be used,
other indicators are used. The most popular are the mean and median of the best fitness value found in
each independent execution. In general, other statistical data are required, such as the standard deviation,
and a corresponding statistical analysis, in order to assess the statistical confidence on the observed results,
should be performed.
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In problems where the optimum is known, both metrics can be combined to offer a wider picture: for
instance, a low hit rate with a high mean value speaks for the robustness of the method, and could be
preferred over a higher hit rate but with lower median (assuming maximization).

Quality indicators for multi-objective problems

Contrary to single-objective optimization, where assessing the performance of a metaheuristic mainly re-
quires to observe the best value yielded by an algorithm (i.e., the lower the better, in case of minimization
problems), in multi-objective optimization this is not applicable. Instead, an approximation set to the op-
timal Pareto front of the problem is computed. As we stated in Section 3.3.2, two properties are usually
required: convergence and a uniform diversity. A number of quality indicators for measuring these two
criteria have been proposed in the literature: Generational Distance (GD, [205]), Inverse Generational Dis-
tance (IGD), Hypervolume (HV, [236]), Epsilon ([119]), Spread or ∆ ([57]), Generalized Spread indicators,
and others. Some of them are intended to measuring only the convergence or diversity, and others take into
account both criteria. Figure 3.12 depicts a classification of the indicators based on which aspect they
measure.

Measuring 
Convergence

Measuring
Diversity

Epsilon, Generational Distance

Spread, Generalized Spread

Hypervolume, 
Inverted Generational Distance

Figure 3.12: A classification of quality indicators.

• GD. This indicator was introduced by Van Veldhuizen and Lamont ([205]) for measuring how far the
elements in the computed approximation are from those in the optimal Pareto; it is defined as:

GD =

√∑n
i=1 d

2
i

n
, (3.25)

where n is the number of solutions in the approximation and di is the Euclidean distance (measured
in objective space) between each of these solutions and the nearest member in the optimal Pareto
front. A value of GD = 0 indicates that all the generated elements are in the Pareto front.

• IGD. It is a variant of the Generational Distance. It measures the distances between each solution
composing the optimal Pareto front and the computed approximation. It can be defined as follows:

IGD =

√∑n
i=1 d

2
i

n
, (3.26)



46 CHAPTER 3. METAHEURISTICS

being n the number of solutions in the optimal Pareto front and di is the Euclidean distance (measured
in objective space) between each point of that front and the nearest member of the approximation.

• HV. This indicator calculates the volume, in the objective space, covered by members of a non-
dominated set of solutions Q, e.g., the region enclosed into the discontinuous line in Figure 3.13,
Q = {A,B,C}, for problems where all objectives are to be minimized ([236]). Mathematically,
for each solution i ∈ Q, a hypercube vi is constructed with a reference point W and the solution i
as its diagonal corners. The reference point can simply be found by constructing a vector of worst
objective function values. Thereafter, a union of all hypercubes is found and its hypervolume (HV )
is calculated:

HV = volume

 |Q|⋃
i=1

vi

 . (3.27)

Fronts with larger values of HV are desirable.

f1

f2

Pareto-optimal front

W

A

B

C

Figure 3.13: The hypervolume enclosed by the non-dominated solutions.

• Epsilon. Given a computed front A for a problem, this indicator is a measure of the smallest distance
one would need to translate every solution in A so that it dominates the optimal Pareto front of this
problem. More formally, given ~z1 = (z11 , . . . , z

1
n) and ~z2 = (z21 , . . . , z

2
n), where n is the number of

objectives:
I1ε+(A) = inf

{
ε ∈ R|∀ ~z2 ∈ PF∗ ∃ ~z1 ∈ A : ~z1 ≺ε ~z2

}
, (3.28)

where, ~z1 ≺ε ~z2 if and only if ∀1 ≤ i ≤ n : z1i < ε+ z2i .

• Spread or ∆. This indicator measures the extent of spread by the set of computed solutions. It is
defined as ([57]):

∆ =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

, (3.29)

where di is the Euclidean distance between consecutive solutions, d̄ is the mean of these distances,
and df and dl are the Euclidean distances to the extreme solutions of the optimal Pareto front in the
objective space (see Figure 3.14). This indicator takes a zero value for an ideal distribution, pointing
out a perfect spread of the solutions in the Pareto front.

• Generalized Spread The previous indicator is based on calculating the distance between two con-
secutive solutions, which works only for 2-objective problems. This metric is extended by computing
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Figure 3.14: Distances from the extreme solutions.

the distance from a given point to its nearest neighbor in [168]. This extension is based on the metric
proposed in [232]:

∆ =

∑m
i=1 d(ei, S) +

∑
X∈S

∣∣d(X,S)− d̄
∣∣∑m

i=1 d(ei, S) + |S∗| d̄ , (3.30)

where S is a set of solutions, S∗ is the set of Pareto optimal solutions, (e1, ..., em) are m extreme
solutions in S∗, m is the number of objectives and

d(X,S) = min
Y ∈S,Y 6=X

||F (X)− F (Y )||2 , (3.31)

d̄ =
1

|S∗|
∑
X∈S∗

d(X,S). (3.32)

Since those indicators are not free from arbitrary scaling of objectives, in this work they are applied
always after normalizing the objective function values.

3.5.2 Performance indicators
A performance measure is one that is associated to the time or amount of computational resources used
by the metaheuristic, which are usually measured as the number of visited solutions in the search space
(computational effort), or the computation time. Many researchers favor the number of solution evaluations
over the time to measure the computational effort, since it is impervious to implementation details, software
or hardware, hence rendering comparisons independent of those factors. However, this measure can be
misleading in some cases, where the evaluations are non-homogeneous with some requiring much more
time than others (this is often the case in genetic programming [124]), or when the operators besides the
fitness evaluation are much more costly in one technique than in some other. In general, the combined
use of both metrics (number of evaluations and time) is advisable to obtain a more realistic picture of the
computational effort.

Since some algorithms will run on parallel computation platforms, a brief discussion on the main indica-
tors used in the literature for this scenario follows. Among them, the most important for parallel algorithms
is the speedup, which compares the execution time of the sequential algorithm with the equivalent time of
the parallel counterpart. The speedup is an indicator of how many times faster the parallel algorithm is with
respect to the sequential one. If we note as Tm the computation time for a given algorithm running on m
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processors, then the speedup is the ratio of the swiftest execution on a monoprocessor system T1 over the
execution time on m processors Tm:

sm =
T1
Tm

. (3.33)

For non-deterministic algorithms this metric cannot be used directly, instead the mean computation
times have to be compared:

sm =
E[T1]

E[Tm]
. (3.34)

The main difficulty for this measure exists for the unclear significance of T1 and Tm. In [12], a clas-
sification is made among different existing speedup measures according to the significance of these values
(see Table 3.1).

Table 3.1: Speedup measure taxonomy ([12]).

I. Strong Speedup
II. Weak Speedup

A. Speedup with solution quality stopping criterion
1. Versus panmixy
2. Orthodox

B. Speedup with predefined effort

The strong speedup (type I) compares the execution time of the parallel algorithm to the most efficient
sequential algorithm. This is the most accurate definition of speedup, but because of the difficulty of
obtaining the most efficient sequential algorithm, many researchers in the field of parallel algorithms choose
not to use it. The weak speedup (type II) compares the parallel algorithm with the equivalent sequential
counterpart. In this case, two stopping criteria can be used: based on the obtained solution quality, and
based on the maximum allowed effort. The last one is advised against, since it ends up comparing times of
algorithms that produce different outputs (solutions not having similar quality), which defeats the purpose
of this metric. Thus, two variants are proposed for weak speedup with stopping criterion based on solution
quality: compare the parallel algorithm to the canonical sequential version (type II.A.1), or compare the
execution time of the parallel algorithm in a processor with the time that same parallel algorithm spends on
m processors, (type II.A.2). In the first case two different algorithms (sequential and parallel) are compared,
while in the latter a single algorithm is compared with itself running on different platforms (single processor
and m processors).

Although speedup is the most frequently used metric, there are other metrics defined to measure the
behavior of a parallel algorithm. We briefly sketch two other such metrics: parallel efficiency and serial
fraction.

The parallel efficiency (Eq. 3.35) is a normalization of the speedup over the number of processors m. It
takes values between 0 and 1 indicating the degree of use of the processors used:

em =
sm
m

. (3.35)

Karp and Flatt ([111]) developed another metric to measure the performance of any parallel algorithm.
This metric is called serial fraction of the algorithm (Eq. 3.36). The lower the value of the Karp-Flatt
metric, the better the parallelization of the code.

fm =
1/sm − 1/m

1− 1/m
. (3.36)
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3.5.3 Statistical analysis of the results
Having defined the indicators of quality and performance, one needs at least 30 independent executions
to obtain a set of values for each indicator. From the statistics viewpoint, these data can be considered as
a sample from a probability density function and, in order to extract the correct conclusions, a statistical
analysis has to be performed on these results ([60, 187]).

The procedure adopted in our research work is as follows. First, a Kolmogorov-Smirnov test is per-
formed in order to check whether the samples are distributed according to a normal distribution (Gaussian)
or not. For non-normal distributions, a Kruskal-Wallis test is performed. For normal distributions, the
homocedasticity (i.e., equality of variances) is checked using the Levene test. If the Levene test returns a
positive value, an ANOVA test is performed; otherwise a Welch test is performed. The confidence degree
for all tests is set to 95% (corresponding to a significance level of 5% or a p-value below 0.05). Figure 3.15
graphically sketches this process.

Figure 3.15: Statistical analysis process of the experimental results.

Since typically more than two algorithms are involved, a post-hoc testing phase which allows for mul-
tiple comparison of samples ([93]) is also performed. Specifically, the multcompare function provided
by Matlab c© is the one used, since it is capable of selecting the most adequate critical value depending on
the sample. This function uses tests ranging from the most conservative ones, as HSD or Tukey-Kramer, to
the less conservative ones, like Scheffe’s S test. The confidence level is kept at the same value (α = 0.05).
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Chapter 4

Algorithms

This chapter serves as a general introduction to the metaheuristic techniques that are used throughout this
thesis work to solve the different optimization problems selected. Only generic descriptions of the algo-
rithms will be given here, “templates” of the high-level behavior of the algorithms. The specific implemen-
tation details (like the operators for mutation or crossover), which are problem-specific (or representation-
specific), are delayed to the corresponding chapters where the application of the algorithms to solve the
problems is discussed. We first describe the mono-objective techniques used in Section 4.1, then describe
the multi-objective techniques used in Section 4.2.

4.1 Mono-objective techniques
In this thesis, mono-objective approaches are tackled for the Radio Network Design problem (chapters 5
and 6) and the Location Discovery problem (chapters 9 and 10). The algorithms used for this kind of
approach, and described in this section, are Simulated Annealing (Section 4.1.1), Genetic Algorithm (Sec-
tion 4.1.3), CHC (Section 4.1.2), and Particle Swarm Optimization (Section 4.1.4).

4.1.1 Simulated Annealing
Simulated Annealing (SA) is a trajectory based optimization technique ([21]). It was first proposed by Kirk-
patrick et al. in [117]. SA is a fairly commonly used algorithm that provides good results and constitutes
an interesting method to compare to other optimizing methods because of its simplicity. The pseudocode
for this algorithm is shown in Algorithm 1.

The algorithm works iteratively keeping a single tentative or candidate solution sa at any time. In every
iteration, a neighbor solution sn is generated, which either replaces or not the current solution depending
on an acceptance criterion. The acceptance criterion works as follows: both the old (sa) and the new (sn)
solutions have associated quality values (fitness); if the new solution has better fitness than the current solu-
tion, it replaces the current solution. Otherwise, the replacement is done with probability P , which depends
on the difference between their quality values and a control parameter T (temperature). This acceptance
criterion provides a way of escaping local optima. The mathematical expression for the probability P is
shown in Equation 4.1.

P =
2

1 + e
fitness(sa)−fitness(sn)

T

. (4.1)

The temperature parameter is reduced during the search process following a given cooling schedule.
We employ the geometric rule T (n + 1) = α · T (n), with 0 < α < 1, performed every k iterations (k is
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Algorithm 1 Pseudocode of SA.
1: t← 0;
2: Initialize(T ,sa)
3: Evaluate(sa)
4: while not EndCondition(t,sa) do
5: while not CoolingCondition(t) do
6: sn ← ChooseNeighbor(sa)
7: Evaluate(sn)
8: if Accept(sa,sn,T ) then
9: sa ← sn

10: end if
11: t← t+ 1
12: end while
13: Cooldown(T )
14: end while

the Markov chain length). This makes SA accept only better solutions towards the end of the search. The
initial temperature T (0) is set to a value such that starting from a random solution, SA will accept the first
neighbor with probability 80%.

A mutation operator is used to produce sn from sa. Mutation operators used in SA are described in
sections 6.2.2 and 10.2.2.

4.1.2 CHC
The Cross-generational elitist selection, Heterogeneous recombination, and Cataclysmic mutation (CHC),
is a kind of Evolutionary Algorithm (EA) that was first proposed by Eshelman in [69]. Like other EAs,
CHC works with a set of solutions (population) at any time. The pseudocode for this algorithm is shown in
Algorithm 2.

Algorithm 2 Pseudocode of CHC.
1: t← 0
2: Initialize(Pa,convergence count)
3: while not EndingCondition(t,Pa) do
4: Parents← SelectionParents(Pa)
5: Offspring← HUX(Parents)
6: Evaluate(Offspring)
7: Pn ← ElitistSelection(Offspring,Pa)
8: if not Modified(Pa,Pn) then
9: convergence count← convergence count-1

10: if convergence count == 0 then
11: Pn ← Restart(Pa)
12: Initialize(convergence count)
13: end if
14: end if
15: t← t+ 1
16: Pa ← Pn

17: end while

In every step, a new set of solutions is produced by selecting pairs of solutions from the parent popu-
lation Pa and recombining them. An incest prevention criterion prevents individuals that are too similar to
each other to mate, and recombination is made using a special procedure known as HUX. This procedure
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copies first the parents into the offspring, then randomly exchanges half of the diverging information be-
tween the offspring. This method has been designed to preserve the maximum amount of diversity in the
population, which is an important matter since no new diversity is introduced during the iteration (because
there is no mutation operator). The next population is formed by selecting the best individuals among the
parent and the offspring populations (elitism).

In a normal execution, population convergence is sooner or later achieved, thus the previously described
algorithmic behavior would stall on it. For this reason, a special mechanism is used to introduce new
diversity when this happens: the restart mechanism. Upon restarting, all the solutions except the very best
ones (or only the best one) are significantly modified through a high rate mutation (typically pm = 0.35).

The HUX and the mutation used in the restart mechanism are detailed in Section 6.2.2.

4.1.3 GA

Genetic Algorithms (GAs) also belong to the wide family of EAs ([16]). They appear for the first time as
a widely recognized optimization method as a result of the work of John Holland in the early 70’s, and
particularly his 1975 book. The pseudocode for this algorithm is shown in Algorithm 3.

A standard GA is a population based technique ([21]) that uses a selection operator to pick solutions
from the population (line 4), a crossover and a mutation operators to produce new solutions from them
(lines 5-6), and a replacement operator to choose the individuals for the next population (line 8).

Algorithm 3 Pseudocode of GA.
1: t← 0
2: Initialize(Pa)
3: while not EndingCondition(t,Pa) do
4: Parents← SelectionParents(Pa)
5: Offspring← Crossover(Parents)
6: Offspring←Mutate(Offspring)
7: Evaluate(Offspring)
8: Pn ← Replacement(Offspring,Pa)
9: t← t+ 1

10: Pa ← Pn

11: end while

Our implementation of the genetic algorithm typically uses a ranking method for parent selection and
elitist replacement for the next population, that is, the best individual of the current population is included
in the next one. Should different operators be used, they will be explicitly described in the corresponding
section.

The mutation and crossover operators used with GA are described in sections 6.2.2 and 10.2.2.

Distributed Genetic Algorithm

We use a parallel GA that implements the distributed model (coarse grained) presented in Section 3.4.2.
We shall refer to this algorithm as distributed Genetic Algorithm (dGA). In our dGA, each island executes
as a GA (Algorithm 3), with an additional step at the end of the inner loop: at some special iterations an
inter-island communication called migration takes place, during which each island sends an individual from
its population to the next island1, and receives an individual from its preceding island. Thus, apart from
the migration-specific ones, the operators used in dGA are the same used in GA: crossover and mutation,
which are described in Section 6.2.2.

1According to the topology of the dGA.
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Our implementation of the dGA uses a unidirectional ring topology (see Figure 3.10), and synchronous
migration. The global population of the algorithm is the union of the subpopulations hosted at the different
islands.

4.1.4 Particle Swarm Optimization
PSO is a population based metaheuristic inspired in the social behavior of birds within a flock. In a PSO
algorithm, each potential solution to the problem is called particle and the population of solutions is called
swarm (hence the name of the algorithm). The best values visited so far for each solution, pbest, as well as
the best value visited so far by any particle of the swarm, gbest, are stored.

Algorithm 4 Pseudocode of PSO.
1: InitializeSwarm(S, pbest)
2: gbest← LocateLeader(S)
3: t← 0
4: while not EndingCondition(t) do
5: for all pi in S do
6: pi← UpdatePosition(pi, pibest, gbest)
7: Evaluate(pi)
8: pibest← UpdatePbest(pi, pibest)
9: end for

10: gbest← UpdateLeader(S)
11: t← t+ 1
12: end while

Algorithm 4 describes the pseudo-code of a general single-objective PSO. The algorithm starts by ini-
tializing the swarm (line 1), which includes both the positions and speeds of the particles. The correspond-
ing pbest of each particle is initialized, as well as the leader (line 2). Then, during a predefined number of
iterations, each particle flies through the search space (updates its position, line 6), is evaluated (line 7), and
its pbest is calculated (lines 6-8). At the end of each iteration, the leader is updated. Besides, as the execu-
tion progresses, the inertia weight linearly evolves from an initial value to a final value (which is generally
lower).

The flight operator used in PSO is described in Section 10.2.2.

4.2 Multi-objective techniques
In this thesis, multi-objective formulations are defined for the Radio Network Design problem (chapters 5
and 6) and the Wireless Sensor Network Layout problem (chapters 7 and 8). The algorithms used for this
kind of approach, and described in this section, are NSGA-II (Section 4.2.1), PAES (Section 4.2.2), SPEA2
(Section 4.2.3), MOCell (Section 4.2.4), and MOCHC (Section 4.2.5).

4.2.1 NSGA-II
Deb et al. proposed in [59] the second Nondominated Sorting Genetic Algorithm (NSGA-II) as a multi-
objective technique that dealt with the main problems existing in the field: high computational complexity
of nondominated sorting, lack of elitism and need of a sharing parameter specification. The authors fixed
these problems by using a fast non-dominated sorting, an elitist Pareto dominance selection and a crowding
distance method.

NSGA-II is based on a genetic algorithm. Its behavior can be seen in Algorithm 5. The differences
between this algorithm and mono-objective GAs lie within the fitness assignment strategy.
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Algorithm 5 Pseudocode of NSGA-II.
1: t← 0
2: Initialize(Pa)
3: while not EndingCondition(t,Pa) do
4: Parents← SelectionParents(Pa)
5: Offspring← Crossover(Parents)
6: Offspring←Mutate(Offspring)
7: Pi ←Merge(Pa,Offspring)
8: RankingCrowding(Pi)
9: Pn ← ElitistSelection(Pi)

10: t← t+ 1
11: Pa ← Pn

12: end while

In NSGA-II, the solutions are first sorted according to restriction fulfillment. Feasible solutions come
first, then unfeasible solutions are sorted by increasing degree of constraint violation. Feasible solutions
and every set of solutions with the same violation degree are then respectively sorted according to Pareto
dominance. This sorting is performed by successively extracting from the chosen subpopulation the current
set of non-dominated solutions (fronts). All the solutions in a front are given the same rank value, beginning
at 0 for the first front extracted, 1 for the second, and so on. This way, solutions can be sorted according
to rank, starting at 0. Finally, within every group of solutions having the same rank, solutions are sorted
according to the crowding distance. This criterion places first those solutions whose closest neighbors are
farthest, thus enhancing diversity.

The mutation and crossover operators used with NSGA-II are described in sections 6.2.2 and 8.2.2.

4.2.2 PAES
The Pareto Archived Evolutionary Strategy (PAES) is a multi-objective evolutionary strategy that does not
use self-adaptation, or recombination (crossover). Hence, PAES is a trajectory-based technique. Despite
PAES handles a single solution at a time, a full Pareto optimal set is required as the execution’s output; to
generate such a set, PAES uses an external archive in which non-dominated solutions found are stored, and
returns that archive upon execution completion. Algorithm 6 sketches the operation of PAES.

This algorithm maintains a single solution, and mutates it at each iteration to generate a new candidate
solution (line 5). This new candidate solution either replaces the current one or not, and either enters the
archive or not, subject to a Pareto-dominance criterion (lines 8, 10, 12, 15). Since the archive has bounded
size, not all non-dominated solutions may be stored; a criterion based on the distribution of solutions over
the front determines which solutions are accepted into the archive. Specifically, PAES employs a diversity
measure based on an adaptive grid to uniformly distribute the non-dominated solutions in the front.

The mutation operator employed with PAES is described in Section 8.2.2.

4.2.3 SPEA2
The Strength Pareto Evolutionary Algorithm (SPEA2) is a multi-objective evolutionary algorithm. SPEA2
was proposed by Zitler et al. in [235]. We show the algorithm’s pseudocode in Algorithm 7.

SPEA2 uses a population and an archive simultaneously in its operation. In it, each individual is as-
signed a fitness value that is the sum of its strength raw fitness and a density estimation. The strength value
S of a solution i represents the number of solutions (in either the population or the archive) that are dom-
inated by that solution, that is, S(i) = |{j|j ∈ Pt ∪ Pt ∧ i > j}|. The strength raw fitness value R of a
given solution i, on the contrary, is the sum of strengths of all the solutions that dominate it, and is subject
to minimization, that is, R(i) =

∑
j∈Pt∪Pt,j>i S(j). The algorithm applies the selection, crossover, and
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Algorithm 6 Pseudocode of PAES.
1: Archive← ∅
2: Initialize(c)
3: t← 0
4: Insert(Archive, c)
5: while not EndingCondition(t) do
6: m←Mutate(c)
7: Evaluate(m)
8: if Dominate(m,c) then
9: Discard (m)

10: else if Dominate(c,m) then
11: Insert(Archive, m)
12: else if Dominate(Archive,m) then
13: Discard(m)
14: else
15: Test(c, m, Archive)
16: end if
17: t← t+ 1
18: end while

Algorithm 7 Pseudocode of SPEA2.
1: t← 0
2: Initialize(P0, P0)
3: while not EndingCondition(t,Pt) do
4: FitnessAssignment(Pt, Pt)
5: Pt+1← NonDominated(Pt ∪ Pt+1)
6: if |Pt+1| > N then
7: Pt+1← Truncate(Pt+1)
8: else
9: Pt+1← FillWithDominated(Pt)

10: end if
11: Parents← BinaryTournament(Pt+1)
12: Offspring← Crossover(Parents)
13: Pt+1←Mutate(Offspring)
14: t← t+ 1
15: end while

mutation operators to fill an archive of individuals; then, the nondominated individuals of both the original
population and the archive are copied into a new population. If the number of non-dominated individuals is
greater than the population size, a truncation operator based on calculating the distances to the k-th nearest
neighbor is used (a typical value is k = 1), D(i) = 1

σki +2
, where σki is the distance from solution i to its

k-th nearest neighbor. This way, the individuals having the minimum distance to any other individual are
chosen.

4.2.4 MOCell
MOCell is a recent proposal based on the cellular model (that structures the population of solutions), for
multi-objective optimization. Algorithm 8 shows its pseudocode.

MOCell first creates an empty Pareto front (line 2). The individuals are placed in a 2D toroidal grid, and
undergo the reproductive cycle iteratively (lines 5 to 14) until the stopping condition is met (line 4). This
way, for each individual, the algorithm selects two parents, each through a binary tournament, one is taken



4.2. MULTI-OBJECTIVE TECHNIQUES 57

Algorithm 8 Pseudocode of MOCell.
1: Initialize(P )
2: ParetoFront← CreateEmptyFront()
3: t← 0
4: while not EndingCondition(t,P ) do
5: for all i in P do
6: Neighbors← GetNeighborhood(i)
7: Parents← Selection(Neighbors, ParetoFront)
8: Offspring← Recombination(Parents)
9: Offspring←Mutate(Offspring)

10: Evaluate(Offspring)
11: Insert(P ,i,Offspring)
12: InsertParetoFront(i, ParetoFront)
13: end for
14: t← t+ 1
15: end while

from the grid neighborhood, and the other from the external archive. The winner of each tournament is
determined by its crowding distance inside the neighborhood and the archive, respectively. The selection of
a parent from the archive introduces front solutions (intensity), thus guiding the search towards promising
regions. The selected parents are then recombined, and the resulting offspring is mutated and evaluated.
This newly produced individual is then inserted in the population, replacing the solution in the current
neighborhood with the worst crowding distance. The new individual may be inserted in the external archive
as well, using a similar procedure as in PAES, but with NSGA-II’s crowding distance as the diversity
measure instead of the adaptive grid.

MOCell can also handle restrictions in the problem in the same way NSGA-II does. When comparing
two solutions, if both are feasible, Pareto-dominance is used. If only one is feasible, this one dominates the
other. When none is feasible, the one with the less restriction violation dominates the other.

The recombination and mutation operators used by MOCell are described in Section 8.2.2.

4.2.5 MOCHC
The multi-objective version of the CHC algorithm, namely MOCHC, maintains the basic structure of the
algorithm shown in Algorithm 2, and uses the same crossover and re-initialization mechanisms. The differ-
ences between the two techniques lie in two aspects: the selection mechanism and the restart procedure.

• Selection: In CHC, an elitist selection that sorts solutions based on their fitness values is used, but
fitness is no longer used in a multi-objective approach. In MOCHC, the solutions of the merged
population (including both parents and offspring) are sorted according to their ranking and crowding
distance estimators, similar to those used in NSGA-II. Thus, the non-dominated solutions in the pop-
ulation are selected and removed from it, constituting the subset of rank 0. This process is iteratively
repeated, producing the subsets of rank 1, 2, 3, and so on, until the number of solutions extracted is
equal or greater than the population size; in the second case, the crowding estimator is applied to the
solutions of the last subset extracted and those with the higher distance values are selected.

• Restart: In single-objective CHC only the solution with the highest fitness is kept, in multi-objective
the interest is to keep information concerning the best set of solutions found, not just the best solution
found. Thus, instead of a single solution, a small percentage of the population is kept. The percentage
of solutions kept corresponds to the solutions with higher ranking and crowding distances. The
percentage was empirically chosen to be 5%.
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4.3 Conclusions
In this chapter we have presented and described the different optimization algorithms that are employed
throughout this thesis work to solve the different problems addressed. We have structured the chapter
in two sections: the mono-objective techniques are described in the first section, and the multi-objective
techniques are described in the second section. In the mono-objective domain we present the trajectory-
based algorithm SA, two evolutionary algorithms, GA and CHC, and the particle-based algorithm PSO. In
the multi-objective domain we present the trajectory-based algorithm PAES, three evolutionary algorithms,
NSGA-II, SPEA2 and MOCHC, and a cellular algorithm, MOCell.
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Chapter 5

Radio Network Design Problem

In this chapter we present the first problem tackled in this thesis, namely the Radio Network Design prob-
lem, or RND ([30, 33]). In this problem, which can be found in the telecommunications field, a subset of
location sites has to be selected from a set of available locations. A Base Station Transceiver (BTs or BS)
will be placed in each of the selected sites, offering coverage to a terrain area called cell, so that ideally, the
resulting network offers radio coverage to a given area.

RND is closely related to the design process followed for cellular networks, such as the access networks
used nowadays in the major systems for mobile telephony (GSM, UMTS). Withing the context of mobile
telephony, an RND-like problem can be found under the name of Automatic Cell Planning (ACP, [160]),
more specifically, the site selection of ACP. The ACP problem, together with the Automatic Frequency
Planning problem (AFP, [1, 121]), constitute the main tasks the service provider needs to solve when an
access network is undergoing its design phase. Both RND’s and ACP’s goals are the selection of locations
to place Base Station Transceivers (BTs or BS), or equivalently the terrain partition into cells (since the
cell location and boundary depends on the location of its BS, both problems amount to the same decisions).
Later, AFP’s goal is to assign frequency sets to the different cells in order to maximize the communication
bandwidth and minimize the interferences among different channels.

Specifically, in RND the global coverage offered by the union of the coverage cells of the BSs placed
has to be maximized, while the number of such BSs has to be kept to a minimum (for economic efficiency).
The problem instances can have varying dimension, depending on whether different types of BS antenna
can be chosen, and whether those antennae have parameters that have to be tuned; but at its core, RND
remains an NP-hard combinatorial problem.

An important problem exists in the domain of Wireless Sensor Networks that, by its nature and def-
inition, has a strong similarity with the RND problem considered here: we refer to that problem as the
scheduling problem ([195]). We will describe that problem in this chapter, and point out the similarities and
the differences between RND and scheduling. Additionally, , we will sketch indications as to how to extend
the existing solutions for RND in order to obtain solutions for scheduling. In the next chapter we address
the discussion of the solutions for RN.

5.1 Problem description
Mobile communications are a major area in the telecommunications industry of the twenty-first century.
They require the use of a mobile device by the end user, the presence of a network accessible by the mobile
device from any place the user has to be. Among many different techniques and applications, two of the
best known paradigms are ad-hoc networks and access networks; in the first, the very mobile terminals form
the communication network in an ad-hoc fashion (hence its name), while in the latter, a fixed infrastructure
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offers a radio access over a given geographic area, which is called the covered or coverage area.
A generally accepted method for building an access network is to discretize the terrain to be covered

using some points that represent terrain areas, each of which can be covered by a transmitter conveniently
located in some base station (BS); this solution is known as a radio network. Figure 5.1 shows the archi-
tecture of the GSM network, which is a well-known cellular network. In GSM, each cell is covered by an
antenna corresponding to a site, which is controlled from a base station controller (BSC), which in turn is
connected to one of the mobile switching centers (MSC) that form the internal backbone. The system uses
databases for authentication of users (AuC), home and visitor locations (HLR and VLR) to monitor the
location of the users as they roam through the network, The short message service center (SMSC), flexible
number register (FNR), and service data and service control points (SDP and SCP), complete the system.

Figure 5.1: Architecture of the GSM cellular network.

Presently, a number of companies that have entered and are well established in the sector, compete to
obtain the highest number of clients by offering the best service at the lowest cost. As a result, there is
an increasing interest in solving the inherent optimization problems involved in the design process of the
service infrastructure –in the case of RND, the network of base stations that provide the radio access of the
cellular network.

Thus, the problem we solve is how to achieve maximum coverage of the terrain in order to obtain
a valuable service for the customer (ideally the coverage should be complete), while placing the lowest
number of transmitters, so that the cost of the service remains competitive. This is equivalent to selecting
the optimal positions for placing the transmitters, and this problem is known as the Radio Network Design
problem (RND), or the radio coverage problem.

The part of an area that is covered by a transmitter is called a cell. In the following we will assume
that the cells and the area considered are discretized, that is, they can be described as a finite collection of
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Figure 5.2: Three candidate transmitter locations and their associated covered cells on a grid.

geographic locations. The computation of cells may be based on sophisticated wave propagation models,
on measurements, or on draft estimations. In any case, we assume that cells can be computed and returned
by an ad hoc function.

A formal definition of the basic RND is as follows. Let us consider the set L of all potentially covered
locations and the set M of all potential transmitter locations. Let G be the graph (M ∪ L,E), where E is
a set of edges such that each transmitter location is linked to the locations it covers and let x ⊆ M be a
solution to the problem, where each element of x is a site selected to install a BS.

Searching for the minimum subset of transmitters that covers a maximum surface of an area comes
to searching for a subset M ′ ⊆ M such that |M ′| is minimum and such that |Neighbors(M ′, E)| is
maximum, where

Neighbors(M ′, E) = {u ∈ L | ∃v ∈M ′, (u, v) ∈ E}. (5.1)

The problem we consider recalls the unicost set covering problem (USCP) that is known to be NP-
hard. The radio coverage problem differs, however, from the USCP in that the goal is to select a subset of
transmitters that ensures a good coverage of the area and not to ensure a total coverage. The difficulty of
our problem arises from the fact that the goal is twofold, no part being secondary. If minimizing the number
of sites was the primary goal, the solution would be trivial: M ′ = ∅. If maximizing the number of covered
locations was the primary goal, then the problem would be reduced to the USCP.

Throughout this chapter we will consider other versions of the RND problem, which differ in the type
of antennae that might be placed in every location. The simple versions, as the one described above, use
antennae that require no parameters to determine their coverage. The more complex versions use antennae
that require some configuration parameters (i.e., direction) to determine the cell area they cover.

5.2 Coverage models in Radio Network Design
For a complete definition of a RND problem instance, the following elements need to be defined:

• List of available location sites (ALS, M in the previous definition of the problem).

• Available antenna types and their properties (cost, parameters, etc.).
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• Coverage offered by each antenna type at each of the available location sites.

When the RND problem is going to be solved, an initial study of the terrain has to be carried. In this study,
a set of available locations for the base stations is chosen, and the coverage offered by a BS in each of
those sites is obtained. The criteria used to select the initial list of available location sites is very varied and
may include good signal transmission/reception properties, ease of construction/maintenance, economic
reasons, health reasons (avoid hospitals and schools), among others ([179, 180]). The characterization of
the coverage obtained by antennae in each of the sites is often obtained by on-site measurements with
specific devices. Both the obtaining of the ALS and the characterization of the coverage properties of the
sites contained are beyond the scope of our work; hereafter we consider that both have been obtained and
are inputs to the problem at hand.

Setting aside the ALS definition, which defines the instance properties but does not affect the nature
of the problem, the amount of combinations for the nature of RND is still boundless. Therefore, we pro-
pose a coarse classification of existing RND problem conceptions based on the approach adopted for the
calculation of the coverage: the test points model, and the regular grid model.

5.2.1 Test points model
The first approach adopted for the evaluation of the coverage in the RND problem is the use of set of
test points ([13]). When this approach is adopted, the problem is generally referred to as Automatic Cell
Planning (ACP). The coverage is then represented by the coverage properties obtained at these points; the
points need therefore to be carefully selected in order to provide a faithful representation of a continuous
area coverage, however this is also beyond our scope.

The model of test points generally classifies the points used in several levels, according to the use they
will have. A popular implementation of this model adopts a three-level system:

• At the lowest level are the reception test points (RTP),R = {Ri/i ∈ [1, . . . , l]}, Ri ∈ R3, where l is
the number of such RTPs. These points are used to measure the intensity or strength of the received
radio signal.

• At a higher tier are the service test points (STP), ST = {STi/i ∈ [1, . . . , k]}, where k represents
the maximum number of such STPs. These points are selected from the wider set ofR, and are used
to measure the quality of service; generally, a minimum threshold has to be surpassed to guarantee
acceptable performance of the system.

• At the highest level are the traffic test points (TTP), T = {TTi/i ∈ [1, . . . , n]}, where n is the
number of such TTPs. These points, selected from the wider set of ST , are used to model the traffic
generated by users in the system, hence each has an associated expected traffic volume ei.

Figure 5.3 shows a graphical example of the relationships among the three types of test points, as an
equivalent area relation of the existing set relation: T ⊆ ST ⊆ R.

The use of test points has the advantage of representing the coverage (and general service) properties
through a reduced and manageable set of values. Hence, test points can be combined with empirical on-the-
field coverage measurements –despite the high cost of the latter– to determine the different cells resulting
from placing antennae at different sites of the ALS. The cell of an antenna is the number of STP that receive
a strong enough signal from that antenna; the information obtained from the measurements is often coded
as a matrix of transmission gains from the locations of the ALS to the points in STP (the larger matrix
with all points in RTP is also available, but not used because of the larger memory requirements it would
involve).

In this definition of the problem, the coverage may be considered as a constraint or as an optimization
objective. In the first case, the problem definition may require that some percentage of or all STP receive
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Figure 5.3: Area relation between reception test points (RTP), service test points (STP), and traffic test
points (TTP).

sufficient coverage. In the second case, a possible calculation of the coverage in this case is the following
(Equation 5.2).

Coverage(~x) =
1

|ST |
∑

i∈{1,...,|ST |}

max
j ∈ {1, . . . , |M|}

{xj · Cij} , (5.2)

where

xj =

{
1 if an antenna is placed in the location mj

0 otherwise ,

and we assume the coverage matrix C defined as

Cij =

{
1 if an antenna placed in the location mj covers the service test point STi
0 otherwise .

Additionally, ACP can have up to two more objectives defined: reduce the interferences from foreign
BTSs (the calculation is again handled in matrix form) and guarantee that each TTP receives sufficient
bandwidth to serve all the traffic requirements (each BTS has a traffic capability, the BTSs covering any
TTP have to provide it with larger traffic capability than its estimated traffic). These objectives are not
found in the canonical definition of RND.

5.2.2 Regular grid model
An alternative system to evaluate the coverage of a system (not limited to a cellular system), is by a regular
terrain discretization into a grid ([33]). The regular grid model can be viewed as a chessboard-like division
of the terrain into tiles or area points. The tiles form a regular geometrical structure that equal the complete
terrain; triangular, rectangular of hexagonal grids can be used in this sense.
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Both the test points and the grid models make use of discrete points to represent portions of terrain; the
main difference between the two is that in the test points model there is a high flexibility for choosing the
points, while in the grid model they must fit into some regular lattice. As a result, the number of points in
the grid is much larger than the number of test points. Besides, in the test points model there is an explicit
hierarchy among the points (as the one with three levels described in the previous section), while in the
grid model all points are in principle of equal importance (although more advanced grid models can use a
differentiated coverage criterion, requiring different coverage degrees in different points, or even imposing
the coverage of some points as a constraint).

The large number of points involved in the grid model renders the use of empirical on-the-field mea-
surements intractable due to its prohibitive cost (there are too many points, it is practically impossible to
take measurements in all of them for all the sites in the ALS). Therefore, the commonly adopted approach
in this scenario is to use a wave propagation model. This approach can be taken to different complexities
depending on the types and parameters of the antennae, and the properties of the soil; despite this, the wave
propagation model is often reduced to a homogeneous case: the geometrical shape of the cell defined by the
region (collection of grid points) where the received signal strength surpasses the defined threshold. The
cell shape is then independent from the location (that is, centered at the site, but not varying from one site
to another), and marks the points that are covered by the antenna.

The grid model with the geometrical cell shape is quite popular. Figure 5.4 shows three example cell
shapes (the shaded areas indicate the corresponding covered areas), with different degrees of realism: the
squared cell shape, conceptually simple but far from reality, the omnidirectional or circular cell shape, with
corresponds to an ideal isotropic wave propagation model, and the directional or sectorized cell shape,
which is the most accurate model. For the first two models the only possible parameter in the antenna is the
transmission power, the third adds two new parameters: direction and angular width.

Since the shape of the coverage is independent from the position of the base station (space-invariant),
the coverage can be defined as a set of vectors Cov = {−→covi} such that for any two points pa, pb in the grid
G, we have that pa covers pb if and only if −−→pbpa ∈ Cov. Then the calculation of the coverage for the case
of the terrain grid is straightforward (see Equation 5.3).

Coverage(~x) =
1

|G|
∑

i∈{1,...,|G|}

max
j ∈ {1, . . . , |M|}

{xj · cij} , (5.3)

where

xj =

{
1 if an antenna is placed in the location mj

0 otherwise ,

and we use the coverage indicator cij defined as

cij =

{
1 if −−−→mjpi ∈ Cov
0 otherwise .

In our definition of RND, we use the regular grid point model for the estimation of the coverage.

5.3 Literature review for the RND problem
The RND problem has received much attention in research. We briefly review the main approaches in
optimization to solve different variations of RND in the literature in this section.

Watanabe, Hiroyasu, and Mikiand ([210]) work out a parallel evolutionary multi-objective approach for
deciding the antennae placement and configuration in cellular networks. The authors present two parallel
models for multi-objective GAs applied to the problem: the Master-Slave with Local Cultivation Genetic
Algorithm (MSLC) and the Divided Range Multi-Objective Genetic Algorithm (DRMOGA). The MSLC
algorithm is based on the standard master-slave approach, but the evolutionary operators are carried out on
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(a)

(b)

(c)

Figure 5.4: Different models employed for coverage with grid terrain: (a) squared cell, (b) circular cell,
(c) sectorial cell.
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the slaves using a two-individual population and the evolution follows the minimal generation gap model.
DRMOGA is a standard distributed island model that uses domain decomposition. The empirical analysis
compares both models proposed with MOGA ([78]) and a standard distributed GA. They show that MSLC
gets the best results of Pareto front covering and non-dominated individuals, while establishing that DR-
MOGA results are affected by the number of subpopulations: the number of non-dominated individuals
decreases when the number of subpopulations grows.

In the same line of work, Meunier, Talbi, and Reininger ([158]) present parallel implementation of a GA
with a multilevel encoding deciding the activation of sites, the number and type of antennae, and the pa-
rameters of each base station. Two modified versions of the classical genetic operators, named geographic
crossover and multilevel mutation, are introduced. The fitness evaluation utilizes a ranking function, similar
to Fonseca and Fleming’s MOGA algorithm ([78]), and a sharing technique is employed to preserve diver-
sity among solutions. In addition, a linear penalization model is used to handle the constraint considered
(a minimal value for the covered area). A master-slave parallel implementation is presented for solving
high dimension problems in reasonable times, with each slave processing a part of the geographic working
area. The algorithm is evaluated with a large and realistic highway area generated by France Telecom. The
authors analyze the convenience of using the sharing strategy proposed instead of concentrating on a small
part of the Pareto front, showing that a better Pareto front sampling is obtained in the first case.

In a later work, Cahon, Melab, and Talbi ([28]) solve the same problem with a multi-objective GA. They
use the three parallel/distributed GA models implemented in the ParadisEO (PARAllel and DIStributed
Evolving Objects) framework: the island (a)synchronous cooperative model, the parallel evaluation of the
solution model, and the distributed evaluation of a single solution model ([29]). Working on a cluster of
40 Pentium III PCs, the Pareto fronts obtained for the test instances studied confirm the robustness and effi-
ciency of the island model for solving the problem. In addition, since the fitness evaluation process demands
a high computational effort, the problem is suitable for applying the parallel and distributed evaluation mod-
els. The computational efficiency analysis shows that the parallel evaluation model follows almost-linear
speedup behavior. The distributed evaluation model scales super-linearly up to 10 processors, and then it
follows a logarithmic decay.

Calégari et al. ([30, 33]) develop a distributed GA to find the optimal placement of antennae. In [32]
the authors compare a greedy technique, a Darwinian algorithm, and a PGA. The PGA uses a bit string
representation for codifying the whole set of possible antenna locations and a parametric fitness function
evaluating the covered area as a function of a parameter that can be tuned in order to obtain acceptable
service ratio values. Experiments are conducted on two real-life cases: Vosges (rural scenario) and Geneva
(urban scenario). On average, the PGA and the greedy technique show the same solution quality. But when
an optimal solution is known, it can be found using PGA whereas the greedy approach usually falls in bad
attractive local optima. Alba et al. ([9]) tackle the same problem with sequential and parallel GAs over an
artificial instance. In a later work, Alba and Chicano ([8]) perform a deep study on the parallel approach
evaluating the influence of the number of possible locations, the number of processors, and the migration
rates. They find a sublinear speedup and conclude that the isolation of the subpopulations is beneficial for
the search.

Maple, Guo, and Zhang ([152]) use a PGA for solving a network planning problem, consisting in
determining the optimum placement for base stations in third generation mobile networks. They propose
a multi-objective approach, employing several objective functions for considering multiple network design
factors. The model evaluates the network capacity (attempting to maximize the maximum number of users
permitted in a cell), considers intra-cell and inter-cells interference, uses known propagation models for
coverage (attempting to maximize the covering radius of a cell), and incorporates the design cost calculation
(attempting to minimize the base placement cost). Using a common strategy in telecommunication network
operation, the authors employ a binary representation that selects a subset of sites for base stations from
a finite set of possible locations. When a site is selected for use, the GA is also used to determine the
antenna height and its transmission power. For dealing with the massive solution space and the complex
fitness calculation process, they propose a parallel GA following the coarse-grain subpopulation model.
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The authors do not present numerical results for the optimization problem, stating that the research was
“currently being undertaken” to implement the algorithm on a 30 node Beowulf cluster.

Créput et al. ([51]) propose a parallel evolutionary strategy for dimensioning a cellular network to cover
a city, addressing the problem of evaluating the optimal number and location of base stations needed for sat-
isfying QoS and traffic requirements. They use a geometric approach for facing the adaptive meshing (AM)
process, where a pattern of regular hexagonal cells transform themselves and adapt their shapes according
to traffic density, geometric constraints, and other parameters. For solving the problem with relatively low
computational effort, the authors propose the Hybrid Islands Evolutionary Strategy (HIES), combining a
hill-climbing local search procedure with a subpopulation distributed evolutionary mechanism. A high-
level crossover-and-mutation schema and an elitist selection operator are used for avoiding local minima
reached in the local search. In the particular approach presented in the article, each subpopulation or island
is limited to contain only one individual, so the HIES proposal is similar to memetic algorithms ([164])
incorporating a geographic isolation distribution for individuals, like in a cellular PGA. All three HIES op-
erators (local search, crossover and macromutation) are stochastic procedures, specifically designed for the
problem to solve. The AM is an intrinsically multi-objective problem. However, Créput et al. use a linear
aggregative fitness function considering the objective (minimization of the total number of base stations)
and four constraints related to the resource distribution optimization, the regularity of cell geometry, the
number of visible cells, and the elimination of overloaded cells. In the experimental evaluation, the authors
consider four test instances, including a real-life scenario (city of Lyon, France) and three problems specifi-
cally built for representing typical application cases. Results show satisfactory meshing patterns, producing
well-contoured meshes on a map while eliminating overloaded cells. The authors work with several values
for the population size parameter (5<population size<80) in their experiments, but they do not distribute
the algorithm on several machines or in a multiprocessor computer. They refer to their distributed algorithm
as the parallel version. It has the ability of HIES to improve its performance as population size increases.
The authors state that it is able to achieve highly adapted individuals using a moderate number of gener-
ations. Although the parallel version increases the population size, it allows obtaining better results than
versions using lower population sizes, using a similar number of function evaluations. These results suggest
that there is room to improve the HIES computational efficiency, executing on a multiple machine cluster,
given that performing the simulations required from 5 to 20 hours of execution time for the test scenarios
studied.

Yun and Hyun-Meen ([104]) focus their work on the parameterization of the base stations in a given
area. They propose an iterative algorithm to solve the corresponding optimization problem. This algo-
rithm partitions the problem geographically according to domain areas, then iteratively solves the resulting
subproblems using a genetic algorithm. A signal to noise criterion (determined by free-space propagation
model) is employed to calculate the coverage regardless of signal interference, for the sake of simplicity.
Their technique is tested against a global genetic algorithm for the whole problem (without partition) and a
random search technique, outperforming both.

The radio network design problem for UMTS is studied by Amaldi, Capone and Malucelli in [13]. The
third generation for mobile telecommunications requires a different approach since its features allow for
more flexibility in its use. The cell capacity is not limited a priori -resources are shared all over the network-
and the main limitation is interference, therefore a capacity study had to be made. Hata’s propagation model
is used to deal with real-world like instances over a rectangular service area where a set S of candidate
sites is defined and another set TP of test points is randomly determined. Two kinds of power control
mechanisms are considered (power-based and SIR-based), and two kinds of optimization techniques are
employed: greedy procedures (direct and reverse) and Tabu Search (TS). The experimental results show
that TS performs better than greedy procedures, although the differences were not big.

As it can be seen, metaheuristics have been heavily used to solve the RND problem. Indeed, most of
the existing work applies some version of the Genetic Algorithm to solve the problem. Multi-objective
and parallel approaches are commonplace for this problem as well. Although being a versatile a robust
technique, the GA can sometimes be “too generic”, and therefore fail to achieve a high performance; we
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propose the use of CHC, an algorithm more suited to the specific features of the RND problem, and compare
its performance against a GA and a Simulated Annealing (SA) for a wide set of problem instances using
different antenna models and different problem approaches. We will also consider multi-objective and
parallel approaches to the problem; as a matter of fact, in a second part, we propose a novel self tuning
migration operator to be used with a parallel GA to achieve high performances without requiring to tune
the migration parameters.

5.4 Relationship with Wireless Sensor Networks
We finally establish the link between the RND problem described in this chapter, and the domain of WSNs.
There is one important problem in WSN that, by its nature, the pursued objectives, and the data structures
employed, greatly resembles RND: the node scheduling problem. We refer by this to the sleep schedul-
ing problem which decides activity and sleep time of the nodes in order to maximize the network life-
time ([195]), as opposed to the activity scheduling problem ([76]), where the purpose is to reduce the
activity cycle (i.e, the total time required by the network to have its –conflicting– nodes perform one time
their scheduled tasks).

5.4.1 Scheduling problem definition
The scheduling problem is a combinatorial optimization problem defined within WSNs. The goal of this
problem is to assign a working schedule to every node in the network, such that at any point in time there
is a subset of the nodes in the network that is active or working; when a node is not active it is in a low
energy-consumption state known as sleep state, or is said to be sleeping. The scheduling solution has to
fulfill two objectives:

1. Optimize the quality of service offered by the network (or guarantee a minimum).

2. Maximize the network lifetime.

As a result, every node as a duty cycle, which is the portion of the continuous network operation time in
which the node is active. Thus, the basic solution to a scheduling problem is a list of time intervals for each
of the nodes, the time intervals representing when said node will be active. The key idea is to exploit the
fact that the network contains an excess of nodes, that is, not all nodes need to be active for the network to
achieve the required coverage. Hence, some nodes can be put to sleep while the network still produces an
acceptable quality of service. If the set of active nodes is rotated through the network lifetime, then every
node will be working for some time, and sleeping during the rest; this way, nodes can function for longer
periods than their initial energies would allow them if they were working at full regime.

We now provide more specific definitions of the optimization objectives. In our considered domain of
application of a WSN, the main purpose of the network is to monitor a given terrain field, therefore the
quality of service is defined based on the degree of monitoring achieved by the network ([207]). The mon-
itoring is measured as a coverage offered by the network; that is, the monitoring of the WSN corresponds
to the area that is covered by the network. In this sense, the notion of coverage is similar to the one used
in the RND problem (sections 5.1 and 5.2); thus both the test points model and the regular grid model can
be used. In addition, there is one specific coverage model defined for special instances of WSN: the barrier
coverage; in this case the WSN has to monitor not the inside of a terrain, but its perimeter, this kind of cov-
erage is defined for intrusion-detection systems. Coverage issues are explored in further detail in Chapter 7;
for the time being, we restrict our conception of the scheduling problem to the scenarios where it can be
assimilated to the RND problem.

Unlike RND, the scheduling problem corresponds to a dynamic network, with nodes entering and leav-
ing the active state at different moments, thus producing different network configurations and coverage
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levels as a result. Therefore, the coverage is not constant, but varying in time. As a result, the quality of
service metric needs some way of handling the time variations in the coverage. Popular techniques are:

• Define a minimum guaranteed value for any time.

• Use the time-average coverage.

The first option is to add a constraint, this option is the one used when the quality of service is not a
maximization objective but a requirement. The second one is combined with the quality of service being an
optimization objective. In the following, we will consider a quality of service defined to be a constraint.

Regarding the network lifetime, there are also many definitions for it. The most popular are the Time
To First Failure (TTFF), and the α-lifetime ([229]). This will be described in further detail in Chapter 7.
For the purpose of scheduling, nodes are generally considered to be spending energy at a given constant
rate while they are working, and the energy they consume while sleeping is neglected. Hence, for the time
being, the conception of scheduling required for scheduling relies on the following principle:

Proposition 1. The longest the maximum node duty cycle, the shortest the resulting lifetime.

Thus the objective of the scheduling problem becomes the minimization of the nodes duty cycles.
A common approach to solving the scheduling consists in dividing the operation time in frames, formed

of (regular) periods or slots. During each slot, a given subset of nodes will be active, while the rest will
be sleeping. A node is either active during the whole slot, or sleeping during the whole slot. A node can
only be active during a limited number of slots per frame (typically just one). We have then the following
property:

Proposition 2. The more slots in a schedule, the shortest the maximum node duty cycle.

Thus, scheduling amounts to obtaining the maximum number of slots, that is, the maximum number
of disjoint subsets in the network such that the quality of service is fulfilled by each of the subsets. This
definition of the scheduling problem can be associated to the disjoint set covering problem, which is an
NP-complete problem ([34, 195]).

A formal definition for the scheduling problem setting the coverage as a constraint (instead of an op-
timization objective) may be as follows. Let S be a deployed WSN. Maximize k, such that there is some
{S1, S2...Sk}, with Si ⊆ S for all i, that verifies:

∀i, Coverage(∪n∈Sin) ≥ Cmin, (5.4)

∀n ∈ S,
k∑
i=1

I(n ∈ Si) ≤ Lmax, (5.5)

where Coverage : {S} → R is a function that gives the coverage degree for a given set of nodes, and
the constant values Cmin and Lmax are the minimal coverage required and maximal working cycle of any
node (typically Lmax = 1), respectively. The function I is an indicator that returns 1 when the input is true
and 0 otherwise. In short, the first condition states that the minimum coverage has to be achieved, and the
second condition states that any node of the WSN may belong to at most Lmax different subsets, therefore
ensuring a lifetime expansion of at least k/Lmax.

Extending RND solutions to solve scheduling

The RND problem corresponds then to a reduced scheduling problem where a single subset is extracted
from the network. Thus, a simple iterative extension of RND can be used to solve scheduling, as shown in
Figure 5.5. At each iteration of RND, a set of locations is extracted, corresponding to a color of the graph-
coloring version of scheduling. Then, RND is solved again with the previously selected locations removed
from the set of available locations, N, in order to avoid a same node being selected more than once. When
no solution is found for RND, the process is finished, and the set of RND solutions S is returned as the
solution to scheduling.
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Figure 5.5: Iterative resolution of RND to solve scheduling.

5.4.2 Literature review for scheduling

Much work exists for the different definitions of the scheduling problem in sensor networks. In most of the
problem approaches, the extension of the network’s lifetime is the main driving force behind the resolution
of scheduling.

A theoretical study on the effects of scheduling is shown in [229], where the authors focus on the α-
lifetime, in networks with uniform node distribution. The number of nodes required to extend the network’s
lifetime to reach T times the lifetime of a single node is obtained. The concept of α-lifetime is interpreted
in two different manners: in the first, the network is supposed to offer as much coverage as possible at any
time (initially 1-coverage), the time lapse until it can no longer offer more than α-coverage is the lifetime
(α ≤ 1 is the ratio of achieved coverage to the maximum feasible coverage); in the second, the network
offers α-coverage at any time, the moment it fails to do so is the lifetime.

Many works design the scheduling strategy with the objective of ensuring coverage. The most com-
mon conception of coverage is area coverage. A centralized approach is presented in [195], where the
authors extract the maximal number of subsets from the WSN such that each subset of nodes offers max-
imal coverage of the region. The authors consider the intersection points between coverage boundaries of
the deployed nodes and identify the “critical” areas as the regions covered by few nodes; then they propose
a heuristic algorithm that avoids that two nodes covering the same critical area belong to the same subset,
hence maximizing the number of subsets. However, distributed techniques are much more popular. For in-
stance in [219], the authors present the Coverage Configuration Protocol (CCP), an algorithm for distributed
scheduling of the nodes in a WSN that guarantees k-coverage. In CCP, the nodes check their coverage re-
gions; whenever a node detects that there is a spot within its coverage region that is not k-covered by its
active neighbors, it sets itself active. At first, connectivity is not an issue, since it is considered granted by
the RCOMM > 2RSENS property (by which coverage guarantees connectivity). Later, they relax this as-
sumption and guarantee coverage by the combined used of CCP with SPAN. Another distributed scheduling
technique for coverage preservation is studied in [95]. The authors propose a round based system, where
nodes select a new schedule at the beginning of each round. To do so, they first randomly select a time point
within the round time length. A node, say node a, needs to keep a list of all its covered locations, and of all
other nodes (among a’s neighbors) that cover those same locations. For each location, a finds the closest
preceding and succeeding nodes b and c (those with selected time points closest to it) that cover it; then a
sets a time frame from the middle point between b’s and a’s time points to the middle point between a’s
and c’s time points. The node a will then stay active during the union of all time frames of all its covered
locations. This way, full coverage is guaranteed to every location in the network covered by at least one
node. The same approach is used in [224] with differentiated coverage; the required coverage degree is
used as a multiplying factor to the point’s covering nodes. Additionally, the recalculation of the longest
duty cycle, and the use of M different schedules in a rotation fashion, are proposed as improvements.
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Two distributed scheduling protocols are presented in [96], to guarantee both coverage and connectivity in
non-homogeneous WSN. If the perimeter of the coverage region of a node is k-covered by its neighbors,
and all neighbors are within communication range, then k-coverage and k-connectivity are provided. In
the first proposed protocol, each node independently decides to sleep at a random time after checking its
neighborhood. The second protocol manages transmission power control to modify the communication
radius of the node; each node checks whether it can reduce its transmission power to disconnect its farthest
neighbor without violating the coverage and connectivity constraint. Finally, a combination of the two is
proposed in which every node either performs the scheduling part or the transmission power control part.
The combination of scheduling with transmission power and sensing power control is also studied in [234],
for the general scenario where the WSN requires k1-coverage and k2-connectivity. Centralized and dis-
tributed techniques based on Voronoi and greedy are proposed. In the Voronoi-based technique, each node
selects its sensing radius to cover its Voronoi cell, and its communication radius so that all its neighbors are
connected; then, a node are only put to sleep only if its neighbors can cover its Voronoi cell, and are still
connected (the may increase their radii). The general case is handled by using k1-Voronoi and k2-Relative
Neighborhood Graph. For the greedy algorithm, the terrain is first divided into patches delimited by the
nodes concentric sensing and coverage disks (with discretized radii); the algorithm iteratively proceeds by
performing at each step either the activation of a new node (which must be within communication range of
the already active nodes), or the increase of the radius of an active node, whichever “adds” the most terrain
patches. The scheduling problem to maximize coverage by directional sensors is studied in [2]. The cov-
erage offered by the sensors is a “pizza-portion” (like the one in Figure 5.4c), hence both the active nodes
and the direction of their coverage beams have to be selected. A fitness function is defined that subtracts
the number of active nodes (weighted by a constant ρ) from the coverage achieved, and an ILP solution is
proposed; NP-completeness of the Maximum Coverage with Minimum Sensor (MCMS) is demonstrated.
Then a greedy algorithm is presented with a centralized (CGA) and distributed (DGA) versions; the cen-
tralized iteratively selects the node and direction that maximizes the number of covered targets, while in
the distributed every node has a priority value and each target is considered covered by the highest priority
node that covers it, nodes select the direction in which the cover the maximal number of targets. An iterative
version of the DGA, the Sensing Neighborhood Cooperative Sleeping (SNCS), is proposed. SNCS updates
the selected nodes periodically, assigning priority based on the node’s remaining energy. The effects of the
sensing radius and the beam width, as well as the robustness to errors in the node’s locations, the angles or
data transmissions are assessed.

A convenient tool for the estimation of area coverage that is frequently used with scheduling is Voronoi’s
diagram, as has been commented for [234]. Another example is the approach proposed in [207] for the
scheduling problem. The authors define a threshold such that no node with an associated Voronoi cell
smaller than the threshold will be active by the end. The algorithm iteratively searches the node with
smallest Voronoi cell, and if the cell is smaller than the threshold, the node is disconnected and the Voronoi
diagram is recomputed for the next iteration. Globally, the algorithm finds a single dominating set based
solely on coverage (like in RND). Several possibilities for a distributed implementation are also discussed.
We can also notice the work in [52], where the authors present a distributed Voronoi-based scheduling
procedure, RSE. Coverage is guaranteed, but connectivity is overlooked by assumingRCOMM > 2RSENS .
The technique uses 2-Voronoi diagram for each node to determine whether the node is superfluous and can
be turned off (the 2-Voronoi diagram of a node is the Voronoi graph of the node’s neighbors excluding
the node itself); if both all vertexes of the 2-Voronoi diagram that fall inside the nodes cover region and
the intersections of that cover region with edges of the 2-Voronoi diagram are covered by other nodes,
then the node is redundant. The technique is able to handle non-homogeneous WSN by using weighted
Voronoi diagrams (with weights corresponding to the sensing radii). The Voronoi diagrams are calculated
in a distributed manner. The appearance of a new node, as well as the failure of a node are considered and
can be handled.

Other approaches for the coverage are also taken into consideration for scheduling. In [42] a scheduling
is designed to minimize the coverage breach, which is a complementary view of the coverage, that is, to
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minimize the uncovered region. The authors use a point coverage model with N nodes and M points, then
generate K subsets of maximum cardinality W (this is called bandwidth and is the limit to the number of
active nodes at a time in the WSN) such that the accumulated breach (the number of uncovered points in any
subset) is minimized. Two methods are proposed: a linear programming relaxation, followed by a greedy
integer rounding, and a reverse greedy, that starts from a network with all nodes active, then iteratively
removes the one with minimal coverage breach. In [43], the authors define the scheduling problem for min-
imal breach. The authors consider three kinds of breach: the aggregated uncovered region, the maximum
uncovered region at any moment, and the maximum time length a point is uncovered; NP-completeness is
demonstrated for the three problems. A bandwidth limits the maximum number of active nodes simulta-
neously. Two resolution methods, a greedy algorithm and an LP relaxation (where the node active status
is a continuous value between 0 and 1, which will be set to either 0 or 1 at the end), are proposed. The
considered WSN is a 1-hop network, thus connectivity is not an issue.

A different conception of the coverage is offered in [159] for the scheduling: target tracking coverage.
Besides, this version of the problem does not aim to maximize the lifetime of the system, but to offer the
best tracking performance, by assigning nodes to mobile targets. The network is assumed to have N nodes,
and the time is divided intoK intervals; there areM mobile targets in the network. Each target requires one
sensor to track in each time interval, the same sensor cannot track two different targets at a time. A Modified
Particle Swarm Algorithm (MPSO) is proposed to solve the scheduling problem in order to maximize the
number of completed tasks (tracked targets), and the mean tracking accuracy. The modified version of PSO
uses M ×K integers in [0;N ] matrices to represent the nodes assigned to each target at each interval, and
modified operators to ensure that all modified solutions are feasible.

Other works do not consider a measure of coverage as their main objective; for instance in [90], the
nodes are evaluated based on the correlation between their sensed data, instead of the coverage. Both
centralized and distributed algorithms are proposed for the scheduling problem in this scenario. According
to the authors’s definition, a set of nodes is correlated to another node if the latter’s sensed data can be
reconstructed with bounded error by a linear combination of the former’s. Connectivity is also taken into
account: the selected set of nodes is only valid if it is fully connected with the HECN. The distributed
algorithm needs local detection of correlation among nodes; nodes have a self-assigned priority value and
enter sleep mode based on than priority, and the state of their neighborhood. When a node enters sleep state,
it sends a sleep-preventing message to the nodes that form its correlated set. After some time, nodes need
to check their neighborhood to decide whether to stay asleep or enter working state. Later, a two round
and a handshake enhanced versions are proposed as well that achieve smaller working node sets. For the
centralized method, a two phase combining first a greedy process to obtain correlation-dominance, and then
a Steiner tree process to achieve connectivity, is proposed. A similar conception is used in [77], where the
scheduling problem is defined through a redundancy graph, where neighbor nodes are redundant and only
one needs to be active. A communication graph completes the problem definition. The authors propose a
distributed algorithm that partitions the WSN into smaller regions or cells centered around special nodes set
as markers or anchors (much like a hop-distance Voronoi partition of the WSN based on the markers), and
prove the proposed solution achieves (1 + ε) optimality. In each cell the scheduling problem can be then
solved to optimality (defined as a LP problem, for instance); but since there is no global coordination among
different regions, the boundary nodes have suboptimal schedules. This effect is mitigated by using different
network partitions by shifting the region boundaries towards the anchor with lower locally-unique identifier
value, and obtaining as many schedules. The work is later extended in [76], where the geometric and
topologic assumptions are relaxed, and the activity scheduling problem is solved using a similar approach,
achieving 1/(1− ε) optimality.

Scheduling can be also combined with other processes of the network; a common issue in this sense is
to consider the combined effect of node scheduling together with routing algorithms. In [184] the authors
present the Probability-Based Broadcast Forwarding (PBBF) protocol for broadcast optimization in WSNs
with active scheduling systems. Two scheduling systems of the literature, IEEE’s Power-Save Mode (PSM)
and B-MAC, are the models considered for the evaluation of the protocol. PBBF uses two stochastic pro-
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cedures: the immediate relay of a received message by a node (with probability p), and the sleep inhibition
for a node scheduled to sleep (with probability q). The authors propose an automatic tuning method for p
and q, depending on the user’s requirement; one can choose two desired properties among the three offered
choices: low energy consumption, short latency, and high reliability. The authors of [128] propose the joint
optimization of node scheduling and routing for optimal balance between energy consumption and latency.
Each link can stochastically fail when a message is being transmitted, and each node can be in sleep mode
or not, both resulting in a transmission failure. A centralized algorithm, Semi-Definite Programming-based
Convex Polynomial Underestimation (SDPU), and a distributed Simulated Annealing, are used to select
the optimal route with respect to an objective function defined as a weighted sum of latency and energy
consumed. SDPU is able to find the optimum, but SA is much less computationally expensive.

Finally, a different approach is considered in [97], where the authors consider a rechargeable WSN with
quantized energy, in which both the recharge and discharge processes follow a Poisson distribution, with
ratio γ between recharge and discharge, and the battery has a limited bucket capacityK. In this problem the
lifetime is not the issue, since nodes will eventually recharge some energy, thus they will never stop working
completely. Instead, the authors define an utility function of the WSN as the probability of an event being
detected (which depends on some node having energy at the time of the event); the purpose of scheduling
is to maximize the utility value. An aggressive technique that has nodes active whenever they have energy
is compared to a threshold technique where a node activates whenever it detects that the number of active
nodes has shrunk below a given threshold m. The threshold-based technique is proved to be asymptotically
optimal with respect to K when m = N/γ, where N is the number of nodes in the network.

5.5 Conclusions
In this chapter we have presented the Radio Network Design problem, an NP-hard problem found in the
telecommunications field, that is closely related to the domain of WSNs. RND amounts to selecting the
locations from a set of available sites, and tuning the configuration parameters of the base stations of a radio
system, with the aim of maximizing the radio coverage while reducing the system cost. We have described
the most common approaches used to evaluate the coverage, namely the test points and the regular grid
models.

We have provided a literature review for the RND problem. There are many works in the literature
that use metaheuristics to tackle RND, and most of them use some kind of GA, with multi-objectiveness
and parallelism being common issues. Thus, our work related to RND will consist of two parts. In the
first we propose a more problem-adapted algorithm, CHC, and its multi-objective version, MOCHC; in the
second we propose a self tuning migration method to enhance the performance of a parallel GA. This will
be presented in the next chapter.

In the last part of this chapter, we have described the relationship existing between this problem (RND)
and a similar problem found in Wireless Sensor Networks, the scheduling problem. This problem consists
in selecting different subsets of nodes from a WSN such that each subset offers sufficient service quality
(coverage), with the aim of activating the different subsets in a rotational fashion and increase the network
lifetime. Finally, we have reviewed the existing literature for this problem (for the sake of completeness),
which is considered as one of the most important problems found in the WSNs domain.
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Chapter 6

Resolution Methodology and Results for
Radio Network Design

In the previous chapter we introduced Radio Network Design (RND) as a problem, reviewed the state-of-
the-art for it, and established its link with WSNs. In this chapter we address the approaches adopted to
solve the RND problem, and the results obtained.

We start by describing the problem definition of RND that is solved in our work; the definition of RND
is not novel, and can be matched to existing definitions in the literature. Both the models assumed for
the coverage offered by base stations, the encoding employed for the candidate solutions, and the genetic
operators used by the optimization algorithms to explore the search spaces corresponding to RND problem
instances are presented and described.

We initially address the resolution of small- to medium-sized problem instances. These instances are
designed as first approaches for the problem that serve to test the feasibility of using metaheuristic tech-
niques to solve the problem; in this sense, both mono-objective and multi-objective versions of the problem
are taken into consideration. Furthermore, different antenna coverage models are considered, in order to
get model-independent results. As a result of this study, we conclude that: (1) metaheuristics are ver-
satile techniques that can tackle the different definitions of the RND problem tested (mono-objective and
multi-objective, and using different types of antenna coverage model), and (2) CHC –and its multi-objective
counterpart– proved to be highly cost-efficient among the metaheuristics considered.

Then we define a large realistic problem instance, namely the Malaga city RND instance, or Malaga
instance for short. Our selected metaheuristic techniques is tested against a wide set of optimization algo-
rithms, within the frame of a joint-work competition, where once again CHC proved to belong in the best
performing group.

Finally, we present a novel approach for distributed population-based metaheuristics, based on a the-
oretical study on the convergence process in a distributed population (see Section 3.4.3), that covers the
gap between theory and practice. Our approach consists of a self-tuning technique that automatically and
dynamically adjusts the parametric configuration of the migration process in order to achieve a near-optimal
balance between exploration and exploitation by seeking population convergence at the end of the execu-
tion. This technique is developed for a Genetic Algorithm, since this kind of algorithm was the model
adopted for the theoretical study, and is validated through experimental evaluation by using it to solve the
Malaga RND instance.

77
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6.1 Problem formulation and models
The definition of the RND problem was already presented in Section 5.1; we briefly review it here. Let us
consider a terrain that has to be given coverage; the terrain will be represented by the set L of all potentially
covered locations. Then let us consider the set M of all potential transmitter locations. This set is also
known as the set of candidate or available location sites, ALS. Let G be the graph (M ∪L,E), where E is
a set of edges such that each transmitter location is linked to the locations it covers and let the vector ~x be a
solution to the problem where xi ∈ {0, 1}, and i ∈ [1, |M |]. The value xi is 1 or 0 depending on whether
a transmitter is being used or not in the corresponding site. Thus, the coverage1 achieved by the solution
~x of the RND problem can be computed via Equation 6.1, where M ′(~x) is the set of transmitter locations
selected by ~x from M (we slightly modify the problem formulation in order to include all the potentially
covered locations L in the definition, not just those that are actually reachable from the ALS); the total
number of transmitters used is simply |M ′(~x)| or |~x|.

Coverage(~x) = 100 · |Neighbors(M
′(~x), E)|

|L| . (6.1)

In our formulation of RND, the potentially covered locations are taken from a grid model discrete
representation of the terrain field, for computation of the coverage purposes. Thus, the set L contains
regularly distributed locations. The dimension of the grid (|L|) depends on the problem instance at hand,
and ranges from 287 × 287 up to 300 × 450 points. The ALS (or M in the current formulation of the
problem) is what truly constitutes the problem instance. The complexity of the problem instance depends
on its cardinality (also referred to as size), as the size of the smallest solution space is 2|ALS| for the RND
problem –which corresponds to a binary choice for each available location. Again, the instance sizes vary
throughout this work, ranging from 149 locations, in the smallest instance, to 1000 locations, in the largest
one.

The objectives of RND are twofold: the coverage has to be maximized, while the cost, represented by
the number of transmitters used, has to be minimized. Besides, the objectives are opposing objectives, since
the less transmitters there are, the less coverage they provide. Hence, there are two different approaches
considered for this problem:

1. Tackle it as a mono-objective problem. This approach requires a scalar function that combines the
two goals of the problem; such an objective function f(~x) has been proposed in [31]:

f(~x) =
Coverage(~x)α

|M ′(~x)| , (6.2)

where the parameter α > 0 can be tuned to favor the cover rate item with respect to the number
of transmitters. If we set α = 1 then the algorithm will not distinguish between a solution with a
single antenna producing a coverage C and another with N >> 1 antennae producing a coverage
N×C. This defeats the purpose of RND since the algorithm would not be searching for solutions that
produce high coverages in an efficient way, but only for efficient solutions regardless of the coverage
obtained. Therefore, we have to set α > 1 in order to guide the search towards solutions with high
cover rates. Like Calégari et al. did in [31], we use α = 2.

2. Tackle it as a multi-objective problem. This is perhaps the most intuitive method to handle opposing
objectives. In the multi-objective approach, each of the objectives is set as a separate function for
optimization; hence, for RND we have functions f1(~x) (Equation 6.3) and f2(~x) (Equation 6.4).
The functions have been formulated in order to obtain a general minimization problem. We use the
concept of Pareto dominance described in Section 3.5.1 to handle the solutions of a multi-objective
problem.

1With coverage we are generally referring to relative coverage, that is, the percentage of the terrain that has radio coverage.
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f1(~x) = 100− Coverage(~x), (6.3)
f2(~x) = |M ′(~x)|. (6.4)

Nonetheless, this basic problem definition does not discriminate between solutions as long as one
objective is optimized. For instance, a trivial solution with no transmitters is a non-dominated solution
since it has zero cost; this is clearly an undesired solution because it is not solving the primary
objective of providing radio coverage. Thus, we need to set some constraints that will guide the
optimization techniques towards solutions that are actually solving the problem; the penalty functions
p1(~x) and p2(~x), equations 6.5 and 6.6 respectively, represent the minimum required values for each
of the objectives, independently of the other objective. These minimum values are K% of coverage
(p1), and N transmitters at most (p2).

p1(~x) =

{
f1(~x)−K (f1(~x) > K)
0 (f1(~x) ≤ K)

, (6.5)

p2(~x) =

{
f2(~x)−N (f2(~x) > N)
0 (f2(~x) ≤ N)

. (6.6)

The two penalty functions are then combined into a single penalty term P (~x) by simple sum (Equa-
tion 6.5).

P (~x) = p1(~x) + p2(~x). (6.7)

The constraint handling works as follows. Whenever two individuals are compared, their constraints
are checked. If both are feasible, a Pareto dominance test is directly applied. If one is feasible and
the other is infeasible, the former has the lowest rank (lower ranks correspond to “better” solutions).
If both individuals are unfeasible, then the one with the lowest amount of constraint violation (Equa-
tion 6.7) outranks the other.

Finally, the three coverage models depicted in Figure 5.4, namely square coverage, circular coverage,
and sectorial coverage, have been employed in our formulations of RND. The relationship of the coverage
models with the codification required in RND, as well as with the operators employed, are discussed in
Section 6.2.

6.2 Representation and operators

The representation and encoding of the solutions, as well as the genetic operators, depends on the optimiza-
tion technique, the problem instance, and the model employed for the coverage. We briefly describe them
in this section.

6.2.1 Solution encoding

There are two kinds of solution encodings used in RND. They both have a common general structure, of 1
position (or gene) per available location site in theALS. The first kind corresponds to the two first coverage
types (square and circular), which uses parameterless antennae. The second kind corresponds to sectorial
antennae, and uses parameterized antennae.
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(a) Parameterless

(b) Parameterized

Figure 6.1: Solution encodings in RND: (a) parameterless, (b) parameterized. The ALS is also shown for
clarity, though it does not belong to the solution.

Parameterless antennae

In the first kind of encoding, the only information that needs to be coded into the solution is the set of
selected available location sites (from the ALS). This is done with a binary string, where each position of
the string corresponds to an available site, and the value of the bit indicates whether the site is selected (1),
or not (0). Figure 6.1a illustrates this basic model.

Parameterized antennae

This kind of encoding corresponds to sectorial antennae-using RND instances. In this version of the RND
problem, in addition to selecting the set of sites for antenna installation, the directions towards which the
antennae will point must be selected as well. Thus, a two-level encoding is used; figure 6.1b illustrates this
model.

If the sectorial antenna produces a single beam, then the field angle value contains a single numerical
value in [0, 360[; if the sectorial antenna produces three separate beams –the second configuration– then that
field contains a vector with three numerical elements in [0, 360[. Our formulation of the sectorial coverage
uses discretized angular values, with six levels (0, 60, 120, 180, 240 and 300). Note that the angle value
only holds a meaning when the site is selected.

Both representations can be unified using a gene abstraction. A gene is the amount of information
encoded in a given solution with respect to a single available site. Thus, any solution contains as many
genes as available sites are contained in the ALS. Then, we can say that for the parameterless antennae
problem, a gene is a single bit s, since all the information contained referring to a site is whether it is
selected (s = 1) or not (s = 0); for the parameterized antennae problem, a gene is a tuple 〈s, α〉, where s
is the selection bit, and α contains the values of the antenna angle (we simplify by considering the single
beam antenna, extension to three beams is straightforward with three angular values per location site of the
ALS).
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(a) For parameterless solutions (b) For parameterized solutions

Figure 6.2: Mutation operators: (a) used with parameterless solutions, (b) used with parameterized solu-
tions.

6.2.2 Operators

RND has been solved with SA, GA and CHC algorithms in its mono-objective approach, and NSGA-II
and MOCHC in its multi-objective approach. Thus, two kinds of genetic operators are used with RND:
mutation operators and crossover operators. The first kind has a single solution input and a single solution
output, the second one has a two-solution input and a two-solution output. For each kind of operator there
is one version for the parameterless solution encoding and another version for the parameterized encoding.
We describe them in the following.

Mutation operators

Mutation operators are employed in GA and NSGA-II as part of the operator pool, in SA as the main method
to introduce diversity, and in CHC and MOCHC during the restart mechanism. The same mutation operator
is used by all the algorithms.

In the case of parameterless solution encoding, a bit flip mutation operator is used. The bit flip mutation
visits every position (every bit) of the solution sequentially, and flips it with a given probability pm (the
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(a) Parameterless (b) Parameterized

Figure 6.3: Single-point crossover examples: (a) parameterless, (b) parameterized.

mutation probability).
In the case of parameterized solution encoding, a multilevel mutation operator is used. This operator

visits every position (bit and angle value) of the solution sequentially, and modifies it with probability pm.
The modification procedure in this operator is somewhat more complex than the bit flip of the previous. It
works as follows: it the location is not selected, then it is marked selected and a random value(s) is assigned
to the angle(s); if it is selected, two things can happen: either it is marked as unselected (with probability
pREM ), either it is kept selected, but new random value(s) is assigned to the angle(s) (with probability
pMOV = 1− pREM ). Specifically, we use pREM = pMOV = 0.5.

Crossover operators

As said before, a recombination operator, like the crossover, takes two solutions, the parents, and produces
two new solutions, the offspring. The general crossover procedure first copies each of the parents into one
of the offspring, and then exchanges parts between the offspring. There are several crossover operators
employed for RND: single-point crossover, two-point crossover, UX, and HUX crossover. In the following
descriptions, the exchanges make reference to the parts exchanged between the offspring.

One of the simplest crossover operators is the Single-Point Crossover (SPX), used in NSGA-II. This
operator works in a similar way for both encodings under the gene abstraction. A point is chosen between
two consecutive positions at random in the solution encoding, then all genes beyond the chosen point are
exchanged.

The Two-Point Crossover operator (TPX), used in the GA, is a more complex version of the preceding
operator. This operator selects two positions at random in the solution encoding, and exchanges all the genes
comprised between them. Figure 6.4 shows a diagram of the two-point crossover, both for parameterless
solutions (Fig. 6.4a) and for parameterized solutions (Fig. 6.4b); the selected positions are marked with
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(a) Parameterless (b) Parameterized

Figure 6.4: Two-point crossover examples: (a) parameterless, (b) parameterized.

bold dotted vertical lines, and the exchanged parts in the offspring are highlighted with color inversion; in
the parameterized solutions, the values of the parameters are shown only for the genes with the selected
value to 1, since otherwise the parameter values are meaningless.

The Uniform Crossover (UX) is a simple crossover technique in which each gene (which is a bit in the
case of parameterless antennae, or the bit with the angle values for parameterized antennae) is swapped
between the offspring independently with 50% probability. Thus, each offspring receives on average half
the information from each parent. The UX is used in the parallel algorithm, dGA.

Additionally, there is a special crossover operator that was designed for the CHC algorithm ([69]), and
is used by MOCHC as well, called Half-Uniform Crossover (HUX). In this operator, exactly half of the
differing genes are swapped: for binary genes, the non-coinciding bits are considered differing genes; for
parameterized genes, if either the bit value, or the parametric values when the bit equals 1, are different, then
the genes are considered to differ. The exchanged genes are selected randomly among the differing genes.
Figure 6.5 shows example applications of the HUX crossover for the two types of solution representations.
A bit mask is generated to identify the differing genes between the two parents; each offspring is generated
after a parent, then has half of the differing genes (highlighted with gray background) exchanged.

6.3 Problem instances

We classify the RND problem instances into two categories: small-sized “academic” instances, taken or
inspired from the literature (we shall call them test instances), and a large-sized, real-world inspired instance
defined for the city of Malaga (we shall call it the Malaga instance).
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(a) Parameterless (b) Parameterless

Figure 6.5: HUX crossover examples: (a) parameterless, (b) parameterized.

6.3.1 Test instances

The basic terrain is modeled by a 287 × 287 grid point model representing an open-air flat area. As said
before, the three different antenna types used are: a square shaped cell antenna that covers a 41 × 41
point cell ([8, 31]), an omnidirectional antenna that covers a 23 point radius circular cell (in order to offer
approximately the same coverage as the square antenna), and a directive antenna that covers one sixth of
the omnidirectional cell. When directive antennae are employed, three of them are placed in the location
site, hence each selected site offers half the coverage with sectorial antennae than with circular antennae.

Five instances of sizes 149, 199, 249, 299 and 349 (corresponding to the number of sites in the ALS)
are defined for each type of antenna, except the directional or sectorial one, for which only a size of 149 is
used. The generation of the ALS is done as follows:

• For square coverage, 49 sites are placed forming a 7 × 7 regular grid, and offer full coverage to the
terrain; these sites constitute the optimal solution for the mono-objective version, with a fitness value
of 204.082, with 100% coverage using 49 transmitters (see Fig. 6.6a). Random locations are added
to complete the ALS.

• For circular coverage, 52 sites are placed forming a regular hexagonal grid; these sites constitute the
optimal solution to the mono-objective version of RND, with a fitness value of 156.046, with 90.08%
coverage using 52 transmitters (see Fig. 6.6b). Random locations are added to complete the ALS.

• For directional coverage, the same locations from circular coverage are used and duplicated (with a
small displacement on the copy site), so that the optimal hexagonal grid may be reconstructed with
directional antennae (see Fig. 6.6c). Random locations are added to complete the ALS. There are
two possibilities for this type of instance: the first, called the simple variant, has the restriction that
the three sectors must be contiguous, thus forming a single “triple” beam (7 possible configurations
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Figure 6.6: Optimal solutions for the test instances: (a) square coverage, (b) circular coverage, and (c)
sectorial coverage.

per site); the second, called the complex variant, has absolute freedom for each beam, as long as two
beams do not overlap (21 possible configurations per site).

6.3.2 Malaga instance

Real-world radio networks are mostly deployed on urban scenarios to provide coverage for a set a services
(GSM, UMTS, etc). An urban scenario has some characteristics that make it different from the basic test
instances in Section 6.3.1. In a city, the antennae may only be located in some specific sites, like rooftops
or other high places; at the same time there are restricted places like hospitals or schools where antennae
may not be placed. A typical urban scenario is non homogeneous and will have regions with more buildings
than others, and may also have rivers, parks or some other building-free places.

In this instance, both the terrain and the ALS are generated following the real distribution and geography
of the city of Malaga (Spain). The terrain area is modeled by a 300 × 450 point grid, where each point of
the grid represents a surface area of 15× 15 square meters. Figure 6.7a illustrates the instance terrain area.
The ALS contains 1, 000 sites, corresponding to suitable locations for the installation of radio antennae, as
said before. The antenna coverage model is chosen to produce a circular area coverage, with a radius of 30
points (approximately 450 meters, which is a realistic assumption).

This instance is only solved using the mono-objective approach. The optimal solution is unknown, and
full coverage is not achievable.

6.4 Experimental results

In this section we present and discuss the results obtained for the different problem instances tackled in
RND. We first present the results obtained in the test instances (described in Section 6.3.1), then describe
those obtained for the real-world Malaga instance (described in Section 6.3.2). Table 6.1 sums up the main
properties of the instances solved for RND.

As was specified in Section 3.5, every experimental test is executed 30 times, and the results displayed
are the average values over the independent runs, unless stated otherwise. A statistical analysis is performed
in addition, and its results are shown under a column labeled ‘A’; a ‘+’ sign in that column states that the
observed differences are statistically significant.
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(a) Aerial view of the city of Malaga
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(b) Corresponding coverage of an example solution for the Malaga instance

Figure 6.7: Malaga city instance: (a) map of the area of Malaga, (b) coverage and antennae of the best
solution found.

6.4.1 Configuration of the algorithms

We first present the basic parametric configurations selected for the algorithms proposed to solve RND,
obtained after an empirical tuning performed over the test instances. These configurations are displayed in
Table 6.2.

6.4.2 Test instances

The test instances were solved using two different approaches. First, a mono-objective approach using
the fitness function shown in Equation 6.2. Second, a multi-objective approach with objectives shown in
equations 6.3 and 6.4, subject to constraints on the coverage and number of transmitters, represented by the
penalty functions 6.5, 6.6, combined into a single penalty term (Eq. 6.7).
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Table 6.1: Instances solved for RND and their properties.

Type Antenna Sites Search space Approach Algorithms

Test

Square

149 7.136 · 1044
Mono

&
Multi

SA, CHC, GA
&

NSGA-II, MOCHC

199 8.035 · 1059
249 9.046 · 1074
299 1.019 · 1090
349 1.147 · 10105

Circular

149 7.136 · 1044
Mono

&
Multi

SA, CHC, GA
&

NSGA-II, MOCHC

199 8.035 · 1059
249 9.046 · 1074
299 1.019 · 1090
349 1.147 · 10105

Sectorial, simple 149 8.310 · 10125 Mono &
CHC

Sectorial, complex 149 1.025 · 10197 Multi

Malaga Circular 1, 000 1.072 · 10301 Mono SA, CHC

Parameterless antennae

The parameterless antennae instances are those where the coverage model is either square or circular.
For these instances, SA, CHC, and GA are used in the mono-objective approach, whereas NSGA-II and
MOCHC are used in the multi-objective approach. These instances were found not to be of excessively
complexity, and could hence be solved to optimality. For this reason, the stopping criterion was set to
finding the optimum, and the comparisons are established among the different algorithms based on their
required computational efforts. The results obtained for square and circular coverage antennae with a
mono-objective approach are shown in Table 6.3, where the numerical values correspond to the average
computational efforts required by the optimization algorithms, which are measured as the number of so-
lutions visited in an execution until the optimum (whose fitness is known beforehand) is found. For each
problem instance (instance size and type of coverage model) the best performance is highlighted with gray
background.

For the square coverage model, the results are displayed in columns two to five of Table 6.3 (the pro-
posed algorithms are compared with a distributed steady-state GA found in the literature ([7])); column six
shows the results of the statistical analysis. CHC is the algorithm that requires the lowest computational
effort to solve the RND problem to optimality for the five instance sizes defined, followed by SA. GA and
dssGA are far behind, requiring computational efforts that are at least one order of magnitude higher than
that of CHC. All the differences were found to be statistically significant.

For the circular coverage model, the results of the proposed algorithms are shown in columns seven to
nine of Table 6.3, with the statistical analysis results in column ten. Again CHC requires the smallest effort
to solve the problem to optimality, followed by SA, and GA is far behind, all differences being statistically
significant. These instances are more difficult to solve by the optimization techniques, as can be noticed by
the increased values of computational efforts in all the algorithms: CHC requires between a 30% (for size
149) and a 239% (for size 349) additional effort to solve these instances.

The multi-objective approach to RND was solved using the multi-objective version of CHC, MOCHC,
and the state-of-the-art technique in the multi-objective domain field, NSGA-II. In order to maintain the
consistency with the results shown previously, the executions were run until the optimal solution of the
equivalent mono-objective problem was found. The results for the different instance sizes using square or
circular coverage models are displayed in Table 6.4, where the numerical values correspond to the average
computational efforts required by the optimization algorithms, which are measured as the number of so-
lutions visited in an execution until the optimum (whose fitness is known beforehand) is found. For each
problem instance (instance size and type of coverage model) the best performance is highlighted with grey
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Table 6.2: Parametric configuration of the optimization algorithms used in RND.

Algorithm GA
population 100

selection roulette

crossover
{
TPX
pc = 0.80

mutation pm = 1/L
replacement elitist

Algorithm NSGA-II
population 100

selection roulette

crossover
{
SPX
pc = 0.80

mutation pm = 1/L
replacement ranking and crowding

Algorithm CHC
population 100

selection
{

incest prevention
threshold = 25%

crossover
{
HUX
pc = 0.80

replacement elitist
restart mutation pm = 0.35

Algorithm MOCHC
population 100

selection
{

incest prevention
threshold = 25%

crossover
{
HUX
pc = 0.80

replacement ranking and crowding
restart mutation pm = 0.35

Algorithm SA
mutation pm = 1/L

Markov chain 50
cooling α = 0.99995

Table 6.3: Computational effort of the mono-objective techniques (number of evaluations).

Instance Square coverage Circular coverage
size SA GA CHC dssGA8 [7] A SA GA CHC A

149 8.676e+04 1.419e+05 1.335e+04 7.859e+05 + 8.318e+04 2.066e+05 1.736e+04 +
199 1.970e+05 4.105e+05 2.465e+04 1.467e+06 + 2.623e+05 1.152e+06 4.696e+04 +
249 3.341e+05 9.871e+05 3.903e+04 2.481e+06 + 9.136e+05 3.354e+06 8.577e+04 +
299 6.380e+05 1.892e+06 5.408e+04 2.998e+06 + 2.946e+06 8.081e+06 1.512e+05 +
349 8.108e+05 3.612e+06 7.022e+04 4.710e+06 + 6.136e+06 1.999e+07 2.377e+05 +

background.

Once more the best results were obtained with the multi-objective version of CHC, MOCHC. When
square coverage model is used, the computational effort required by MOCHC is half that of NSGA-II,
while for circular coverage model it is almost an order of magnitude less for MOCHC than for NSGA-II;
all differences are statistically significant.

Thus, CHC has been found to be the best performing algorithm in the mono-objective and multi-
objective approaches for this problem, for both square and circular coverage models. In the mono-objective
approach, the computational effort required by CHC to solve the different instances of the problem is almost
an order of magnitude lower than that of the rest of techniques, all the observed differences were found to be
statistically significant. GA offered the poorest results, requiring enormous amounts of computational effort
to solve the RND problem, while SA showed an intermediate behavior. In the multi-objective approach,
the computational effort required by MOCHC is half that of NSGA-II for square coverage, and an order of
magnitude lower than that of NSGA-II for circular coverage. Thus, CHC/MOCHC is chosen as the best
performing algorithm for the RND problem.
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Table 6.4: Computational effort of the multi-objective techniques (number of evaluations).

Instance Square coverage Circular coverage
size MOCHC NSGA-II A MOCHC NSGA-II A

149 1.814e+4 3.745e+4 + 2.8272e+04 1.81508e+05 +
199 3.998e+4 7.479e+4 + 7.7773e+04 8.16206e+05 +
249 7.723e+4 1.418e+5 + 2.6227e+05 1.747044e+06 +
299 1.136e+5 1.987e+5 + 5.6581e+05 2.665930e+06 +
349 1.574e+5 2.871e+5 + 9.0558e+05 4.137630e+06 +

Directive antennae

When using directive antennae, the exact optimal solutions are unknown a priori, hence executions are now
run until a predefined number of solution evaluations is met, and the obtained fitness values are averaged
over the total number of independent executions. This differs from the previous experiments, where the
executions were run until the optimum was found. The chosen value for the number of evaluations is
1, 000, 000.

There is a second variation regarding the fitness function: the number of transmitters used is replaced
with the number of location sites selected (there are three transmitters per location). Though this does not
affect the search behavior (it escalates the fitness value by a constant factor of three), it makes the results to
be more intuitive for comparison purposes since the fitness values are more closely related to those in the
previous experiments. In theory, sectorial cells have half the efficiency of circular cells (they cover exactly a
half-circle), so an equivalent solution should produce half the fitness value (requiring double the number of
sites to obtain the same coverage). Given that the optimal fitness was 164.672 for omnidirectional antennae,
we should expect an optimum solution for this problem to produce a fitness value of approximately 82.336.

Table 6.5: Results of the study for CHC using directive transmitters.

Problem Simple Version Complex Version
Mono-objective Multi-objective Mono-objective Multi-objective

Best fitness 85.328 85.750 80.693 84.766
Average fitness 84.884 84.613 78.787 82.616
Worst fitness 84.628 83.164 76.211 78.627

Table 6.5 shows the results obtained for the RND using directive antennae (the two cases), in terms of
fitness values produced. For the multi-objective approach, the fitness value of each solution of the obtained
set is calculated, and the highest value is kept for each execution.

We first remark that the equivalent fitness value of the circular coverage model optimum, 82.336, is
outperformed in the majority of scenarios (in all the scenarios for the simple version of the problem). This
is due to the fact that, besides reconstructing the hexagonal grid, the algorithm can efficiently improve that
structure by adding sites at the border of the terrain to cover the holes in the frontier (see figures 6.6b
and 6.6c).

The second remark is that, although for the simple version of the problem both the mono- and the multi-
objective approaches produce solutions of similar quality (with no significant differences between fitness
values), for the complex version the multi-objective approach produces solutions with significantly higher
fitness values. It seems thus that for higher-dimension problems, the multi-objective approach offers a better
exploration of the search space.
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6.4.3 Malaga instance
The Malaga instance was solved using SA and CHC, which were compared against a wide set of state-
of-the-art optimization techniques proposed by three other collaborating research groups, including: It-
erated Local Search (ILS), Population-Based Incremental Learning (PBIL), Clustered Genetic Algorithm
(AGC), Clustered Chromosome Appearance Probability Matrix GA (CAPMC), Clustered Memetic Al-
gorithm (MAC), Differential Evolution (DE), Greedy Randomized Adaptive Search Procedure (GRASP),
Variable Neighborhood Search (VNS), and hybrid and multi-start variants of the techniques (MS FNS,
HYBRID RUFNS, GRASP EVNS, MS GEPVNS, GRASP SRCL). The results used for comparisons cor-
respond to executions run until 5, 000, 000 solutions were evaluated.

Figure 6.8 shows the average values and standard deviations of the fitness values obtained by the 14
algorithms used, sort from left to right in descending order of performance. As it can be seen, CHC ranks
third in performance, while SA ranks on the twelfth place. Figures 6.9a and 6.9b plot the average execution
traces of the upper and lower quartile algorithms, to which CHC and SA belong, respectively.
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Figure 6.8: Results obtained for the Malaga instance.

CHC proves thus to be a very high-performing technique for the RND problem. Though it was not
the best performing technique of all the 14 algorithms tried, it came up third and close to the best ones;
additionally, it has to be stated that the CHC algorithm was in its canonical form, without specific problem-
related operators or enhancements, unlike other techniques of the pool2. Hence we believe there is still
room for improvement in CHC, which is a highly promising technique for RND.

6.5 Self-adaptive distributed technique for RND
We present in this section a novel contribution that is aimed at improving the conditions of use for dis-
tributed optimization algorithms, and validate it by applying it to the RND problem, under its most complex
instance: the Malaga instance.

2MS GEPVNS, for instance, takes advantage of the problem definition and allows for partial reevaluation of a solution to evaluate
its neighbors, thus effectively visiting more solutions (though within a close neighborhood) without taking it into account for the
computational effort
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Figure 6.9: (a) Upper and (b) Lower quartile execution traces obtained for the Malaga instance.
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Our contribution consists in an automatic mechanism to configure the migration schedule of a distributed
algorithm, such that the migration periods are set and updated on-the-fly during execution, and the resulting
algorithm is robust and high-performing. The mechanism is based on a theoretical study of the effect of
migrations over the different subpopulations of a distributed genetic algorithm, especially focused on the
convergence properties (see Section 3.4.3). We extrapolate the results of this analytic study to generate a
theory-driven designing technique. Our contribution can help reduce enormously the tuning times for this
kind of technique by removing the migration-related parameters from this process; this can be a decisive
factor when using distributed techniques in the presence of hard time constraints.

For the validation, a distributed GA, or dGA (see Section 4.1.3), is used as the recipient to test the
automatic migration tuning technique. The topology employed is a directed ring topology. Each element
of the ring, i.e., each subpopulation is also called an island; there are eight such islands, each of which
will host a population of 50 individuals. The corresponding sequential/panmictic population contains 400
individuals. As in Section 6.4.3, the executions are run until 5, 000, 000 solutions are evaluated, the number
of generations is thus 12, 500. In the migration process every island sends its best individual, and includes
the received individual in its subpopulation replacing the worst individual (elitist criterion). The basic
configuration parameters of the dGA are shown in Table 6.6.

Table 6.6: Set of Configuration Parameters for the Sequential Genetic Algorithm

Parameter Value
population size 50 or 400

mutation
{

bit-flip
pm = 1/L

crossover
{

uniform
pc = 0.60

selection random or roulette
replacement tournament or elitist

We define two configurations of (d)GA, regarding the selection and replacement operators used, in
order to get different combinations of intensity and diversity in the search process. The first one emphasizes
diversity, and combines a random selection of the parents and a four-tournament selection of the next
generation. This configuration shall be referred to as the “Normal” selection hereafter. The second one has
a special stress on intensity -if is therefore a much more elitist selection-, it combines roulette selection for
the parents, and elitist selection of the next generation. This configuration shall be referred to as “Elitist”
selection hereafter.

We first describe our proposed technique for automatic adaptation of the migration schedule in Sec-
tion 6.5.1. Then, we present the results obtained by the technique, and compare them against the results
obtained with equivalent sequential GAs and parallel dGAs running with fixed migration schedules in Sec-
tion 6.5.2.

6.5.1 Application of the model
As stated before, the basis for our automatic migration-tuning technique is the model described in Sec-
tion 3.4.3. More specifically, the model provides a tool for automatically tuning the migration schedule of
our dGA. The key idea is that setting the migration schedule in such a way that the algorithm converges
towards the end of the execution should improve the algorithm’s performance. The rationale behind this
is to balance diversity and intensity: premature convergence results in excessive intensity (local optima),
while lack of convergence results in excessive diversity (slow search).

According to the theoretical model developed in [11], given an initial population and a regular migration
schedule, the rate of convergence of the global population is given by Equation 3.23, and the takeover time
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by Equation 3.24. In the migration-tuning technique, the process has to be undergone in the opposite
direction: given a target takeover time (we wish that takeover happens upon execution completion, t∗ =
texecution), how to set the migration schedule in order to achieve it?

Assume that during an execution, full convergence is attained at the end (takeover happens at the end
of the execution). Furthermore, assume that every island containing the optimum converges before the next
migration (as is the case in Figure 3.11). At some given time tcurrent during that execution the percentage
of the population conquered by the optimum is P (t). Then, according to the model, we have:

texecution = per · d(T )− 1

b
ln

(
1

a

ε

N − d(T )− εN

)
, (6.8)

at any time, the “progress” of the execution is P (t)
1/N , the equivalent execution time is per · P (t)

1/N , from which
we get:

tremaining + per ·
(
P (t)

1/N

)
= per · d(T )− 1

b
ln

(
1

a

ε

N − d(T )− εN

)
. (6.9)

From this, the value of the migration period per can be extracted as:

per =
tremaining −K
d(T )−

(
P (T )
1/N

) , (6.10)

where we have defined

K =
1

b
· ln

(
1

a
· ε

N − d(T )− εN

)
, (6.11)

where a is set equal to the size of a subpopulation hosted by an island, b = 0.4, and ε is the tolerance
parameter that we set as ε = 0.1.

However, the model makes two assumptions that cannot be met in real scenarios where GA is to be
applied. The first one is that the optimum is already present in the initial population. The second assump-
tion is that only selection operators are employed (thus no mutation and no crossover). This means that
solutions do not evolve throughout the algorithm execution and no new solutions can be produced. Thus,
the theoretical model requires an extension in order to cover the distance from theoretical conditions to the
conditions in a practical scenario.

We propose three extensions of the base model to overcome the limits of the theoretical assumptions:

1. First, in a real scenario the optimal fitness value is unknown. Therefore, a target or objective fitness
value has to be determined beforehand, i.e,. a fitness value high enough so that any solution producing
that fitness (or better) can safely be considered as fit. In a real problem, this task can be completed
by defining the minimal requirements in the solution. In the present case, that parameter is set to
a large value close to the the largest known fitness value. This target fitness acts as a threshold
value, meaning that any solution producing a fitness value over it will be considered as an optimum
whenever the takeover or the growth are checked.

2. Second, the optimal solution is not present in the initial population (and may never be in the popu-
lation). Instead, the method will search for the best solution present in the population. The ratio
between that solution’s fitness and the objective fitness value is directly applied to the period value
obtained from Equation 6.10 as a multiplicative corrective factor.

3. The third extension is an attempt to deal with the unpredictable nature of the crossover and mutation
operators, and the fact that it is impossible to know in advance the kind of new solutions that will
appear through the search process. Due to this, the tuning process will try to force the convergence
process so that the optimum can appear in one island, and have sufficient time left to propagate to the
rest of the islands; for this, it reduces the migration period by a factor equal to the total number of
islands.
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The resulting modified value of migration period per∗of the automatically tuned dGA is shown in
Equation 6.12.

per∗ =
fitnessbest found
fitnessobjective

· per
N
, (6.12)

where fitnessbest found is the best fitness found in the global population, fitnessobjective is the predefined
target fitness (that is considered to be optimal), and N is the number of islands.

In our technique, a common migration schedule is set for the whole distributed population, but for
its calculation some global knowledge about the whole population is required. Hence, in the practical
implementation of the method a master process gathers all the relevant information from the islands, makes
the calculations, and then sends the results (i.e., the new migration period) back to all the islands. The
information gathered by the master process includes all the fitness values of the individuals present at
the subpopulations. Since the technique controls the migration parameters, the whole process will take
place once after each migration: every island will first perform the migration process (send and receive
the migrating individuals), then send all its fitness values to the master process, then block itself. When
the master has gathered the information from all of the islands, it calculates the new migration period, and
sends it back to every island. When the islands receive this information from the master, they update their
configuration with the new migration period, then resume their execution.

6.5.2 Results of the proposed technique
This Section discusses the results produced by the automatically tuned migration period on a dGA. The
two selection methods described in the beginning of the section are used. The results obtained are shown
against the best results produced by the sequential executions, and the distributed executions with constant
migration periods.

Comparison with sequential GAs

We have defined two types of sequential GA. In the first one, the algorithm handles a pool of solutions
equal to the global pool of solutions of the distributed algorithm. In the second one, the pool will be
equaled to a single island’s pool of solutions of the distributed GA. In order for the comparisons to be fair
and meaningful, all the executions are sized after the total number of single solution evaluations (which we
set to 5, 000, 000) instead of the number of iterations. Thus, the two sequential experiments described above
handle a pool of 400 solutions and perform 12, 500 iterations in the first case, and a pool of 50 solutions
and perform 100, 000 iterations in the second. In total, there are four different configurations for GA: two
selection mechanisms, with two population sizes each.

The average traces of the sequential executions are shown in Figure 6.10, where they are compared to
the adaptive technique. The techniques are labeled with ‘N’ if they use the Normal selection method, and
‘E’ if they used the Elitist selection. The number in the labels of the sequential algorithms make reference
to their population size.

Several observations can be made about the obtained results regarding the sequential GAs. First, sur-
prisingly, the size of the population does not have a significant effect on the quality of the solutions produced
by the GA. In fact, when Normal selection is used a population size of 50 individuals produces better re-
sults than 400 individuals, whereas when Elitist selection is used the opposite is true. For each of these
two selection methods the differences between the results are small. Second, the Elitist selection procedure
outperforms the Normal selection procedure. Any configuration with Elitist selection obtains higher fitness
values than both configurations with the Normal selection. The lowest margin is between Elitist with 50
individuals (fitness of 157.001) and Normal with 50 individuals (fitness of 156.249). The largest margin
happens between Elitist with 400 individuals (fitness of 157.95) and Normal with 400 individuals (fitness
of 155.763).
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Figure 6.10: Average execution traces of the adaptive migration technique compared with the sequential
executions of GA.

As a secondary conclusion, the benefits given by a balance between intensity and diversity are illustrated
by these results. Since the Normal selection procedure is biased towards diversity, a small population size
suits it best, as small populations tend towards fast convergence hence intensity; at the same time the Elitist
selection is biased towards intensity, therefore larger population sizes favoring diversity provide the best
combination.

Regarding our proposed adaptive technique, we note that both configurations, the one using Normal
selection and the one using Elitist selection, show a similar behavior: they start with low fitness values, but
they increase the fitness value more consistently towards the end of the execution than the sequential GAs;
the Elitist selection produces consistently higher fitness values than the Normal selection, and the difference
seems to be stable over the execution. In fact, the adaptive technique manages to outperform all sequential
configurations except for the one using a population of 400 individuals and Elitist selection.

Comparison with dGAs with fixed migration schedules

In dGAs with fixed migration schedules, the migrations take place regularly once every k iterations, where
k is the migration period. We use the two selection mechanisms described above in these experiments,
working within the local GA running in every island. A total set of 10 different values is employed for the
fixed migration period, ranging from 1 (constant communication among islands) to 12, 500 (complete isola-
tion); this is done in order to determine the relative effectiveness of different fixed migration schedules, and
to compare these schedules with our proposed self-adaptive schedule. In total, there are 20 different con-
figurations for dGA with fixed migration schedules: two selection mechanisms with 10 migration periods
each.

The results for each selection mechanism are first discussed separately, then compared. The execution
traces obtained with the Normal selection procedure are displayed in Figure 6.11a, those obtained with the
Elitist selection procedure are shown in Figure 6.11b. In both cases, the corresponding adaptive migration
technique is displayed as well, labeled ‘Adapt’, whereas the configurations with fixed migration schedules
are labeled ‘D’; in turn, the Normal selection method is labeled ‘Norm’, while the Elitist selection is la-
beled ‘Elit’; finally, the numbers in the labels indicate the value of the migration period used (for the ‘D’
configurations using a fixed period).

When the Normal selection method is employed, the best results are obtained using low migration
periods. The final average fitness values produced by the dGA with migration periods ranging from 1
to 100 are quite similar (all above 156), and for higher periods it gradually deteriorates (all below 154),
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Figure 6.11: Comparison of the adaptive migration technique with parallel executions of dGA.

reaching its lowest for a period of 12, 500 (fitness of 150.60). The migration period of 10 produces the best
fitness, closely followed by 5 and 1, with respective fitness values of 157.098, 156.707 and 156.631; the
relationship among the best performing configurations seems to be quite stable throughout the execution.

When the Elitist selection is used, the best results correspond to migration period values of 100 (first)
and 50 (second), with average fitness values of 157.631 and 157.540, respectively. In general, these results
are better than those of the Normal selection method. By comparing the behavior of these two configura-
tions during their execution time it can be observed that, unlike the case with Normal selection, here the
migration period of 50 produces higher average fitness than a period of 100 halfway into the execution,
but at the end this trend reverses. As a derived effect, should the length of the execution be extended, the
configuration using a migration period of 100 is expected to produce increasingly better results than the
one using 50. Therefore, if the execution length had to be maintained at low values (below 5, 000, 000 so-
lution evaluations), a migration period of 50 should be selected; if the execution length is high (5, 000, 000
evaluations or beyond), a migration period of 100 offers better performance.

Regarding the adaptive method, a similar effect as the one observed previously can be noticed: at first,
the high-performing fixed configurations produce clearly higher fitness values than the adaptive, but towards
the end the adaptive technique experiences a faster growth and is able to catch up with the former. In the case
of the Normal selection, the adaptive technique is barely capable of reaching the high values of fitness, but
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with Elitist selection it has clearly got to a similar level of performance, and is only slightly outperformed
by fixed migration values of 50 and 100 at the end.

Analysis of the migration period

We focus in this section on the behavior of the adaptive technique when the Elitist selection method is
used, since that combination is the one that seemingly produces the best results. Figure 6.12 shows the
values adopted by the migration period during the execution time using the automatic tuning technique.
The best found fixed values (50 and 100) are also represented as horizontal dashed lines as a reference.
As can be seen in the plot, the migration period starts at a low value (somewhere around 27 iterations)
and suddenly rises up to 200 iterations; then it gradually decreases during the execution until it reaches a
preimposed minimum -equal to the number of islands- by 12, 000 iterations (thus, after 95% of the execution
is complete). Single execution values are plotted in an overlap fashion instead of an averaged value for two
reasons: first, since all the executions display a similar behavior, there is no added confusion by the overlap,
second, an averaged representation might be misleading, as there are two single executions that display an
“anomalous” behavior towards the end of the execution by suddenly rising up to values of approximately
300 and 150; this happens when “optimal” solutions are found before the expected time (which is the end
of the execution), and the algorithm can thus settle with a lower migration frequency (higher period) since
the takeover is likely to happen. We remark that the overall values of migration period are comprised within
a reasonable range of values (between 8 and 200) around the best known values (50 and 100), which proves
the proposal’s correctness.
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Figure 6.12: Values given to the migration period by the automatic tuning method on dGA with Elitist
selection.

The explanation for this behavior is as follows. At the beginning of the execution, the dominant factor is
the fitness ratio fitnessbest found

fitnessobjective
(the best fitness values in the initial population are around 17, as opposite

to the objective fitness which is set to 160). Then the fitness value of the best solution quickly increases
producing the observed rise in the migration period (the average fitness is 120 after 100, 000 evaluations,
or 250 iterations). Then, as the number of remaining iterations reduces, the migration period progressively
diminishes as observed in Figure 6.12, until it reaches the lower bound.

Analysis of the computation times

This section quantifies the computation time ratios among the different algorithms used. Three sets of
(time) data are compared, all of which were obtained on the same machines (in order for the comparison to
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Figure 6.13: Computational times required to reach the fitness threshold for the best configurations found.
‘S’ stands for Sequential, ‘A’ is Adaptive, ‘D’ is Distributed with fixed migration schedule. ‘N’ is Normal
selection and ‘E’ is Elitist selection.

be meaningful). The first set includes the four sequential executions. The second set includes the twenty
distributed executions with constant migration schedules running on four identical machines -hosting two
islands per machine. The third set includes the two distributed executions with adaptive migration schedule
running of four machines.

Since the executions were stopped after a predefined number of solution evaluations (5, 000, 000), a
straight time comparison among the different configurations is not very significant, and can be misleading
(since the quality of the solutions obtained is not the same every time). Therefore a threshold fitness value is
set, the time required by the different algorithmic configurations to reach that threshold are checked. To be
more specific, the threshold has to be high enough to ensure that the corresponding solution is acceptable,
and low enough to ensure that all the executions taken into account for comparison are able to reach it.
According the these criteria, the selected value is 151.9, equal to 92.2% of the highest fitness known.

A wide comparison of the computation times is offered in Figure 6.13, where the results obtained by
the sequential and distributed configurations are both included. In the labels, ‘S’ stands for sequential, ‘D’
for distributed, and ‘A’ for adaptive migration; ’‘N’ and ‘E’ stand for Normal and Elitist selection mecha-
nisms, respectively; finally, the numbers indicate the population size in the case of sequential algorithms,
or migration period in the case of distributed ones.

As expected, the times required by the sequential configurations of GA are significantly higher than the
ones by the distributed configurations. Among the sequential configurations, the one with Elitist selection
and a population of 400 individuals (fourth box) has clearly better time response than the other three, though
not as good as the distributed ones. Since that configuration was also the one that obtained the best results
it seems obvious that this configuration has to be selected should a sequential GA be used to solve this
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problem.

Regarding the distributed configurations, the adaptive schedule using Normal selection contains sen-
sibly higher times than the rest of the boxes, thus revealing a poorer performance. The best performance
is displayed by the constant migration every 50 iterations and Elitist selection, though no significant dif-
ferences are found among the five best-performing configurations. This should come as no surprise since,
although the best results were obtained with the Elitist selection and a migration period of 100 iterations,
the trace plot in Figure 6.11b shows that only at the end of the execution does that configuration outperform
the one with a period of 50 iterations.

As a result of this section, it can be stated that the use of this work’s proposal (parallel distributed GA
with adaptive migration schedule) doesn’t show significant drawbacks in running wall clock time over the
best found configurations for distributed GA with constant migration schedules. Moreover, as expected,
the execution time of the distributed approaches outperformed amply those of the sequential approaches.
Finally, although the results produced by the adaptive migration period do not outperform the best results
achievable using a fixed schedule, the cost of finding such a schedule compensates this effect, as is sketched
in the following section.

Advantages in terms of parameter tuning cost

The last discussion is centered on the effective alleviation of the parameter tuning cost that the automatic
tuning technique provides. For that, an alternative scenario is considered for comparison. In this scenario,
a network designer wishes to tune the dGA migration period, and for this purpose will perform a (binary)
search process. In this process, whenever a range of possible values is considered for the tunable parameter,
the two extremes and the middle value are evaluated. Then, the best half-range (out of the two subranges
defined by the middle value) is kept. The process is repeated until a value is found that produces comparable
results to the proposed technique, at which time the process is stopped. This study will be performed only
for the configuration using Elitist selection, since it is the one that has produced the best results.

Each tested value requires 30 independent executions to be performed for statistical confidence. The
adaptive technique requires approximately 15 hours of wall clock computation time to perform 30 indepen-
dent executions (counting 30 minutes per execution).

For dGA with Elitist selection, the range of migration period values where the constant migration out-
performs the adaptive one is [10 − 100]. This range is reached after 9 steps using a linear search (the next
value tested is the arithmetic mean of the two values defining the range), constituting a total number of 270
independent executions (nine times the total number of executions performed with the adaptive migration
schedule). In wall clock time that equals approximately 135 hours of computation using four computers
like the ones used in this work.

If a logarithmic search strategy is adopted (the next value tested is not the arithmetic mean value of the
extreme values of the selected range, but the square root of the product of these values instead), then the
“right” configuration can be attained after only 4 steps, or 120 independent executions. This search strategy
is thus more efficient, but still requires 60 hours of computation nonetheless.

In summary, with the automatic adaptive technique the results from the 30 independent executions can
be obtained after 15 hours of computation. If the migration schedule is empirically tuned (which is the case
in most existing similar work), equivalently good results can be obtained after 135 hours of computation if
linear search is used, or after 60 hours in the case of the logarithmic search.

Therefore, our proposed automatic tuning techniques produces savings of between 75% and 89% of the
overall computation time when compared to a search method requiring migration parameter tuning (in this
case, tuning of the migration period parameter).
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6.6 Conclusions
In this chapter we have formulated and solved the RND problem, which consists in selecting the location
sites for the installation of radio transceivers in order to provide coverage to a given terrain area. We have
presented several problem instances, ranging from academic test instances using various antenna coverage
models to a large real-world based instance, the Malaga instance.

A set of medium-sized test instances are used as the testbench to assess the capability of different meta-
heuristics to tackle this kind of problem. In this sense, they are solved under the mono-objective approach
using SA, CHC and GA, and under the multi-objective approach using NSGA-II and MOCHC, the multi-
objective version of the CHC algorithm that was specially developed to solve this problem. The results in
both fields for the multiple instance types (with different antenna models) and sizes defined highlight CHC
and MOCHC as high-performing techniques, that achieve very good results even when applied under their
canonical form to different variations of the problem at hand.

These initial results are later extended in the work performed for the Malaga instance, where two of
our techniques, SA and CHC, are tested against 12 different advanced optimization algorithms proposed by
three other collaborating research groups, which include hybridizations and multi-start variants, applied to a
RND problem instance of high dimension. The results demonstrate that CHC is competitive even compared
against specially tailored techniques with notable enhancements such as partial solution (re)evaluation; as
a matter of fact, CHC ranked in the upper quartile.

Finally, following a novel philosophy, we propose a theory-to-practice contribution in the domain of
parallel optimization algorithms, and validate its performance using the Malaga instance as the test in-
stance: the automatic migration tuning technique. This technique, developed based on a theoretical study
on the effect of migration on the convergence in a distributed algorithm, consists in determining at which
moments (i.e., after which iterations) the migration process should take place. We propose a configuration
for the technique and its embedding into a distributed GA. The experimental results show that the proposed
technique obtains results of quality comparable to the those of the best found fixed migration schedules, re-
quiring a similar computation time, and achieving only slightly lower quality than the best found equivalent
sequential execution. Additionally, our proposed technique can alleviate the burden of parameter tuning
for the migration process configuration, and effectively reduces the whole optimization process time by at
least 75%.
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Chapter 7

Wireless Sensor Networks Layout
Optimization

We describe in this chapter the second fundamental problem found in Wireless Sensor Networks that is
tackled in this thesis, namely the Wireless Sensor Network Layout optimization problem (WSNL). This
problem has a similar starting point than the RND problem, as the purpose is to obtain a network that
produces a high coverage of a terrain (this can either be an optimization objective, or a constraint); how-
ever, unlike the previous one, it is not a combinatorial problem where locations are selected from a pool,
but a continuous optimization problem where locations are freely chosen (although generally discretized).
Furthermore, WSNL takes into account the ad-hoc communication network of the WSN, which was not
considered in RND, and finds a layout that not only will produce a good coverage, but whose respective
communication network has certain desirable properties.

Therefore, the philosophy behind WSNL is not the same that was behind RND/scheduling. This prob-
lem is much more scenario dependent than RND. In WSNL, the designer assumes it has absolute control
over the nodes positions in the field. This assumption does not exist in the RND/scheduling problem, where
nodes are already deployed prior to the schedule design, and there is no control over the deployment pro-
cess. Thus, the two problems can be regarded as complementary on the network deployment conception:
when one can decide single node’s locations, the WSNL is defined (and resolved) to decide the best possible
locations with regard to the desired network properties, when one cannot decide single node locations, a
schedule problem is defined (and resolved) to select the best fit set of working nodes, again with regard to
the desired network properties.

Another difference between WSNL and scheduling concerns the economy in terms of the number of
nodes. One of the principles behind the scheduling is the assumption that the network contains an excess
number of nodes; hence, only a subset of the nodes need to be active at a time to provide the desired levels of
coverage (or quality of service, in a broader conception of the network service) and a connectivity structure
(when connectivity is an issue). This assumption no longer holds for WSNL. In fact, one of the optimization
objectives in WSNL (though admittedly not the one with the highest priority) is to minimize the economic
cost of the network by minimizing the number of nodes (which cost money). Thus the number of nodes is
not in excess, but tailored to fit the network requirements.

In this chapter we will first provide a general description of the WSNL problem, and the models used in
the existing literature for the coverage and the communications of the sensor node, and the sensor network,
as they both affect the operating features of the network. We will also discuss the lifetime computation,
since it constitutes another of the objectives. Finally, we provide a review of the literature of the field.
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7.1 Problem description
The Wireless Sensor Network Layout optimization problem (WSNL) is widely considered one of the fun-
damental problems in WSN ([166]). In its most basic form, WSNL amounts to selecting the geographic
locations for the deployment of each single node of the network.

There are two main concerns in the WSNL problem: coverage and connectivity. The coverage amounts
to the basic quality of service offered by the sensor network, and it has to be maximized. The connectivity
makes reference to the communication topology resulting from the node positioning. The main goal sought
in the topology, besides the hard constraint of the network being fully connected with the HECN, is that
the communication structure is such that the energy consumed for communications is minimized, hence
maximizing the lifetime of the WSN. Additionally, the economic cost of the network (generally, the number
of sensor nodes employed) is set as a third objective in WSNL. The number of nodes and connectivity can
in principle be considered as independent objectives; however, we will see that they are in fact opposing
objectives.

Some forms of the WSNL problem have been demonstrated to be NP-complete ([218]). Additionally,
the WSNL can be reduced to the set covering problem, by restricting the available positions of the sensor
nodes to a set of discrete locations (for instance a regular point grid); and the set covering problem is well
known to be a NP-complete problem ([42]). Therefore, we state that the WSNL is NP-complete as well.
For this reason, metaheuristics seem an adequate tool to tackle instances of this problem of large size.

7.2 Models employed for the coverage
One of the fundamental elements involved in the WSNL problem is the model employed for the coverage,
since coverage is the main optimization objective (or constraint). We can establish several classifications of
the different coverage models that have been used in this domain.

7.2.1 Node coverage models
The first classification is made according to the individual node sensing model:

• Binary coverage ([20, 106, 151, 190]): the node fully covers a disk of radius RSENS centered at the
node location. When the distances are normalized so that RSENS = 1, the model is also referred to
as Unit Disk Coverage model (UDC).

• Probabilistic coverage ([213]): the node covers a disks of radiusRSENS centered at the node location,
but points inside the disk are only covered with probability k < 1. This value is also referred to as
detection probability.

• Quasi Unit Disk (QUD) ([61, 218]): a distance dependent combination of the previous two models.
The node gives full coverage to a small disk of radius α · RSENS where α < 1, and probabilistic
coverage to the crown defined by α · RCOMM < r < RCOMM , with probability P = f(r − α ·
RCOMM ), where the function f must meet the following description:

f : <+ → [0; 1],

 f(0) = 1
f(1− α) ≥ 0

f ′(x) ≤ 0 for x ∈ [0; 1− α]
.

A typical function used for the QUD model is the decreasing exponential function:

f(d) = exp (−A · d),

where A is a constant value used to tune the decrease rate of the detection probability.
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Figure 7.1: Coverage models of a sensor node: (a) binary, (b) probabilistic, and (c) quasi-unit disk

• Other coverage models: sometimes the coverage model is specific of the application at hand and
does not fit into a general category. Some examples are directional coverage (the sensors point at a
given direction and can only sense events inside a given angle and distance bounded region, [2]), or
boundary sensors ([231]), that are sensors that define a “barrier” and detect when an object traverses
the barrier (much like the laser traps in spy movies).

The three first node sensing models are illustrated in Figure 7.1, by the detection probability as a func-
tion of the normalized distance of the event (or object) to the node. The normalization is made to RSENS .
The effect of these different node models when applied to a network coverage are shown in Figure 7.2. A
WSN is deployed as a perturbed regular grid (i.e., the nodes are placed forming a regular N × N square
grid, then each node has its position slightly displaced from the grid point), then the detection probability
for every point in the sensor field is calculated and plotted using the binary model (Figure 7.2a), the prob-
abilistic coverage model (Figure 7.2b), and the quasi-unit disk model (Figure 7.2c). In the models plotted
in the figures, the probabilistic coverage is set to k = 0.5 and the quasi-unit disk model is defined by a
decreasing exponential with A = 2 and α = 0.25. As it can be seen, when the binary model is used, the
resulting network coverage is binary as well (Figure 7.2a); when the probabilistic model is used a set of
“plateaus” appears (there are four different detection levels in Figure 7.2b); finally, when the quasi-unit disk
model is used, the resulting network detection probability is a continuous value (Figure 7.2c).

7.2.2 Network coverage models
A different classification may be made according to the field concept, that is, the method by which the
coverage of the network is evaluated, as opposed to the coverage offered by a single node. This depends
mainly on the purpose of the WSN, that is, what and how is the network supposed to be monitoring. This
classification is partially related to the one described above. The main cases one can find are the following:

• Point coverage model ([42, 106]): the network administrator is only interested in monitoring a dis-
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(a) binary coverage

(b) probabilistic coverage

(c) quasi-unit disk coverage

Figure 7.2: Network coverage for different sensor node coverage models on a ground 2D terrain: (a) binary,
(b) probabilistic, and (c) quasi-unit disk.
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crete set of points (this recalls the coverage definition for the AFP problem in Section 5.2.1). This
model can be combined with any node coverage model if the points are physical points in the terrain
and their distances to the nodes can be calculated.

• Area coverage ([20, 105, 106]): the network administrator is not interested in particular points, but
the whole area of the sensor field. This is, by far, the most common assumption, not only in WSNL
but in many other problems defined in WSN (scheduling, etc.). There are still several combinations
that can be used within the general assumption of area coverage. When area coverage is used with
binary node coverage, the evaluation of the coverage is the total area that is at least covered by one
node. When probabilistic or quasi-unit disk node coverage are used with area coverage, either the
average detection probability (integrated over the whole area of the sensor field) or the total area
where the detection probability surpasses a given detection threshold may be used, depending on the
formulation and requirements of the problem at hand.

• k-coverage ([35, 96, 133]): this one is a simple extension of the area coverage, but where k sensor
nodes are required to cover any location point (this redundancy can be used for enhanced robustness
versus individual node failure, for additional information, or to improve the false alarm or missed
detection rates); a point that is covered by k different sensor nodes is said to be k-covered. The k-
coverage assumption is only used with binary coverage models (not probabilistic), and the number of
nodes that can cover a given terrain point is known as coverage degree of that point. A particularly in-
teresting instance is the 3-coverage, since 3 is the threshold for localization by trilateration, therefore
solving the WSNL using the 3-coverage assumption produces a WSN that can perform trilateration
and return the location of the sensed events. The evaluation of the network coverage can be based on
the calculated average coverage degree over the complete sensor field (to be compared to k), or on
the total area where the coverage degree is at least k.

• Differentiated coverage ([61, 105, 224]): this is the generalization of the area coverage assumption.
In differentiated coverage, the same coverage requirements do not hold for the whole field. Instead,
there are some parts in the field that are considered critical (of higher importance), and as a result
require a high coverage, while some other parts are less important and require lower coverage. The
specification of coverage degree requirements can be very simple (with as few as two different levels),
or arbitrarily complex. Differentiated coverage can be used in combination with either binary node
coverage (then the coverage degree is used as the varying coverage requirement), or probabilistic
coverage (then the detection probability is used as the varying coverage requirement). The evaluation
of the coverage corresponds to the total area where the requirements are met, which can be further
weighted in such a way that area with high requirements receive a large weight and area with low
requirement receive a low weight (the coverage requirement can be used as the weight factor).

• Perimeter coverage ([25, 102]): in this scenario the network administrator is no longer interested in
covering a full terrain, but just the boundary of that terrain. This assumption is used in WSN designed
for intrusion detection. This model can be used in combination with any node coverage models. The
evaluation of the coverage may correspond to the percentage of the perimeter zone that is covered
by at least one sensor, the percentage of the perimeter that is k-covered, or the percentage of the
perimeter where the detection probability surpasses a given threshold value.

• Path coverage ([25, 134, 151, 190, 206]): in this case the node administrator wants to detect moving
targets inside the sensor field. Therefore, the coverage of the network is not evaluated over terrain
points, but over paths, that is, lines inside the sensor field. Paths can enter and leave the field, or can
be originated and terminated in points within the sensor field; generally, a minimum path distance
is assumed (to make the problem tractable). Path coverage is used in combination with probabilistic
or quasi-unit disk models, and the probability of detecting a given path is calculated by integrating
the detection probability over the path, assuming a given target speed and a time dependence of the
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detection capability of a node. The evaluation of the coverage corresponds to the path detection
probability, assuming some nature and probabilistic distribution of the paths.

• Hybrid or multi-nature coverage: this assumption is used when there are several physical magnitudes
that are sensed, and several kinds of sensor accordingly. This can be seen as the generalized problem
for an arbitrary number of sensed data, with different requirements. An example of a system that
adheres to this definition is an environmental WSN used in the forests of California; each sensor
node is equipped with light, temperature and humidity sensors. Each type of sensor has its own
coverage model, and for each kind of measured parameter different coverage requirements may be
defined.

In our definition or the WSNL problem (Chapter 8), we use binary coverage for the sensor node and
area coverage for the sensor network.

7.2.3 Computation of an area coverage
Several methods have been proposed for the estimation of the coverage of a given terrain area by a set of
nodes ([61]). In this section we offer a short review of the most frequently found methods in the literature.
These methods are:

• Use of superimposed regular point grid.

• Mathematical analysis.

• Use of Voronoi diagrams.

• Check the intersections among sensing disk boundaries.

The simplest is the definition of a superimposed regular point grid, which can be viewed as a generaliza-
tion of the point coverage assumption, where point coverage meets area coverage ([2, 3, 61, 105, 217, 218,
224]). Each point in the grid has an associated terrain area around itself, the coverage is estimated for each
point in the grid and all the corresponding area is considered to have that coverage value. The grid can be
used to compute either coverage degree or the detection probability. The grid is an approximate estimation
of the real coverage, but the approximation can be made as accurate as desired by increasing the number of
grid points (hence reducing the area per point), at the cost of more computational effort (the computational
effort of this method is O(n) with respect to the number of grid points, or O(n2) with respect to the accu-
racy). Figure 7.3a shows an example grid computation of the coverage; every node has to compute which
of the grid intersection points fall within its sensing disk.

A mathematical analysis of the coverage can also be used, however, the complexity of it becomes
unmanageable as the number of nodes increase and thus this kind of method is generally employed only to
analyze regular node deployments ([20, 70, 106]).

The use of the Voronoi diagrams, and their counterparts the Delaunay triangulations, is very popular in
WSNs for coverage and connectivity purposes ([17, 52, 70, 80, 136, 140, 219, 234]). Voronoi diagram is a
special kind of decomposition of a metric space determined by distances to a specified discrete set of objects
in the space, e.g., by a discrete set of points (also called a Voronoi tessellation, a Voronoi decomposition,
or a Dirichlet tessellation, it is named after Georgy Voronoi). In the simplest case, which is the one that
applies to WSNs, we are given a set of points S in the plane, which are the Voronoi sites. Each site s has
a Voronoi cell V (s), consisting of all points closer to s than to any other site. The segments of the Voronoi
diagram are all the points in the plane that are equidistant to the two nearest sites. The Voronoi nodes are
the points equidistant to three (or more) sites. For a WSN in which the Voronoi diagram has been defined,
a sufficient condition for coverage is that every node entirely covers its Voronoi cell. Figure 7.3b shows an
example computation of the coverage with Voronoi diagram; every node has to check whether its sensing
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disk covers its Voronoi cell entirely, which can be reduced to check whether all the nodes of its Voronoi
cell fall within its sensing disk. Therefore the complexity of the method is O(n) where n is the number of
neighbors of a node1. This technique can be generalized for k-coverage.

Another method for estimating global k-coverage of a terrain was proposed by Wang et al. ([209, 219]).
The method assumes for simplicity that nodes cover all the area in their sensing disks except the boundary.
Then, the intersections between the boundaries of the sensing disks are all checked in terms of coverage
(note that none of the nodes that produce the intersecting sensing disks is taken into account for the coverage
computation), as well as all intersections between the boundary of a coverage disk and the boundary of the
terrain field. If there are such intersections, and all of them are k-covered, then the whole sensor field is
k-covered as well. Figure 7.3c shows an example application of this technique; the intersection points are
marked with small empty disks.

The two latter techniques are computationally more efficient than the use of the grid, but present a big
drawback as well: they produce only a binary output, that is, either the terrain is fully (k-)covered, or the
terrain is not fully (k-)covered; in the second case it does not provide any additional information (like, for
example, the percentage of the terrain which is (k-)covered or the average coverage degree of the sensor
field). One could always use the ratio of intersection points or Voronoi nodes (depending on the case) that
receive coverage as a reference, but there is no guarantee that these points are evenly distributed through-
out the sensor field and that henceforth this ratio is a significant value in the sense that it provides a trustful
indicator of the area coverage degree. Therefore, since metaheuristic optimization techniques require evalu-
ation functions that act as guiding functions in the suboptimal regions o space, the latter coverage estimation
methods are not suited for our purposes. Thus, the grid evaluation method is the one selected to be used
in our calculations.

7.3 Models employed for the communications
Connectivity is, besides coverage, the other big issue in the WSNL problem. From the description of
the operation of a WSN (Chapter 2), a node that does not have a communication path with the HECN is
considered disconnected, and thus its coverage is not taken into account for the computation of the WSN
coverage. Therefore, it is important that the WSN produced in WSNL is a connected network, and that it is
connected to the HECN as well.

7.3.1 Link level
The general model for connectivity is most similar to the coverage model, and defines connectivity based
on the range parameter, also known as the communication radius RCOMM . Depending on the distance
between two nodes and the value of RCOMM , these nodes will have a direct communication link or not.
However, there are many variations of the model:

• Unit disk model ([98, 106, 140]): Similar to the unit disk model for coverage. Two nodes separated
by d ≤ RCOMM have a communication link, two nodes separated by d > RCOMM are out of
communication range of one another and thus do not share a direct link. The resulting topology is
often called a unit disk graph (UDG).

• Probabilistic link ([151]): Expands the unit disk model by adding a probability of error E, such that
two nodes separated by d ≤ RCOMM have a link with probability P = 1− E. The link probability
is evaluated once per link: either the link exists or does not exist, for the whole WSN lifetime.

• Quasi-unit disk ([26, 233]): Similar to the coverage equivalent. Two nodes separated by distance
d ≤ α ·RCOMM with α < 1 have a link, two nodes separated by d > RCOMM do not have a link. If

1This complexity is per node, and without taking into account the complexity of determining the Voronoi cell of a node.
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(a)

(b)

(c)

Figure 7.3: Methods for area coverage computation: (a) superimposed grid, (b) Voronoi diagram, (c) sens-
ing disks intersections.
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the nodes are separated by α ·RCOMM < d < RCOMM they may or may not have a communication
link (possibly with some probability).

There is an alternative model, in which the link distance is unbounded (or equivalently, RCOMM =
∞, [42, 188]). In this model, all communication links exist and may be used by the nodes; either the network
degenerates into a 1-hop network (since there is no link distance limit, all nodes are within communication
range of the HECN directly) –and the bandwidth problem arises since all nodes cannot be transmitting at
the same time, or else they would interfere with each other ([188])–, or it remains multi-hop. The main
reason why such a network would not degenerate into a single hop network is because of energy efficiency.
In this model (as well as in many models where the link distance is bounded by RCOMM ), communication
links have an associated communication power of the form P = P0 +K · dα, where 2 ≤ α ≤ 5 is the path
loss exponent ([40, 188, 199]). This power figure makes short communication links more energy-efficient
than long links, so they are generally preferred.

7.3.2 Network level
Very similarly to what happened in the case of coverage, the WSN may require single connectivity (that is,
there exists at least one path between any node and the HECN), or k-connectivity (there are k disjoint paths
between any node and the HECN, [134]). The latter is used to enhance network robustness: the network
does not become disconnected even if any (k − 1) nodes fail. Then, several classifications can be made
about the network communications: according to communication model, according to the establishment
of the topology, according to the routing algorithms used, etc. We will briefly review these classifications
below.

The communication model states where the communications originate, and where they end. In other
words, the communication model defines which nodes will communicate with which other nodes. Basically,
there are two communication models employed in WSNs:

• N -to-1: This is the simplest and most widely used model in WSNs. In it, every node can only
communicate with the HECN, and all other nodes can only be used as relays for the multi-hop com-
munication.

• N -to-N ([144]): This model corresponds to a fully ad-hoc network. In it, all nodes are in prin-
ciple susceptible of sending information to any other node. This model (or a subset of it) is used
when nodes can autonomously perform some operations, or perform local data fusion & processing:
these operations do not require them to necessarily contact the HECN, but instead communicate with
geographically close neighbors.

The topology of the network states mainly which links exist and which links do not. All links selected
by the topology are valid links according to the sensor node link model (Section 7.3.1), that is, only links
that exist from the link model’s viewpoint can be selected for the topology. Nevertheless, there are links
that could exist from the link model’s viewpoint, but are not selected by the topology; the WSN operates as
though these nodes do not exist. We can find the following models for the network topology (illustrated in
Figure 2.3):

• Plain network or flat network, also known as ad-hoc network. All nodes are considered equal,
therefore all possible links (depending on the link level conditions) are set and may be used.

• Hierarchical (clustered, [92]). The nodes are organized as a two-tiered (or k-tiered) network. At the
first tier are “regular” nodes which communicate only with a single node of the higher tier. Nodes of
the second tier (and above if more tiers are defined) are cluster heads, they are connected to all the
regular nodes inside their cluster, to other cluster heads, and possibly to the HECN. Therefore, only
the feasible links that adjust to the network topology may be used.
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Last comes the routing within the network; the routing corresponds to the selection of links from the
topology in order to relay some data from a source node to its destination (HECN or some node). Routing
constitutes one of the most important issues in WSNs and receives a large deal of attention in research
(see Chapter 2), however it is out of the scope of this thesis, hence we will only give a brief review of it.
Regarding the routing models used in WSN, we can find the following:

• Shortest path ([66]). This is the basic routing algorithm, where each data packet simply traverses the
network following the shortest path from its originating node to the HECN. The concept of shortest
relies on the minimal hop distance, and generally requires a previous gradient generation by a special
broadcast from the HECN, and any other node that may be the destination recipient to some infor-
mation. Obtaining the global shortest path for every node requires the use of routing tables at the
different nodes, which can be too high a cost to be affordable, especially for large WSNs.

• Geographic Forwarding (GF, [228]). Similar to the previous, tries to look for the shortest path.
However, instead of the global hop-count to the HECN, GF relies solely on the local geographic
locations of the nodes (and the HECN). The chosen approximation used is a local greedy rule, where
at each step the relay node chooses among its neighbors the one that is closest (geographically) to the
HECN.

• Face Routing (FR), or Greedy Perimeter Stateless Routing (GPSR, [26]). In this routing, the message
is forwarded in such a way that it traverses the set of polygons defined by the WSN topology clock-
wise or counterclockwise (the faces of the polygons, hence the name). This method avoids getting
stuck in local optima (that is, nodes that have no neighbor geographically closer than themselves to
the HECN) as the greedy algorithm does, hence a combination of both has been proposed to escape
the impasse reached by the greedy.

• Energy-aware routing systems ([101]). These routing models use energy-efficient paths with the
global aim of maximizing the network lifetime. There are two approaches for this: choosing the path
with lowest energy expense, or choosing the path with minimal rate of required energy to remaining
energy. A global algorithm to choose such a path is, for example, Dijkstra’s algorithm. Again, finding
the global optimum is generally unfeasible, hence local greedy rules are often employed: choosing
the neighbor node (closes to the HECN) that requires minimum link energy, or choosing the neighbor
with minimal rate of link energy to remaining energy.

• Local energy-balancing heuristic (see Section 8.1). We propose this local routing algorithm as a
lightweight specific energy-aware routing algorithm. In it, every node detects all the neighbors that
are closer (in hop count) to the HECN. Then, all the traffic relayed through it is distributed among all
those neighbors; the distribution may be even (all neighbors receive the same data amount), or energy-
dependent (each neighbor receives an amount of data inversely proportional to its link energy). This
algorithm is aimed at balancing the energy expense among nodes, in order to reduce the bottle-
necking in the WSN.

• Specific routing algorithms. There are many routing algorithms specifically proposed for WSN, but
this subject is out of the scope of our work. A short review can be found in Section 2.5.

7.3.3 Additional considerations

Connectivity is not always an issue in the WSNL problem, it is sometimes overlooked by assuming that
RCOMM > 2 · RSENS . It was proved in [209] that, when that inequality holds, coverage implies con-
nectivity. Therefore, by assuming this ratio between the radii holds, the WSNL is reduced to ensuring the
coverage.
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Nevertheless, still communications remain one of the most important issues in WSNs, for they are
widely assumed to determine the dominant part of the energy consumption budget during the operation time
of the WSN (in contrast, the energy spent in computation is often considered to be negligible). Therefore, in
order to maximize the lifetime of the network (Section 7.4), one must optimize its communication structure.

In our problem definition, communications are definitely an issue. We employ binary coverage at node
level, assume a N-to-1 communications model over a flat network structure; the routing mechanism is the
local energy-balancing heuristic routing.

7.4 Lifetime in WSNs
The lifetime is defined as the duration of a thing’s existence or usefulness. In WSNL, as in most WSN
design problems, lifetime corresponds to the operation time of the system, and is one of the optimization
objectives.

The calculation of the lifetime of a WSN is not a simple issue. Unless the operational requirements of a
WSN are clearly stated, in which case the first moment they are not met is considered the end of the network
lifetime, the exact moment where the WSN is considered to stop operation is fuzzy. Generally, the nodes
in a WSN will gradually stop functioning due to energy depletion. There are many definitions of lifetime,
but most of them are specific to a given WSN application or problem. The most widely used definitions for
general-purpose WSNs are:

• Time To First Failure (TTFF, [35, 101, 192]). This is the simplest criterion for the calculation of
the lifetime: the moment the first node runs out of energy is considered the end of the lifetime of
the network. Under this assumption, it suffices to identify the network energy bottleneck, the node
that spends the highest energy per time unit, to calculate the network lifetime (for heterogeneous
networks, it is the node that spends the highest energy with respect to its total energy per time unit
instead).

• α-lifetime ([229]). This definition is less restrictive than the previous one; in this case, the lifetime
is the moment the network offered coverage falls below an α ratio of its initial value due to nodes
running out of energy.

• Connected network ([35]). In this definition, the lifetime lasts until the WSN becomes disconnected,
that is, there are nodes that become separated from the HECN while they still have remaining energy.

For our problem definition, we will use the TTFF criterion.

7.5 Literature review
There are many works in the literature that tackle the Wireless Sensor Network Layout problem. Interesting
surveys on coverage problems defined for WSNs, that are mostly related to our defined WSNL, and pre-
viously presented scheduling problems, can be found in [34, 226, 202]. Specifically, in [226], the authors
classify node placement problems into two categories: static and dynamic. Our work belongs to the first
category. Different works use different approaches to the problem, make different assumptions, set differ-
ent optimization objectives, and use different models for the problem, the network, and the sensor nodes.
Among the most popular approaches, we can find:

• Tackle it as a combinatorial optimization problem: select which nodes have to be activated from a set
of deployed nodes. Put in other words, define it as a scheduling problem.

• Assume that nodes follow a random deployment.
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• Define the problem as a continuous optimization problem. Select the location of the nodes to be
deployed.

• Use a regular geometric deployment.

• Rely on geometry-based computation: Voronoi diagrams and Delaunay triangulation.

Most of the early work on node deployment assume that nodes cannot be placed deterministically, but
occupy random positions instead. This line of work usually follows one of two leads: in the first, the authors
assume a given distribution function and get the resulting performance statistics from the network (usually,
expected values, and upper/lower bounds); in the second, the distribution function can be optimized (for in-
stance, a parametric function may be defined) so that the resulting network has the best possible performance
statistics. The expected coverage achieved by random node deployments with homogeneous distribution is
studied in [133]. The authors are interested by three types of coverage: binary area coverage, k-coverage,
and k-least-coverage (meaning that k or more nodes are covering the area). The study is based on the prob-
lem’s similarity with the set intersection problem, and the probabilities that a single point is single, k- or
k-least-covered are obtained. Finally, the authors indicate the procedure that should be taken to study the
same problem in the case of a non-homogeneous distribution of the nodes. In [151], the authors consider the
coverage of a straight path by randomly deployed nodes. The nodes follow a Laplacian distribution, but a
non-homogeneous one (with λ = f(x, y)); additionally, the nodes have random values in [0; 1] forRSENS .
The probability density of k-coverage for a path is obtained as a function of its length. Since no closed
forms are obtained, lower and higher bounds are derived. In [190], target tracking with randomly deployed
binary sensors is studied. The accuracy of the tracking depends on the partition made of the space by the
sensing disks, the largest the diameter of these parts, the lowest the tracking accuracy. The upper bound on
spatial resolution is derived, and found to be in the order of 1/(ρRSENS), where ρ is the node density by
area unit. By detecting at which moments the target crosses from one patch to another, the target’s speed
may be estimated with some accuracy as well. For this, the authors propose OccanTrack, an algorithm that
searches for the path with the minimum number of straight segments that cross the boundaries between
regions in an orderly fashion, with a constructive greedy process; assuming that trajectories consist in fact
of straight segments, this algorithm is proved to produce the least square error. Finally, a particle filtering
algorithm with geometric postprocessing is proposed to handle the case with quasi-unit disk coverage from
the nodes. In [35], the utility, coverage, and lifetime of a randomly deployed WSN of acoustic nodes are
optimized. The WSN has to be designed fulfilling a budget constraint, by selecting the sensor nodes that
will constitute it. Four approaches are considered to solve the problem: a full multi-objective conception,
the optimization of a single objective, optimize a scalar fitness function that combines the different objec-
tives (mono-objectivization of the problem), and optimize a single objective while imposing constraints on
the rest. An incremental algorithm that seeks Pareto-optimal solutions, as well as a continuous relaxation of
the formulation are proposed to solve the problem. Node deployment strategies for object detection in the
2D plane are proposed in [25], considering that both objects and nodes may be static or mobile; when nodes
are mobile, the movement coordination among nodes is also analyzed. The node densities for obtaining
given detection probabilities are stated. Detection probabilities for random node deployments (following a
Poisson distribution) as well as random movements are also studied. The same study is then made for finite
sensor fields, using similar deployment strategies except for the mobile objects scenario, in which nodes
are deployed to obtain perimeter coverage. The position of the nodes of a WSN is designed to maximize
the detection probability of moving objects in [213]; as a novelty, the authors optimize the node density
function (built as the sum of weighted Gaussian functions centered at the points of a regular grid), arguing
that the obtained solution is therefore independent of the size of the WSN and thus scalable. To avoid false
alarms, k-coverage is required; thus k nodes have to be within a strip of half-width RSENS drawn around
the axis made of the object path. They propose a two-phase resolution process, with an initial GA that
produces a rough guess, followed by a refining phase with a Sequential Quadratic Programming (SQP), to
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solve four different scenarios (with different configurations of the object’s movement). Finally, the authors
propose a sampling method to obtain the locations of the nodes of a WSN from a node density function.

Regular or systematic node deployment strategies have also been researched, as they present the advan-
tage of simplicity and scalability. In [20], the authors study different regular deployments to guarantee full
coverage to the sensor field, using binary coverage model. They compare square, triangular and hexago-
nal lattices and obtain the required node densities for each case depending on the values of RSENS and
RCOMM . Fault tolerance is also checked, considering the minimum number of node failures that discon-
nects the network; two systems to increase fault tolerance are proposed. The hexagonal regular lattice is
also studied in [70], where the authors propose a superposition of two lattices to form a robust network that
offers 2-coverage, and indicate the relative positions of nodes of one lattice with respect to the other. Con-
nected coverage of the 2D plane, of a planar concave sensor field, and of a set of points, by systematic node
deployments are studied in [106]. The authors assume that RSENS = RCOMM , and propose two methods.
The first covers the 2D plane and the planar concave sensor field: they cover the region with connected
rows of nodes separated by the maximum distance possible while keeping the coverage tight (there are no
uncovered holes); then they add an extra column of nodes that connects every pair of consecutive rows (that
were previously disconnected). For the point coverage, they generate a set of points C that contains said
points; at each iteration, they place a node in a point in C, remove all points covered by the placed node
from C, and add all points corresponding to the intersection points between the coverage perimeter of the
node and the coverage perimeters drawn around the points remaining in C. The process is repeated until
no points remain in C. Regular node deployments are studied for different ratios of RCOMM and RSENS
in [17]. The authors prove that square, triangular, hexagonal and rhomboidal regular deployments are all
optimal for different ratios of the sensing and communication radii (full connected coverage is always main-
tained). However, the most efficient technique (its asymptotic optimality is demonstrated) is the strip-base
regular deployment, where connected node strips are piled up to obtain 100% coverage, then an extra strip
is placed orthogonally to provide connectivity (if necessary), or two extra strips for 2-connectivity. In [231],
node placement and detection probability using boundary nodes (nodes that define a n− 1 “barrier” in a n-
dimensional space and detect whenever an object goes through the barrier) are studied. For 1-dimensional
WSNs the uniqueness of node detection sequence with respect to the path of the object is studied. For
2-dimensional WSNs, a regular triangular barrier lattice is proposed that detects the object’s location after
it traverses two frontiers. A conception of the WSNL problem that is halfway between the use of a regular
structure and the scheduling problem is considered in [217]. Two regular geometric lattices are proposed
for sensor nodes with adjustable RSENS . In the first one a coarse hexagonal lattice with no overlap among
sensing disks is formed with nodes using large RSENS , then the resulting coverage holes are filled with
nodes using small RSENS ; in the second, the same hexagonal lattice is used for nodes with large RSENS ,
but the holes are covered with two kinds of nodes, with medium and small RSENS . The energy consump-
tion is proportional to RkSENS , with k = 2 or k = 4. The analogy to scheduling is made by assuming
that the deployed WSN is very dense, and that nodes can be selected close enough to the locations of the
proposed lattices. Lifetime is the main concern in [98]. The authors first assume that nodes follow a given
schedule (modeled by a stochastic process that assigns working and sleeping probabilities to the nodes in-
dependently), and the individual node lifetime probability density function is Gaussian. Then they derive
the lifetime probability density functions (PDFs) for networks employing square and hexagonal lattices for
node deployment. The authors assume that RCOMM = RSENS .

However, our work is focused on non-systematic deterministic node placement. In this field we can
find a very large body of research knowledge, which can be mainly classified into two types, regarding
the resolution methods employed. The first group includes works that use specific methods, often referred
to as ad-hoc heuristic methods, tailored after the specifics of the problem instances at hand. A recurrent
case is the use of greedy methods. In [61], a regular grid is used to compute the detection probability of
a WSN and to place the nodes in order to obtain differentiated coverage. The authors propose two greedy
strategies for the node deployment: the first one places a node at each step in the position that maximally
reduces the accumulated probability of non-detection, the second one places a node at each step in the
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position with minimal detection probability. By adding a negative bias that depends on the distance d
between consecutive points in the grid to the computed detection probabilities, the authors correct the error
introduced by the grid model approximation of the terrain. Connectivity is not considered in this work as
an issue. Zhang and Wicker ([230]) study the positioning of sensors in a terrain from the point of view
of data transmission. They divide the terrain into cells, then analyze how N sensors should be distributed
among the cells, in a way that avoids network bottlenecks and data loss. An ad-hoc heuristic algorithm
is proposed for node distribution. In [80], the deployment of the nodes to reduce the distortion and the
energy consumption (due to transmissions) is studied. Two codification systems for the data, joint-entropy
and Slepian-Wolf, are considered. The distortion is considered to be relative to the maximum distance
between any sensor and its farthest sensed point, according to a Voronoi partition of the sensor field. The
problem is solved for one-dimensional WSNs, and an ad-hoc heuristic solution based on concentric circles
is proposed for two-dimensional networks. A sensor placement for perimeter coverage is presented in [102],
with the purpose of detecting a moving agent. The field is assumed convex, and the moving agent has to
be detected as it enters or leaves the field. Given the assumptions and supposing that nodes may only be
placed in the perimeter, a node’s position can be uniquely identified by its angular value θ with respect to
a central reference inside the field. The Position Error Bound (PEB) as a function of the angle is obtained,
and a greedy method that iteratively selects the angle whose value minimizes the PEB, by performing a
complex coordinate transform, is proposed. The study is then generalized to include weighted nodes and
multiple moving agents. An estimation of the detection of moving targets by a WSN is given in [134],
along with a node deployment strategy. Based on the analogy with the line set intersection problem, the
detection probability is obtained for a single node, and it is found to depend only on the perimeter of its
coverage. Detection probabilities for WSN with high number of sensors are difficult to compute, hence
lower and higher bounds are proposed. The proposed deployment strategy, DATE, seeks to maximize the
internode distance so as to minimize the overlap between coverage cells; it achieves so by solving the circle
packing problem. The connected version, CDATE, deploys nodes iteratively in descending RCOMM order,
ensuring that starting from the kth node, all nodes are k-connected. A set of BSs for node location purposes
has to be selected from a pool of deployed nodes in [174]. This problem is halfway between WSNL,
scheduling, and Location Discovery (LD). The basic idea is to divide the network in as many regions as
possible, where for every region pair there is one BS that can discriminate with low error probability using
the received signal from the new node. For this, the Generalised Likelihood Ratio Test (GLRT) is used
in combination with a family of PDFs to increase the robustness. When a new node appears, an iterative
pairwise comparison between regions (in ordered fashion) can state in which region that node is. The more
regions one can define, the smaller each region is, hence the smaller the uncertainty in the node’s assigned
location. Lifetime is also the main concern in [40], but instead of raw lifetime, they study the lifetime per
node, that is, the ratio between the network’s lifetime and the number of nodes in the network. They restrict
the study to one dimensional WSNs where the HECN is located at the top left, and the transmissions are
multihop, with every node communicating strictly with its immediate neighbors. The energy consumption
takes into account the sensing energy, the message reception energy, the transmission constant and distance
dependent energy (which depends on the distance d in the form of dλ, 2 ≤ λ ≤ 4). The authors propose a
greedy algorithm for node placement along the WSN axis, and from it derive the optimal number of nodes
and their positions.

The second group includes the works that use general-purpose flexible optimization methods, namely
metaheuristics. This body of research contains a high number of publications, among which we select
the ones that tackle problems resembling our WSNL problem. Jourdan and de Weck solved an instance of
WSNL using a multi-objective genetic algorithm in [101]. In their formulation a fixed number of ten sensors
has to be placed in order to maximize the coverage and the lifetime of the network. Djikstra’s algorithm
is repeatedly applied to the resulting topology to determine the number of rounds that can be performed
provided each node has a predefined starting energy. Though the results obtained are encouraging, the
small size of the network and the fact the the number of nodes is fixed instead of an optimizable value leave
room for further research, as they state in their work. The NP-completeness of the WSNL problem with
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heterogeneous sensor nodes (referred to as Sensor Deployment Problem by the authors) is demonstrated
in [218], by assimilating it to the knapsack problem. The authors use a grid model of the terrain and propose
a genetic algorithm to obtain the optimal deployment to maximize the average detection probability over
the sensor field, with budget constraints on the number and types of nodes. Specific genetic crossover and
mutation operators are proposed as well. A multi-objective GA is used in [105] to obtain 3D differentiated
coverage by placingN sensors in a 3D field and selecting theRSENS values for the nodes. Both binary and
quasi unit disk coverage models are alternatively considered. The total binary coverage and the degree of
differentiated coverage achieved have to be maximized, while the total energy consumption in the network
(the energy consumption for a single node is considered to be proportional toR2

SENS) has to be minimized.
A similar problem definition, the differentiated coverage in 2D, is solved in [3] with a Tabu Search. Instead
of reducing the consumed energy, the number of nodes placed has to be minimized (the RSENS values can
no longer be selected). The TS algorithm performs K iterations, explores a neighborhood of V solutions
at each, and handles a tabu list with T elements. There are three special procedures in the TS: the initial
solution generation, the neighbor generation by addition of a node, and neighbor generation by deletion of a
node. In the first (initial solution), the solution is initially empty, then by a greedy procedure a node is placed
at each location with probability equal to degree of violation of the coverage requirements in its coverage
area, until all requirements are met. The neighbor generation by addition of a node is similar. The neighbor
generation by deletion of a node deletes each node with probability equal to the degree of fulfillment of
coverage requirement in that node’s coverage area. The proposed TS is compared against Max Min Cov
and Max Avg Aco. A GA-based memetic algorithm is proposed to solve the dynamic design of WSNs
in [75]. In this problem formulation, the WSN, which operates by rounds, consists of a regular grid-
deployed nodes; for each round, every node must be assigned one state out of four possibilities: cluster
head, high energy operation, low energy operation, and non active. A set of objectives including active
node density, energy consumption, and connectivity, are aggregated into a single weighted fitness function,
and a mono-objective approach is adopted. An initial GA solution method is improved be adding a local
search process that operates on a threshold basis: at each round, every node state has a corresponding
remaining battery threshold; nodes that do not surpass the threshold cannot be in the corresponding state.
The deployment and power assignment problem is solved using a multi-objective evolutionary algorithm
in [120]. The authors propose a decomposition of the problem into several scalar problems in which the
objectives, coverage (sensing disk model) and lifetime (taken as the TTFF), are merged with different
weights, and reconstruct the Pareto set from the solutions to the different problems. Specific operators for
mutation and crossover are proposed that operate in a different manner depending on the current objective
weighting, to guide the search process towards the specific region of interest. The technique is shown to
outperform NSGA-II. A GA to deploy sensors on a planar grid with obstacles and differentiated coverage
is proposed in [223]. The authors adopt an indirect coding scheme, where every solution corresponds to a
permutation of all the grid positions; the WSN is constructed by visiting the grid points in the specified order
and adding a node in each visited point if it does not meet the coverage requirement. Since coverage levels
are guaranteed (for every feasible solution), the optimization objective becomes the number of sensors. A
multi-objective approach to the WSN layout, where the coverage and lifetime are the opposing objectives,
and the number of nodes is fixed, is adopted in [177]; a multi-objective PSO algorithm (MOPSO) is used
to solve this problem. The authors use a quasi-unit disk coverage model (they refer it as stochastic), a
binary communication link model, and the TTFF criterion for the lifetime. In their problem definition,
the energy spent at node level depends uniquely on the number of data packets sent by that node, and
the routing is performed following Dijkstra’s algorithm with link weights inversely proportional to the end
node remaining energy. A MOEA, namely the IBEA, is used to solve a multi-objective sensor placement
problem where the optimization objectives are the cost (measured by the number of sensor nodes) and the
transmission reliability (measured by the expected transmission failure rate) in [215]. The authors employ
a geographic crossover operator, and two types of mutation: a Voronoi mutation operator that either adds or
removes a number of nodes according to the properties of the Voronoi graph, and a Gaussian mutation that
moves nodes.
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Other problems with related approaches can be found for WSNs. While not being exactly WSNL, these
problems often share several issues with it (such as sought objectives). The optimal location of the BS to
optimize the lifetime of a given deployed WSN is studied in [188]. The communication radius is considered
unbounded (RCOMM = ∞), thus all links exist. The routing problem can be stated as a set of equations;
at each node there are two (in)equations: the sum of incoming information plus the generated information
equals the sum of outgoing information, and the energy consumption rate times the lifetime does not surpass
the available energy; since the system can be solved, the optimal routing problem is considered as solved.
The authors remark that, since nodes have fixed locations, the optimal routing strategy depends solely on
the position of the BS, and the resulting transmission power required for any node to communicate with
it. The proposed solution has each node define H concentric circles corresponding to its discretized levels
of transmission power such that the ratio between two consecutive levels is (1 + ε); the intersection of all
circles partitions the space into patches. The optimal routing is solved for each patch assuming the highest
value of transmitted power corresponding to that path for every node, the best value is kept, and it is shown
to be within ε of the optimum. Additionally, a modified optimal routing is proposed for the case using
RCOMM , and an enumerative search is used to solve the case with multiple BSs. A similar problem, the
optimal placement of gateways in a deployed WSN, is solved in [216]. The gateways are chosen among the
nodes deployed. The optimization objectives are the latency, which is the maximum number of hops from
any node to its closest gateway. The problem is defined in two ways: minimize the number of gateways
for a given latency, or minimize the latency for a given number of gateways. Lower bounds are derived for
the latency. The authors propose two resolution methods: an ILP formulation, and a greedy algorithm that
successively eliminates candidates from the list. A complementary problem to WSNL is solved in [153]:
finding the minimal exposure path. The minimal exposure path is interesting since it corresponds to the
worst case scenario evaluation of the coverage. This work is later complemented in [206] by adding the
maximal exposure path problem. These problems amount to finding the path between two points S and
F such that the exposure of the path is minimal (cf. maximal). The exposure is defined as a value that
decreases with the distance d from a node as 1/dk, where 2 ≤ k ≤ 4 is an attenuation factor; the exposure
of a path corresponds to the integration of the exposure along that path. The optimal solution for a single
node is found, in polar coordinates with respect to the node, to be ρ(θ) = a exp(θ · ln(b/a)/α), where a and
b are the distances between the node and S, F , respectively. For multiple nodes, a grid approximation is
used in combination with a centralized routing technique (similar to Dijkstra’s). For the maximal exposure
path, the path length is bounded, and four heuristic methods are proposed.

There are some big trends that can be identified when considering the resolution methodologies for
WSNL. Letting aside random and regular deployments, which either do not address the problem (random
deployments) or rely on a very simple problem model (regular deployments), we find two types of tech-
nique. The first type regroups specific techniques to solve a particular type of WSNL problem, also referred
to as ad-hoc heuristics. In this group we have, among others, several greedy-like techniques; these tech-
niques are very scenario-specific and thus hard to extrapolate to a different scenario, but leverage on problem
knowledge and show high performances. The second type contains high-level optimization techniques, i.e.,
metaheuristic algorithms. These techniques are robust and versatile and can be used to solve a wide range
of problem instances; however, they lack deep knowledge of the problem features that could help enhanc-
ing their performance (the use of problem-specific knowledge is restricted to just the use of special genetic
operators or different fitness functions in some works). Our contribution is to propose a combined use of
versatile metaheuristic solvers with a problem-specific heuristic to enhance their performances.

7.6 Conclusions
In this chapter we have presented and described the Wireless Sensor Network Layout optimization problem,
also known as Sensor Node Deployment problem, a NP-hard problem that is widely considered as one of
the most significant problems in the domain of WSNs. This problem amounts to deciding the number and
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geographic positions of a set of nodes in order to produce a WSN, with the aim of maximizing the coverage
and lifetime of the network, while minimizing the network cost (i.e., the number of nodes).

We have presented the most common models and assumptions adopted for coverage: at sensor node
level (binary, probabilistic, and quasi-unit disk models), and at network level (point coverage, area coverage,
k-coverage, perimeter coverage, differentiated, path coverage, multi-nature coverage), and the methods for
the computation of the coverage (grid, Voronoi-based, disk-intersection based). For the communications, we
have described the models at sensor node level (unit disk, probabilistic and quasi-unit disk), and at network
level (communications model, hierarchical structure, routing models). We have discussed the lifetime and
presented the most common models for its calculation. Since communications energy is assumed to be the
dominant factor in the WSN energy budget, the focus when maximizing the lifetime will be on the energy
consumed for communications.

Finally, we have provided an extensive literature review regarding the WSNL problem. We have noticed
four principal types of approach to node deployment: random deployments, regular deployments, ad-hoc
heuristic deployment methods (frequently greedy algorithms), and metaheuristic algorithms for deployment
optimization. Our proposal is to combine the two latter methods: a general optimization framework (meta-
heuristic) enhanced by the use of a more problem-specific operator (heuristic). This will be presented in the
next Chapter.
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Chapter 8

Resolution Methodology and Results for
Wireless Sensor Network Layout

In the previous chapter we introduced the Wireless Sensor Network Layout optimization (WSNL) as an op-
timization problem, described the main models used to tackle it, and reviewed the existing literature. In this
chapter we address the approach adopted to solve the WSNL problem, propose a novel local improvement
operator for its resolution, and discuss the results obtained.

We have adopted a constrained multi-objective approach for this problem. We have selected four state-
of-the-art multi-objective optimization algorithms to solve the problem and to test the effectiveness of the
proposed local improvement operator: three of them are population based techniques (NSGA-II, SPEA2
and MOCell), and the fourth is a trajectory based technique (PAES).

We initially define the formulation of WSNL, describe the models employed for the sensor node, sensor
network and communications structure. We present the representations used for the solutions, and the
pool of genetic operators that are required by the algorithms. Later, we present and describe the proposed
operator, PACO. This operator’s aim is to improve the “quality” of a candidate solution by searching for
and fixing local inefficiencies in the network due to proximity of nodes. A formal definition is provided.
Finally, we present the experimental setup including the different problem instances. We have defined a
basic instance to perform a wide test of the operator’s performance under different algorithms, different
genetic operators, and different parametric configurations. In addition, we have defined two extra instances
of larger size in order to test the operator’s consistency for increasingly complex problem instances, and the
scalability of the proposed techniques.

8.1 Problem formulation and models
The definition of the WSNL problem was already presented in Section 7.1; we expand and complete it in
this section. In our formulation of the WSNL problem, coverage is treated as a constraint, with full coverage
being required. The optimization objectives are then the cost of the network (which equals the number of
nodes deployed and has to be minimized), and the lifetime of the network (which has to be maximized).
The lifetime of the network will be defined as the Time to First Failure, as described in Section 7.4.

For the sensor nodes, we use binary coverage model, and unit disk model for the links, with respective
radii valuesRSENS andRCOMM . We are interested in area coverage at network level. In our formulation,
a discrete grid model is used for the terrain, where each point in the grid represents one square meter of the
terrain; the HECN is assumed to be located at the center of the terrain.

The formal definition of the problem is as follows. Let ~x be a vector of nodes xi where each node is
a 2D coordinate representing the node location; the length of ~x is non-fixed, and its nodes have to provide

121



122CHAPTER 8. RESOLUTION METHODOLOGY AND RESULTS FOR WIRELESS SENSOR NETWORK LAYOUT

full sensing coverage C(~x) = 100 (Eq. 8.1). The number of sensor nodes and their locations have to be
chosen in a way that minimizes the cost of the network which, in this case, is calculated as the number of
deployed sensor nodes (Eq. 8.2), and the energy spent in communications by the most loaded node in the
network (Eq. 8.3). The load in the most loaded node of the network is minimized since this node constitutes
the bottleneck of the network with respect to the network lifetime; the most loaded node will be the first
node to run out of energy, hence determining the network lifetime according to the TTFF criterion (see
Section 7.4). The two objectives are opposed, since the higher the number of nodes, the lower the share of
retransmissions.

C(~x) = 100 ·
(
CoveredPoints(~x)

TotalPoints

)
, (8.1)

Cost(~x) = Length(~x), (8.2)

Energy(~x) = Max
(
{EnergyConsumed(xi)}Cost(~x)i=1

)
. (8.3)

In order to determine the energy spent in communications by any node of the WSN, the number of
transmissions performed is calculated. The WSN considered operates by rounds: in a round every node
collects the data from its measurements and sends it to the HECN encapsulated in a packet; between rounds
the nodes are in a low-energy state. It is assumed that the main source of energy consumption is packet
transmission; besides, packet (re)transmission is the sole energy-consuming process of the WSN that is
directly affected by node deployment (and its resulting topology), and thus susceptible of being optimized
in order to extend network lifetime. Therefore, all sources of energy consumption are neglected except
packet transmissions in this work.

To calculate the energy spent by transmissions the simple wave propagation model shown in Eq. 8.4 is
applied for the power required per data packet to be transmitted over from node xi to node xj . Assuming
free-space path loss sets α = 2. Since the β constant value does not affect the optimization problem results,
it will be neglected. The total energy consumed by a node xi is shown in Eq. 8.5, where β = 1 and α = 2.
The function Sent(a, b) indicates the number of data packets sent from node a to node b (see Eq. 8.6).

LinkPower(xi, xj) = β · ||xi − xj ||α, (8.4)

EnergyConsumed(xi) =
∑

xj∈neighbors(xi)

Sent(xi, xj) · ||xi − xj ||2. (8.5)

A simple load balancing routing algorithm is considered: every node sends its (re)transmitted informa-
tion packets to the HECN itself if it is within communication range, or distributes them among all neighbors
that are closer (in hop count) to the HECN. When there are several neighbors closer to the HECN, each of
them receives a traffic share proportional to the inverse of the link power (see equations 8.4 and 8.7). Every
node has a traffic (number of packets to send) equal to the packets received from nodes farther from the
HECN, and additionnally produces one data packet per round (corresponding to its own sensed data) (see
Eq. 8.8).

Sent(xi, xj) = Traffic(xi) · ProbSend(xi, xj)), (8.6)

ProbSend(xi, xj)) =

1
||xi−xj ||2∑
xk

1
||xi−xk||2

, (8.7)

Traffic(xi) = 1 +
∑
xj

Sent(xj , xi). (8.8)
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For this problem, a constrained multi-objective approach is adopted, by defining the objective functions
f1 and f2, as follows:

f1(~x) = Cost(~x), (8.9)
f2(~x) = Energy(~x), (8.10)

subject to the constraint imposed be the penalty function P :

P (~x) = 100− C(~x). (8.11)

The constraint handling using a penalty function is the same that was used in the multi-objective version
of the RND problem (Section 6.1).

8.2 Representation and operators
In this section we describe the representation used for the candidate solutions for the WSNL problem, and
the way the are manipulated by the different genetic operators used with these solutions.

8.2.1 Solution encoding
A solution to the WSNL problem is a set of variable cardinality that contains the sensor nodes that form
the network. A fixed length array of two-level genes representation is used for the solutions, similar to the
representation of parameterized antennae of RND (Section 6.2.1). Each position of the solution corresponds
to a potential sensor node; the first level is a binary value that marks the node as deployed or undeployed; if
the network is deployed, then, the second level contains its 2D coordinate values1. Figure 8.1 illustrates the
solution encoding used for WSNL; the length N of the solution is the maximum number of sensor nodes in
the network.

Deployed (Y/N) Deployed (Y/N) Deployed (Y/N) Deployed (Y/N)

Coordinates (x,y) Coordinates (x,y) Coordinates (x,y) Coordinates (x,y)

Length N

Figure 8.1: WSNL candidate solution encoding.

8.2.2 Operators
The algorithms chosen to solve WSNL are NSGA-II, SPEA2, MOCell and PAES; hence, mutation and
crossover are the genetic operators that need to be defined for this problem. In WSNL, unlike RND, there is
only one solution encoding. Nevertheless, there are still two possibilities selected for each of the operators:
typical generic operators found in the literature (default operators), and geographic-aware operators, that

1Since the terrain is modeled by a point grid, the coordinates are evaluated as integer values. Note that this does not keep the
algorithm from using real values for the coordinates anyways: when the evaluation of the solution is done, the coordinate values are
rounded to the nearest integer value.
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should be more problem-specific. Our intuition is that, due to the intrinsic geographic nature of the problem
(with the use of geodesic coordinates), an operator that makes natural use of geographic properties should
offer better performance than an operator that does not take geography into account.

Mutation operators

The mutation operators are used in all the techniques: NSGA-II, PAES, SPEA2, and MOCell. Two different
mutation operators are used: a fully random mutation and a geographic mutation which is based on the
polynomial mutation defined in [58]. Both mutation operators modify each potential node (which can either
be deployed or not) of a given solution with some probability (the mutation probability, pm); different nodes
are affected by the mutation independently. When a node is chosen to be modified, the procedure differs
depending on the mutation operator that is being used. Both operators first check whether the node is
deployed or not. If not, they set it as deployed, and place it in a randomly generated location. Otherwise, it
is either removed (set as undeployed), or repositioned with equal probability, as follows:

• Random mutation: The node is moved to any terrain point with uniformly distributed probability.

• Geographic mutation: The node is moved to a point in the surrounding area of the node’s current
position. This bounded movement is computed by using the polynomial mutation operator separately
on the two coordinates of the node.

Figure 8.2 displays the global procedures of the two mutation operators used for WSNL.

Crossover operators

The crossover operators are used in the population based techniques: NSGA-II, SPEA2, and MOCell. Two
crossover operators are used: SBX ([58]) crossover and a geographic crossover ([218]). Whereas the former
is the most widely applied operator in the evolutionary multi-objective community, the latter is engineered
to capture the particularities of the WSN problem. In a crossover, two solutions called parents produce one
or more new solutions called offspring by exchanging information with some probability (the crossover
probability, pc).

The main issue when adapting the SBX crossover to the solution encoding presented in Section 8.2.1
concerns the management of deployed vs. non-deployed sensors. Let p1 and p2 be the individuals to be
crossed and let sp1i and sp2i be the sensors at position i of each individual, at which SBX is operating. Let
o1 and o2 also be the two generated offspring and so1i and so2i be the corresponding sensors at the same
position (i). The following cases may arise:

• Neither sp1i nor sp2i is deployed: neither so1i nor so2i are deployed either.

• Either sp1i or sp2i is deployed, but not both: the deployed sensor in the parent (sp1i or sp2i ) is indepen-
dently copied to each offspring with a chance of 50%.

• Both sp1i and sp2i are deployed: the coordinates of so1i and so2i are computed by using the coordinates
of sp1i and sp2i and the standard SBX operations. The distribution index is set to ηc = 20, a widely
used value in the literature.

The other crossover operator used is the geographic crossover, called RGX (Rectangular Geographic
Crossover, [218]). In it, nodes are exchanged between two solutions based on their geographic locations.
A rectangular-shaped area is defined, and all nodes belonging to that area are exchanged between the two
solutions (see Figure 8.3).



8.3. THE PACO OPERATOR 125

(a) Random (b) Geographic

Figure 8.2: Mutation operators for WSNL: (a) random mutation, (b) geographic mutation.

8.3 The PACO operator
We propose a new operator for local improvement in a WSN conceived to be integrated into an optimization
algorithm: the “Proximity Avoidance Coverage-preserving Operator” (PACO). The basis of its functioning
is to identify locally suboptimal configurations and try to fix them. This section presents and describes in
depth the operator.

8.3.1 Operator description
We understand that, for the purpose of an efficient WSN deployment, having nodes too close to one another
produces inefficiency due to two reasons:

• An extra node is deployed (increased cost) that provides little-to-no coverage improvement (since
most of its sensing area is already covered by the other node).

• An extra information packet (reduced energy efficiency) containing the extra node’s data has to be
relayed.

Thus, the purpose of PACO is to replace the pair of nodes that are close to one another by a single node,
provided that this single node can safely replace them:
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Figure 8.3: Example rectangular geographic crossover. All nodes in the extracted rectangles are exchanged
between solutions.

• The node guarantees that the area covered by the two initial nodes is still covered.

• The connectivity of the WSN is maintained.

Thus PACO has to find an “equivalent deployment area” for the node pair, such that any node placed
inside that area is capable of maintaining both the coverage and connectivity of the network after the pair
has been removed. This area is found as the intersection of two zones: the “coverage preserving zone”,
which is the area where a single node guarantees coverage, and the “connectivity preserving zone”, which
is the area where a single node maintains the network connectivity.

It has to be pointed out that node position and covered area points are subject to a reciprocity property.
If a sensor node covers a disk-shaped area around it, then any given terrain point can be covered by a sensor
node placed anywhere inside that same disk-shaped area around it. This property shall be used to define a
reciprocal WSN whose coverage will identify the coverage equivalent area. The same property holds for
the connectivity.

The operation of PACO can be summed up in the following steps:

1. Find a pair of close nodes.

2. Obtain the “coverage preserving zone” for that pair.

3. Obtain the “connectivity preserving zone” for that pair.

4. Obtain the “equivalent deployment area” as the intersection of the two zones.

5. If the “equivalent deployment area” is not empty, replace the chosen pair of nodes by a single node
in any location of the “equivalent deployment area”.

The general PACO procedure is an iterative procedure (Algorithm 9). The steps above are performed for
each pair of close nodes found in the WSN. We now explain them in closer detail.
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(b) Node pair selected by PACO

Figure 8.4: Example operation of PACO: Selection of close neighbors.

Selection of the pair of close nodes

The PACO operator first explores the whole WSN in search for all pairs of close nodes; this can be consid-
ered as a preliminary step. A threshold parameter defines which pairs of nodes are considered to be close:
all nodes na, nb, whose Euclidean distance is below it. This threshold value should typically be some frac-
tion of RSENS . In the rest of this section, the behavior of the PACO operator is illustrated with an example
case: consider Figure 8.4 as the test case WSN where the operator is applied. Figure 8.4a shows the WSN
with both its coverage and topology, and Figure 8.4b highlights the pair of -close- nodes that are selected
by the operator, and their coverage. This network and selected pair of nodes will be the basis for all the
examples below.

Coverage preserving zone

The first proper step of PACO’s operation, is identifying the “coverage preserving zone”. Figure 8.5 illus-
trates this. The coverage of the WSN is first displayed without the two chosen nodes (top left) in order
to identify the area that is exclusively covered by the selected pair (top right) (note that the connectivity
constraint is not taken into account here). A reciprocal WSN is then created with a node in every terrain
point of that area, and the coverage of this reciprocal network is computed (bottom left); the area that is
covered by all the nodes in the reciprocal WSN (bottom right) is the “coverage preserving zone”. Thus, a
single node placed in this zone can effectively replace the selected pair in terms of coverage.

Connectivity preserving zone

Regarding connectivity, the node has to fulfill the following constraints:

• All children nodes of the two nodes removed must be within communication range of the placed
node.

• At least one of the parent nodes must be within communicating range of the placed node.

To locate the “connectivity preserving zone” the same principle as before is applied: each child and
each parent defines a disk-shaped connectivity zone around itself (with radius RCOMM ). Figure 8.6 il-
lustrates an example case. The intersection or overlapping region (if any) of all the zones defined by the
children guarantees that a single node will keep all the children connected (top right). The union of all the
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(d) Coverage preserving zone

Figure 8.5: Example operation of PACO: Coverage preserving zone.

zones defined by the parent nodes guarantees that at least one parent is connected (bottom left). The final
“connectivity preserving zone” is the intersection of the children and parent zones (bottom right).

Equivalent deployment area

Once both the coverage and connectivity preserving zones are determined (figures 8.5 and 8.6, respectively),
the equivalent deployment area is obtained by intersecting them (see Figure 8.7). If no overlap is found
between the two previous zones, the two removed nodes must be restored and the operator moves to the
next pair of nodes. When there is an overlap zone (as in Figure 8.7), then a single node is placed inside it
that effectively replaces the two initially chosen nodes.

8.3.2 PACO formal specification

A formal description of PACO’s operation is as follows. Let T be the set of terrain points p (the discretized
terrain grid), and let WSN be the points where a sensor node is deployed (WSN ⊆ T ). Assume defined
the functions converage(), that for each node n ∈ WSN returns the set of points in T covered by that
node, parentNodes(), that for each node n ∈WSN returns the set of nodes inWSN that are parent nodes
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Figure 8.6: Example operation of PACO: Connectivity preserving zone.

of n, and childNodes(), that for each node n ∈ WSN returns the set of nodes in WSN that are children
nodes of n. Select a pair of nodes na and nb such that na, nb ∈WSN and ||na − nb|| < threshold.

• Step 1. Define E as the set of points covered only by {na, nb}, i.e., p ∈ E ≡ p ∈ coverage(na) ∪
coverage(nb); ∀n ∈ WSN,n 6= na, nb, p /∈ ∪coverage(n). Find the set of points CovEq that
guarantee coverage to the set E: n ∈ CovEq ≡ ∀p ∈ T : p ∈ E → p ∈ coverage(n).

• Step 2. Define the sets P and C such that: P = parentNodes(na) ∪ parentNodes(nb) and
C = childNodes(na) ∪ childNodes(nb). Then find the set ConEq that maintains the connec-
tivity of the network: n ∈ ConEq ≡ ∀nc ∈ WSN : nc ∈ C → nc ∈ childNodes(n),
∃np ∈ P : np ∈ parentNodes(n).

• Step 3. Define CovConEq as the set of points that guarantee both coverage and connectivity:
CovConEq = CovEq ∩ ConEq.

Then, as long as CovConEq 6= ∅, a single sensor placed in any n ∈ CovConEq may replace the pair
{na, nb} without loss of coverage or connectivity.
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Figure 8.7: Example operation of PACO: Equivalent deployment area obtained by intersection of coverage
and connectivity preserving zones.

Algorithm 9 Pseudocode for PACO.

1: input: a WSN layout wsn = n1n2 . . . nk, ni ∈WSN , a threshold value th
2: wsnBackup← wsn // Store a copy of the current layout
3: stop← false
4: for All (na, nb)← NodePair(wsn) do
5: if NearbyNodes(na,nb, th) then
6: CovEq← ComputeCovEq(wsn,na,nb) // Step 1
7: ConEq← ComputeConEq(wsn,na,nb) // Step 2
8: CovConEq ← CovEq ∩ ConEq // Step 3
9: if CovConEq 6= ∅ then

10: np ← ChooseNode(wsn,CovConEq)
11: wsn← Remove(wsn,na,nb)
12: wsn← Deploy(wsn,np)
13: Evaluate(wsn)
14: end if
15: end if
16: end for
17: if NodesDeployed(wsn) < NodesDeployed(wsnBackup) &

EnergyConsumption(wsn) < EnergyConsumption(wsnBackup) then
18: return wsn // wsn dominates wsnBackup
19: else
20: return wsnBackup
21: end if
22: output: a possibly improved WSN layout
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8.4 Problem instances
We define a basic instance for the WSNL problem as follows:

• Terrain: square grid of 250× 250m2.

• HECN located at the center of the terrain.

• Maximum number of sensor nodes: 250.

• Initial node deployment probability 50%, uniform distribution.

• RSENS = 30m.

• RCOMM = 30m.

• Wave propagation model: P = d2, where P is the required power to send, d is the distance traveled
by the signal.

• We neglect the energy consumption associated with sensing, processing and signal reception.

For this instance, full coverage is required (100%).

8.5 Experiments
We present in this section the results obtained in the experimental study conducted for the WSNL problem.
We have used four multi-objective algorithms as the test techniques to solve the problem: NSGA-II, PAES,
SPEA2, and MOCell (their descriptions can be found in Chapter 4). The parametric configurations, obtained
empirically, are shown in Table 8.1.

Table 8.1: Parametric configuration of the optimization algorithms used in WSNL.

Algorithm NSGA-II
population 100

selection binary tournament

crossover
{

SBX
geographic

mutation
{

random
geographic

replacement ranking and crowding

Algorithm PAES
archive 100

mutation
{

random
geographic

replacement ranking and crowding

Algorithm SPEA2
population 100

selection binary tournament

crossover
{

SBX
geographic

mutation
{

random
geographic

replacement ranking system

Algorithm MOCell
population 100

selection
binary tournament in
cellular neighborhood

crossover
{

SBX
geographic

mutation
{

random
geographic

replacement
ranking and crowding in
cellular neighborhood

The internal parameters of the PACO operator were also empirically tuned, with the resulting configu-
ration obtained as the best performing:
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• Probability of use: 100%.

• Threshold: 30m.

For each problem instance and algorithm, the stopping condition of an execution is 1, 000, 000 solution
evaluations.

8.5.1 Results for the basic instance
The basic instance defined above serves as the test bench to assess the effectiveness of the PACO improve-
ment operator in various scenarios. Therefore, we test the four algorithms with different genetic operators
and parametric configurations, each of which both using PACO, and not using it. With this, we will be able
to assess the effectiveness of the operator, its robustness facing different optimization techniques, and the
degree of improvement that can be expected by using it.

For commodity, the results of all the executions corresponding to the basic problem instance are dis-
played in Table 8.2. We show the median and inter-quartile range of the hypervolume indicator obtained in
the 30 executions performed for each algorithm.

Effectiveness of the PACO operator

The HV values displayed in Table 8.2 vary from 0.0 to 0.768 (they are normalized to unity). The con-
figurations integrating PACO produce higher HV than the same configurations without PACO in 112 of
132 test configurations, that is, PACO produces an improved efficiency in 84.85% of the cases. However,
some of these test configurations produce poor performances in either case, thus their results are not very
meaningful. If we restrict the comparison to the high-performing configurations (the best half), then PACO
yields improved performance in 98.48% of the cases. Therefore, PACO is a robust technique, and is best
performing when used in combination with a high performing algorithmic configuration.

Comparison of the genetic operators and parametric configurations

Regarding the mutation operator, polynomial mutation clearly outperforms random mutation: in all of the
132 test configurations, the HV obtained with polynomial mutation is always higher than that of random
mutation (100% improved efficiency). For the crossover operator, RGX produces the best results: in the
108 test configurations (we exclude the ones where the crossover is not involved), RGX always obtained
higher HV than SBX (again 100% improved efficiency). Furthermore, for the three algorithms including
crossover (NSGA-II, SPEA2 and MOCell), the best configuration with crossover outperforms 100% of the
time the one without crossover (i.e., with pc = 0).

Regarding the parametric configuration, the dominant factor seems to be the mutation probability, with
the highest HV values obtained for pm = 1.0. For the crossover, the probability does not have such a big
influence, but the best results are generally obtained with pc = 0.5.

Due to the high dimensionality of the scenarios considered, we carry the statistical analysis only among
the best parametric configurations. The statistical analysis results prove that the algorithmic configurations
“SBX + randomMutation + PACO/noPACO” and “RGX + randomMutation + noPACO” are statistically
similar, while being statistically worse than the rest. On the other side, the configuration “RGX + polyno-
mialMutation + PACO” is statistically better than the rest.

Comparison of the algorithms

Finally, when we compare the algorithms, the results are less evident. MOCell obtains the highest HV
values (the 10 best performing parametric configurations obtain their highest HV values with MOCell), but
is quite sensitive to the operator configuration and is outperformed by NSGA-II in the big picture (of the
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84 test configurations, NSGA-II outperforms MOCell in 59, hence in 70.24%). SPEA2 and PAES produce
lower HV values than NSGA-II or MOCell. In the statistical tests, the best configuration of MOCell is
the one that most often outperforms any other configuration; as a matter of fact, for any combination of
mutation, crossover and PACO operator, MOCell with pm = 1.0 and pc = 0.5 systematically obtains the
highest number of wins against other algorithms and/or configurations, or is at least tied for highest number
of wins.

Expected front improvement with PACO

In order to show deeper insight on the improvement that can be expected by using PACO within an op-
timization algorithm, we display the 50%-attainment surfaces obtained by the best configuration of each
algorithm both with PACO and without PACO in Figure 8.8. As we can see in figures 8.8b and 8.8c, for
both SPEA2 and PAES the attainment surfaces of PACO completely dominate the ones without PACO.
For NSGA-II (Figure 8.8a) the region where the number of nodes is below 70 is noticeably dominated by
PACO, whereas the one where number of nodes is n > 70 seems indistinguishable between PACO and no
PACO. Finally, for MOCell (Figure 8.8d) the attainment surface of PACO when n < 80 clearly dominates
the one without PACO, when 80 < n < 88 both attainment surfaces are equivalent, and when n > 88 the
configuration with PACO does not find any point and is dominated by the one without PACO; neverthe-
less, this last region contains only 3 points while the region n < 80 contains 20, and besides the energy
consumption gain is only marginal, therefore the configuration using PACO globally outperforms the one
without PACO.

From the problem’s perspective, we can say that for any given number of nodes, the algorithmic config-
uration using PACO can find a solution that achieves full terrain coverage with lower energy consumption
than the same algorithm without PACO, and the differences become more clear as the number of nodes is
reduced.

8.5.2 Sensibility to node density

Our next step is to test the sensibility of PACO towards the node density in the WSN. For this, we modify
the initial node deployment probability X . Besides the predefined probability of X = 50% (for the basic
problem instance), we test the values X = 75% and X = 100%. The experiment is performed with the
four optimization algorithms with a standard parametric configuration, stopping after evaluating 1, 000, 000
solutions. The results of this experiment (HV median and IQR) are shown in Table 8.3.

Table 8.3: Influence of the initial conditions on PACO: HV. Median and IQR

X
NSGAII SPEA2 PAES MOCell

no PACO PACO no PACO PACO no PACO PACO no PACO PACO
50% 0.6060.059 0.6280.068 0.5590.070 0.5980.060 0.5680.086 0.6550.057 0.5590.056 0.5930.040
75% 0.6080.044 0.6160.059 0.5570.043 0.5960.050 0.5680.052 0.6100.042 0.5440.057 0.6100.065

100% 0.5930.065 0.6130.058 0.5380.039 0.6000.031 0.5540.065 0.6050.065 0.5510.059 0.6010.045

Again the results show clearly the benefits of using PACO: in the twelve scenarios consisting of com-
bining algorithm and starting node density, the configuration using PACO outperforms the one without it.
Furthermore, with the exception of PAES, the results obtained with PACO-equipped algorithms are fairly
stable over the range of initial node densities, while the configurations without PACO always experience
clear performance degradations, therefore demonstrating the robustness of the operator for varying node
densities.
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Figure 8.8: 50%-attainment surfaces of the optimization algorithms with and without PACO. The global
non-dominated fronts are represented for comparison, labeled as ’PF’.

8.5.3 Scalability study

In this section, we conduct a set of experiments to explore the scalability properties of the PACO operator,
when the instances solved have increasing dimension. For this, in addition to the basic problem instance
(defined in Section 8.4), we define the following two problem instances:

• Square terrain: 500× 500m2, maximum number of nodes: 1, 000.

• Square terrain: 750× 750m2, maximum number of nodes: 2, 000.

The rest of features (corresponding to the node and communications models) are left unchanged. These two
instances shall be named “instance 500” and “instance 750” for brevity.

We run the four optimization techniques under their best configurations found for the basic problem
instance (polynomial mutation with pm = 1.0, RGX crossover with pc = 0.5) to solve the two newly
defined instances. For each scenario, both the version with PACO and the version without PACO are run.
Table 8.4 shows the HV median and interquartile values obtained for the set of experiments.

Our first remark is that PACO produces greater gains in performance for larger instances: in the instance
250, the HV value increases by less than 10%, in the instance 500 by at least 29%, and in the instance 750
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Table 8.4: Scalability properties of the different algorithmic instances (HV. Median and IQR)

Instance NSGAII SPEA2 PAES MOCell
no PACO PACO no PACO PACO no PACO PACO no PACO PACO

250 0.6770.041 0.7310.051 0.6260.036 0.6620.033 0.5350.060 0.5620.057 0.7240.043 0.7680.042
500 0.3920.063 0.5320.114 0.2870.066 0.4650.070 0.3800.100 0.5260.108 0.4830.088 0.6240.065
750 0.0000.000 0.2320.131 0.0000.000 0.1050.147 0.2880.163 0.6020.079 0.0230.060 0.4310.140

by more than 109%. Regarding the algorithms, the population-based techniques (NSGA-II, SPEA2, and
MOCell) suffer HV degradation when the instance grows, MOCell still outperforming the other two. PAES,
on the other side, seems unaffected; in the instance 750, PAES is the best performing technique. There are
two reasons: first, as the instance grows so does the spreadth of the nondominated front, hence a larger
population should be used; second, the difference between solutions in the front is also larger, which can
make the crossover operator too disruptive (crossing two very different solutions will not likely improve
either of them).

8.5.4 Solutions obtained for the WSNL problem
We have relied so far on quality estimators as the tools to establish comparisons among different techniques
and configurations, and to assess the effectiveness of the PACO operator. However useful these tools are
for the aforementioned purposes, they lack to provide insight on what solutions are actually being obtained
for the problems at hand. Therefore, we will briefly discuss the solutions obtained for the WSNL problem
using the optimization techniques with the PACO operator in this section.

Figure 8.9 shows the solutions at the two opposite ends of the non-dominated front generated by MOCell
equipped with PACO: Figure 8.9a plots the solution with the minimum number of nodes, and Figure 8.9b
plots the solution with larger lifetime.
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Figure 8.9: Best performing solutions produced by MOCell using PACO for the basic instance: 250 ×
250m2

We can observe that in the solution displayed in Figure 8.9a, the network is sparse, with the nodes
being deployed with a seemingly homogeneous density throughout the terrain field; this is expected, since
if one tries to minimize the number of nodes to produce complete coverage, the nodes will be as far away
from one another as possible. Meanwhile, in the solution displayed in Figure 8.9b, there is a high node
density in the proximity of the HECN (towards the geographic center of the terrain), while the nodes at



8.5. EXPERIMENTS 137

the periphery have a much lower density. This also matches intuition, since according to our definition of
lifetime (TTFF), the lifetime value is determined by the bottleneck (i.e., the node that consumes the most
energy of the network), while the energy is determined by the total number of transmitted messages per
round, and by the energy consumed per transmitted message (link distance). Since nodes in the proximity
of the HECN have to retransmit the messages from all the other nodes of the network to the HECN itself,
they are typically the bottlenecks. By increasing their number one can reduce their share of retransmitted
messages, and by reducing their distance to the HECN one reduces the energy consumed per transmitted
message; both mechanisms prolong the lifetime, but increase the node density in the proximity of the HECN
at the same time.

In a similar manner, Figure 8.10 displays the extremal solutions obtained for the larger-sized instances,
500 and 750. Figures 8.10a and 8.10c show the respective solutions with minimum number of nodes, while
figures 8.10b and 8.10d show the respective solutions with optimal network lifetime.

Terrain points (columns)

T
er

ra
in

 p
oi

nt
s 

(r
ow

s)

 

 

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

Sensor Nodes
HECN

(a) 500: Minimum of number of nodes

Terrain points (columns)

T
er

ra
in

 p
oi

nt
s 

(r
ow

s)

 

 

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

Sensor Nodes
HECN

(b) 500: Minimum of consumed energy

Terrain points (columns)

T
er

ra
in

 p
oi

nt
s 

(r
ow

s)

 

 

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Sensor Nodes
HECN

(c) 750: Minimum of number of nodes

Terrain points (columns)

T
er

ra
in

 p
oi

nt
s 

(r
ow

s)

 

 

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Sensor Nodes
HECN

(d) 750: Minimum of consumed energy

Figure 8.10: Best performing solutions produced by MOCell using PACO for the larger instances: 500 ×
500m2 and 750× 750m2

As in the case for the basic instance, the solutions with minimum number of sensor nodes have a low
constant node density, while the solutions with optimal lifetime have a low density of nodes in the peripheral
region and an accumulation of nodes (high density) in the center of the terrain, around the HECN. As said
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before, this accumulation of nodes in the center alleviated the energy consumption of each of these nodes
and increases the network lifetime.

However, unlike what happens for the basic instance, when the instance dimension grows the observed
difference between the two extremal solutions is apparently reduced. This can also be explained, however.
As the dimension of the problem increases, so does the solution space, and at the same time the number
of possible points in the non dominated front. Since the algorithm configurations are tailored to the basic
problem instance, they are insufficient for larger search spaces and do not manage to cover but a small
fraction of the front, corresponding to the zone with lower node density.

8.6 Conclusions
In this chapter we have presented the formulation adopted for the WSNL problem, and the resolution
process. Our formulation of WSNL defines it as a multi-objective problem where the number of nodes
and the energy consumed in communications are considered optimization objectives, while the coverage is
treated as a constraint, with full coverage being required.

We propose a novel local improvement operator, PACO, to be integrated within an optimization al-
gorithm, to tackle the WSNL problem. The PACO operator works by finding pairs of close nodes in the
network that may constitute a source of inefficiency, and searches for a single node that might replace them
while improving the solution quality; PACO is used by the optimization algorithms at the end step of each
iteration. We describe the operator in depth, and provide a formulation for it.

The effectiveness of the PACO operator is assessed by integrating it into four different state-of-the-
art multi-objective optimization algorithms: NSGA-II, PAES, SPEA2, and MOCell. Our test bench is a
basic instance where the performances of the canonical algorithms with different genetic operators and
parametric configurations are compared against those of the same configurations equipped with PACO; the
results show without doubt that the algorithms equipped with PACO achieve higher HV values, and that
the expected performance improvements are higher when the starting algorithmic configuration is already
a high-performing one.

Additionally, we test the sensitivity of PACO towards the initial density of nodes in the terrain, and its
scalability when the size of the terrain and the number of nodes are increased. In the first experiment, PACO
proved to be robust against variations in the node density, while in the second, it proved to be scalable, since
the algorithmic configurations equipped with PACO consistently obtained increasingly higher HV values
than the same configurations without PACO.
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LOCATION DISCOVERY
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Chapter 9

Location Discovery in Wireless Sensor
Networks

The location information is a fundamental aspect for the functioning of WSNs, without which many appli-
cations of these networks could not be made possible. In fact, many of the basic mechanisms used during
normal operation of WSNs require the use of location information; that is, sensor nodes need to have their
location information for the WSN to work properly. For instance, in data aggregation, or data integration,
the operation is performed on a location-basis, i.e., the relationship among sensed data depends on the ge-
ographic distance between sensing nodes. For data-centric operation purposes, location information is also
important: nodes in a WSN are not addressed in a computer-like manner (with an IP address); instead they
are addressed according to their properties, among which is their location (for instance, one may want to
check all nodes of a given region to see what is happening there). Other processes that make use of the loca-
tion information are many distributed geographic-based routing techniques, like Geographic Forwarding or
Greedy Perimeter Stateless Routing. In self-evaluation techniques such as distributed coverage evaluation,
the nodes need to know their location in order to estimate their and the network’s coverage. Many times it
is the very main application of the WSN that intrinsically needs location information: in a target location
and tracking application, neither the location nor the tracking can be achieved if the nodes that sense the
target do not have location information. Therefore, it appears as evident that WSNs need that the nodes
they contain know their location information.

Location Discovery (LD), also known as node localization, is the name given to the mechanism or
process by which the nodes of a WSN get to know their geographic coordinates, i.e., their location. It
is widely acknowledged as being one of the fundamental problems found in the domain of WSNs. We
present in this chapter the descriptions and formulations of the LD problem in WSNs most commonly
found in the literature. We also discuss basic ranging systems used in WSNs to generate the distance
measurements, along with basic position estimation techniques that are used to determine node locations.
Other considerations taken into account are error handling and robustness. Finally, the existing literature on
research work for the LD problem is reviewed.

9.1 Problem description
LD is widely considered one of the fundamental problems in WSNs ([18, 122, 166]). The objective of LD
is to obtain the geographic location of each and every node of a WSN. The first basic intuition is to provide
each node in the network with a self-locating hardware, a common example of such hardware would by
the Global Positioning System (GPS). However, the use of GPS in all the nodes as an option is generally
discarded by a number of reasons:

141
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• Cost: the GPS hardware is expensive, while sensor nodes are aimed to be low cost devices.

• Energy: the GPS hardware is highly energy-consuming, while sensor nodes are energy-restrained.

• Size: the nodes in a WSN have a tight form factor, and the size of the GPS hardware can break it.

• Requirements: the GPS location system has a set of requirements for proper functioning, such as
outdoor deployment, with line-of-sight to the satellites. The WSN may not guarantee that these
requirements will be met in the general scenario.

Instead, the generally adopted procedure is to provide just a small subset of the WSN nodes with self-
location capabilities ([141, 208]), in order for them to act as reference points for the rest of the nodes. In
fact, LD relies on two basic pillars, without which the problem cannot be solved: the beacons and the
references. The beacons, also referred to as anchor nodes or landmarks, are the subset of the nodes that
know their own positions from the start; these locations may have been introduced manually to the nodes (if
the nodes were manually placed), or the nodes might be equipped with a GPS-like hardware and hence be
capable of deducing their coordinates by themselves. References are tuples of the form (ni, nj , δi,j) where
ni and nj are nodes of the WSN (either one may or not be a beacon), and δi,j is a distance measurement
such that, for the pair of nodes (ni, nj) there exists a distance measurement δij .

The self-location mechanism employed by beacons is out of the scope of our work; hence, we assume
that issue to be solved: that is, there is a subset of nodes with self-locating capabilities already present in
the WSN upon deployment. We will focus our attention on the rest of the issues related to this problem.
This approach for LD is a complex and difficult problem where many additional hardships often arise. The
location discovery problem has been proved to be NP-complete ([26, 73, 163]).

We will first give some short definitions. We can assume that locations are given in 2D or 3D. For
the sake of simplicity we will assume 2D in the following. Let a and b be two points whose -presumably
unknown- coordinates are (xa, ya) and (xb, yb), respectively, and (x′a, y

′
a) and (x′b, y

′
b) their estimated co-

ordinates (a.k.a. estimated locations, obtained through LD). We define the following:

• Real distance da,b =
√

(xa − xb)2 + (ya − yb)2,

• Measured or estimated distance δa,b (obtained by some measuring technique),

• Calculated distance ca,b =
√

(x′a − x′b)2 + (y′a − y′b)2,

• Measured distance error εa,b = δa,b − da,b,
• Calculated distance error ε′a,b = ca,b − da,b,

• Location errors εa =
√

(xa − x′a)2 + (ya − y′a)2, εb =
√

(xb − x′b)2 + (yb − y′b)2.

The main objective in the LD problem is to minimize the location errors εi for all the nodes ni. However,
the values xi, yi, are unknown in a real scenario (they are precisely what LD is trying to determine), hence
most of the time the proper objective function (or fitness function) cannot be calculated. Therefore, a
different function is used to evaluate the candidate solutions; we shall refer to this other function as the
guiding function; this function is discussed in Section 9.4.

9.2 References generation
As said before, there are two pillars in LD: beacons and references. We refer in this section to the sec-
ond one, references, and how the nodes in the WSN gain access to them. Since a reference is a tuple
(ni, nj , δi,j), nodes ni and nj need a way to obtain the estimator δi,j . There are various estimators that can
be used as references, and various techniques by which the nodes can obtain those estimators. The most
frequent estimators are:
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• Hop count ([26, 136, 186]): The simplest available estimator is the minimum hop distance between
nodes. This estimator makes use only of the topology of the network, but has low reliability and
low accuracy. However, it is always available since nodes have always at least a rough knowledge
of their surrounding neighbors, therefore, there is a considerable deal of research done in LD with
connectivity information.

• Distance estimation by hop distance estimation ([41, 208]): A step further from the hop count
technique, this estimator also relies on the minimum hop distance between nodes, but associates a
geographic distance to a hop separation. For this, the average hop distance is first determined, using
for it the information available: the hop distance and the geographic distance among beacons. Since
hops can be highly varying in length, there can be large differences between the calculated average
hop distance and the real distance of a hop; furthermore, there can be an error accumulated for multi-
hop paths if the differences between the hop distances and the average hop distance are consistent. For
instance, the Distance-Vector hop approximation (DV-hop, [170]), uses known beacons to produce
average hop distance values, and then uses average hop distance values to estimate the reference
distances.

• Distance estimation by ranging techniques ([49, 185, 208]): Received Signal Strength Indicator
(RSSI or RSS), Time of Arrival (ToA), Time Difference of Arrival (TDoA). These techniques are
described in Section 9.2.1. They can use the very radio system used for internode communication,
light signal system, or sound/ultrasound system; they are subject to difficulties/noises: interference,
shadowing, multipath, environmental variations, etc.

• Relative position by angular estimation ([26, 167]): Angle of Arrival (AoA). Measures the angle
formed between the node to node link and a reference direction. AoA is normally measured with
directional antennas (mobile –rotating– transceiver, antenna arrays), however other methods can be
used that do not require additional hardware on the nodes ([167]).

In the problem tackled in the next chapter, the distances are measured with ranging techniques.

9.2.1 Ranging techniques
Sensor nodes can measure the distances separating themselves in several ways. This is not a novel fea-
ture, since some cellular systems already had this kind of technology. The most widely used techniques
are ([204]): Time of Arrival (ToA), Time Difference of Arrival (TDoA), and Received Signal Strength
(RSS). We will now briefly describe them.

• In ToA, a signal is sent from a transmitter to a receiver. When the signal arrives at the receiver, it in
return sends a signal back to the transmitter, who can then measure the time lapse between the first
signal was sent, and the second signal was received. Typically an ultrasound is used as the traveling
signal and the distance between transmitter and receiver can be estimated as:

D =
T · V

2
, (9.1)

where V is the signal velocity and T is the total estimated signal traveling time. A diagram of ToA
is shown in Figure 9.1a. This is the technique that was employed to generate the data we use for this
work (Section 10.3).

• The TDoA uses two signals traveling at different speeds, such as radio frequency (RF) and ultrasound.
The distance can then be calculated from the time lapse between the first signal was received and the
second signal was received, as follows:
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Figure 9.1: Range estimation techniques: (a) ToA and (b) TDoA.

D = ∆T · VRF · VUS
VRF − VUS

, (9.2)

where VRF and VUS are the traveling speeds of RF and ultrasound signals, respectively. Note that in
this case there is no need to divide it in half since signals were only sent from transmitter to receiver,
and not back. A diagram of TDoA is shown in Figure 9.1b.

• Finally, RSS uses, instead of the signal traveling time, the signal propagation loss as the indicator to
estimate the distance separating the two nodes. A signal traveling through space will typically reduce
its energy following some law, which can be mathematically modeled. A widely spread model for
the path loss is the following:

PL(d) = PL(d0) + 10n log

(
d

d0

)
, (9.3)

where PL() is the path loss exponent function measured in decibels, d0 is a reference distance, and
n is an exponent that depends on the environment (generally ranging from 2 to 4). An illustration of
the RSS over distance is shown in Figure 9.2.

It is widely assumed that RSS is the method that incurs the most significant errors, since path loss is
subject to quick and large variations such as shadows or fading ([182, 194]). However, RSS is an in-
teresting method since it can be easily implemented in sensor nodes without requiring any additional
hardware, using the communications subsystem, which results in a virtually zero-cost method.

• Additionally, the Angle of Arrival (AoA) technique allows two nodes to determine their relative
positions in terms of direction (but not distance). Although AoA technically speaking does not con-
stitute a ranging technique, we include it in this section for the sake of completeness since it offers
an alternative way of producing references (of its own kind). The AoA approach requires an array
of receivers, which can determine the direction of the incoming signal. Some approaches propose
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Figure 9.2: Range estimation techniques: Received Signal Strength Indicator (RSS or RSSI).

that only beacons use dynamic directive transmitters that transmit a beam describing a periodic rota-
tion ([167]), and thus nodes can determine their direction from beacons just by checking the signals
arrival times (assuming that the signal traveling latency is negligible compared to the rotation period
of the beam).

9.3 Position estimation techniques
Since LD is one of the main problems found not only in WSNs, but also in many other wireless networks
(cellular networks or MANETs, for instance), there are several techniques that have been defined to solve
the canonical LD problem.

• Trilateration ([139, 182]). This is the basic approach for single point localization, typically used in
combination with ToA-like ranging systems; three distance references with beacons are required for
this method, and the location is determined as the intersection point of the corresponding circles. A
simple case of trilateration is shown in Figure 9.3a, where the position of point P is obtained using
reference distances R1, R2 and R3 to three beacons.

• Multilateration ([141, 182, 208]). Multilateration is often used with a TDoA-based distance mea-
surements; in multilateration, three or more landmarks receive/send the signal from/to the object to
be located in a synchronized fashion. Based on the registered time differences, the differences in
distance are known. From that information, the position of the object can be estimated.

• Triangulation ([132, 167, 182]). Triangulation solves the location problem by using triangular geom-
etry (trigonometry) with angular references with respect to beacons: the crossing point of the defined
lines is the location. A simple case of triangulation is shown in Figure 9.3b, where the position of
point P is obtained using angular references α and β with two beacons.
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Figure 9.3: Atomic localization techniques: (a) trilateration and (b) triangulation.

• Multidimensional scaling (MDS, [49, 182, 186]). An MDS algorithm starts with a matrix of item-
item similarities, then assigns a location to each item in N -dimensional space, where N is specified a
priori. MDS is often used as a range-less location system, when only topological information (which
nodes are connected, which nodes are not) is available, and no ranging information is available.

The location techniques described above are referred to as atomic, since they can only locate a single
target at a time, and for this they require at least three references with as many beacons. Therefore, using
strictly atomic localization, it is impossible to locate nodes that have less than three references with beacons.
Thus, several more advanced techniques have been proposed to overcome this limitation:

• Iterative localization ([182]). In this approach, nodes are iteratively converted into beacons as they
are located; thus, the number of beacons progressively increases, and at the same time more nodes
can be located as they gain access to three (or more) beacon references. For instance, in Figure 9.4a,
only node 1 has three valid references and can be located. But if upon localization node 1 becomes
a beacon, then node 2 gets three valid references. If the process is repeated, nodes 3, 4, and 5 can be
localized in turn.

• Cooperative localization ([182]). This technique goes a step further than the previous one; in co-
operative localization, a connected set of nodes can be located as long as there are three beacon
references to nodes of the set. The procedure consists in defining the equation system corresponding
to all the references in the subnetwork (both beacon-node and node-node), and simultaneously ob-
taining (or iteratively refining) the nodes positions. Figure 9.4b shows an example case where neither
node 1 nor node 2 can be located, and an iterative localization cannot solve the situation; however, if
the full system is defined with two unknown variables corresponding to the locations of nodes 1 and
2, it can be solved and both locations are obtained. If the resulting equation system is well defined, it
can be entirely solved with matrix algebra.

9.3.1 Coping with errors in the measurements
Unfortunately, most of the ranging systems used in WSNs have non-negligible measurement errors; that is,
even if generally δa,b approaches da,b, still δa,b 6= da,b. Due to this, the references are not exact values,
only approximations. Therefore, the trilateration, multilateration, or triangulation systems cannot be solved
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Figure 9.4: Advanced localization techniques: (a) iterative localization and (b) collaborative localization.
Beacons are named with letters, and regular nodes are numbered.

exactly, and matrix algebra can no longer be an option. When measurement errors are an important factor,
the following procedures can be employed:

• Mass-spring relaxation ([26, 136, 138]). The mass-spring relaxation allows deviations in the inter-
node distances with respect to the measured values, following a physical spring model. For each
reference link {i, j}, a virtual force is associated as Fi,j = di,j − ci,j/di,j . Thus, the link distances
are modified until the resulting system stabilizes, that is, the sum of forces applied to each node
by its associated references equals zero. A general approach to this is to define the system energy
E =

∑
F 2
i,j , and iteratively modify the node positions according to the forces acting upon them,

until the energy ceases to decrease.

• Minimize the Mean Square Error (MMSE, [142]). Similar to the previous one, it also considers the
deviation of the reference links lengths. Assuming that the measurements are fairly accurate, the aim
is at minimizing some estimation of the error defined from that distance deviation. The most common
approach is to use the square norm

∑
(δi,j − ci,j)2 as the function to minimize. Many optimization

methods can be used in this case, from local search methods to metaheuristics. Additionally, this
method can be enhanced to integrate problem knowledge (and increase its robustness and accuracy),
by weighting the associated error of each link by a confidence factor on the link measured distance
accuracy:

∑
ω(δi,j) · (δi,j − ci,j)2.

• Obtain the Maximum Likelihood locations ([73]). This option can only be used if a probability
density function (PDF) of the measurements is available (hence requires problem knowledge). This
method is computationally costly, but copes with measurement errors in a natural way, and has been
proved to obtain accurate results. This method is further explained in Section 9.4.

Other conceptions consider that errors in ranging, either for time-based or received signal strength, lead
the nodes to estimate larger distances. This is due to the fact that both signal attenuation, or indirect path
effect, induce the nodes to have errors by excess. Therefore, an approximation that mitigates the negative
effects of distance estimation errors, assuming that these errors will be excess errors, consists in treating
the estimated distances as upper bounds of the real distances, instead of as accurate estimations. Examples
of this are in [208]. Another system is the voting system; in it, each landmark votes for a crown region
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around itself with central radius equal to the measured distance and width relative to the expected error; the
centroid of the most voted region is selected as the estimated location ([142]).

9.4 Guiding functions in LD
Differently from the other problems solved in this thesis, the LD problem has a special characteristic that
renders it specially difficult to solve: the optimization objective of the problem cannot be evaluated during
the optimization process. That is, the guiding function and the fitness function are different; in fact, in a
real scenario, the fitness function is unknown and can never be evaluated (since it requires knowledge of
the optimal solution).

Therefore, a guiding function has to be defined for LD such that it is computable from the available
information: the beacon locations, and the inter-node distances (real node locations are unknown and cannot
be used). The most widely used guiding functions are the following:

• Error norm functions ([73]). Belonging in this first category are the methods that assume that the
measured distances are the real distances, and solve the optimization problem by minimizing the cal-
culated distances error norm L(cij−δij). Typical norms are L1, L2, or L∞ ([123], equations 9.4, 9.5,
and 9.6, respectively). This method can produce good results when the measurements are accurate
(hence the assumption can be considered as mostly correct), but will lead to large positioning errors
if the measurement errors are large. Although these methods do not require any specific problem
knowledge besides the instance data, there are several ways in which it could be introduced in order
to tune the method. Among them, we could mention a weighted norm minimization, in which mea-
sured values are weighted according to their expected reliability, which in turn is obtained from some
problem knowledge.

L1 = |ε1|+ |ε2|+ |ε3|+ ...+ |εL|, (9.4)

L2 =
√
ε21 + ε22 + ε23 + ...+ ε2L, (9.5)

L∞ = max{ε1, ε2, ε3, ...εL}. (9.6)

• Likelihood functions ([73]). Methods in the second category require previous knowledge on the
measurement errors, since they use a PDF P (δ, d) for the measured distance (δ) vs. the real distance
(d). By replacing in the formula real distances by calculated distances (c), the global likelihood value
for the WSN node positions, calculated as the product combination of the probabilities for every cij
and δij (Equation 9.7), should be maximal for the values that match the definition, i.e., when the
calculated distances equal the real distances: ci,j = di,j .

ML(s) = Πi,j∈sP (δi,j , ci,j). (9.7)

9.5 Additional considerations
The LD is a particularly difficult task in WSN for a number of reasons, among which we can list the
following:

• The ranging process incurs high energy expenses, thus has to be restricted to the bare minimum.

• Radio-based ranging can use the integrated radio system of the sensor node, but has very low accu-
racy ([233]). More accurate ranging systems require additional hardware and are often unavailable.
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Figure 9.5: Other localization techniques: (a) robust quadrilaterals, (b) MAP localization.

• The errors in ranging can be very large (even larger than the real value), and are very hard to model
with some standard (e.g., Gaussian) model. Generally, non-parametric ad hoc models need to be set
up, based on measurement data ([73]).

• The real fitness function is unknown, thus the guiding function and the fitness function are different
functions.

Robustness in LD is a desirable property, and many techniques have been devised to ensure or optimize
the robustness of the solution. By robustness, the common understanding is that solutions should not incur
any large error with respect to the true node locations; this is typically reduced to obtaining a solution
with the correct general layout of the network, that is, a solution that has no flip or rotation errors. In the
following, we shall refer to all these kind of errors (including both flips and rotations) as flip errors. A
method to enhance the robustness is to study the rigidity of the network ([136]), that is, the capacity of
the nodes to move in space without violating the distance constraints. Ideally, the network should be rigid,
hence the nodes should not be able to move while respecting the distance measurements.

Some approaches of LD focus specially on the robustness of the localization process, taking into account
the facts that the available references may be scarce, or that the estimated distances may contain (sometimes
large) error components. For instance, in [163] the robustness of the location process for each node is
evaluated with robust quadrilaterals: a quadrilateral that can be realized without ambiguity; a node is
only located after it becomes the vertex of a robust quadrilateral whose other vertices are located, thus flip
ambiguities are avoided. A robust quadrilateral has 6 distance references, the 4 edges and the 2 diagonals,
and can be decomposed in robust triangles, where there are no short sides or small angles: b sin2 θ > dmin,
where b and θ are the smallest edge and angle, respectively, and dmin is a threshold value defined depending
on the expected measurement errors (see Figure 9.5a). In an alternate definition, a robust triangle is one
in which all the angles are larger than 30o ([139]). The algorithm proceeds by constructing an initial
robust quadrilateral, then expanding it by adding nodes that form new robust quadrilaterals with previously
included nodes. The nodes that cannot be located without risk of flip are left unlocated, thus sacrificing
location information for the sake of robustness.

Other approaches aim to divide the problem in order to solve it in a distributed fashion; these approaches
are usually nicknamed MAP approaches ([138, 186]). They divide the WSN into smaller sets of nodes (quite
like neighborhoods) called maps, then solve the LD problem –usually producing virtual coordinates– for
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each map. Then the different maps are iteratively fused by using at least three shared nodes until ultimately a
single map is obtained. Figure 9.5b illustrates the fusion process of two maps. Finally, absolute coordinates
can be obtained if at least three beacon nodes are present in the final map. A different distributed strategy is
that of iteratively growing a map of virtual coordinates starting from an initial robust triangle ([139]), and
iteratively adding nodes such that each newly added node forms a robust triangle with two nodes previously
located (see highlighted triangle in Figure 9.5a).

Finally, another important concern in LD is indicator consistency between the guiding function and the
fitness function. Or put in a different way, the answer to the question: does the guiding function have the
same optimum as the fitness function? By consistency, we refer to the fact that if a given solution sa has a
better fitness value than sb, then the guiding function should also prefer sa over sb. Since fitness and guiding
functions are different functions –out of necessity–, the previous correspondence does not happen always;
hence, the ratio of solution pairs that are correctly discriminated by the guiding function with respect to the
fitness function is the consistency of the guiding function.

9.6 Literature review
Location Discovery is one of the most prolific topics in the domain of WSN. As such, there is a extensive
literature concerning LD, of which we will make a short review. Our purpose is to display the main aspects
involved, and the main approaches adopted by the research community to tackle this fundamental task.

An interesting early survey of the techniques used in WSNs for LD can be found in [182]. In this work,
the main ranging techniques (RSS, ToA, TDoA, AoA) as well as the main location techniques (trilateration,
multilateration, triangulation, maximum likelihood) are described. Additionally, the authors present the
Medusa nodes (see Section 2.3) for ultrasound ranging, and their performance is assessed. In [81], the
authors present a short description of an acoustic range estimation device. The range estimation is based on
the ToA of an acoustic signal, called chirp, between two nodes; the performance is enhanced by the use of
broadband techniques.

Research on LD has gone into many different directions. In fact, not all research is about solving the
problem; for instance, some works are focused on analyzing the properties and inherent difficulties of LD,
mostly error-related (error factors, nature of errors in location, effect of location errors, etc.). A theoretical
study on the Crámer-Rao Lower Bound on positioning error was performed in [171]. In that work, the
authors consider the range-free location system based on hops from the landmarks (anchor nodes), and
the Distance Vector-position method, in which both distance and angle estimates are available by nodes.
Finally, some conditions are given under which DV-position outperforms range-free location. A study on the
location errors in several applications for WSN is done in [194]. The work focuses on exposure, best- and
worst-case coverage, and shortest path routing. The norm functions are used in this work as the objective
functions for location discovery. The process is incremental: at each step, all nodes that can triangulate
their locations using distance measurements from beacons determine their locations, and become beacons
themselves for the rest of the nodes. The sources of errors are identified and modeled, and the propagation
and effect of the errors are studied. The effect of radio irregularity on RSS-based location systems is studied
in [233]. The authors define three parameters to characterize their proposed Radio Irregularity Model
(RIM): the Degree of Variance (DOI), the Variance of the DOI (VDOI), and the Variance of Sending Power
(VSP). The DOI represents the maximum received power variation per angular displacement; the VDOI
represents the maximum relative variation in DOI between two nodes; the VSP represents the maximum
relative transmitting power variation between two nodes (due to hardware differences). Some security issues
related to LD, such as possible attacks, have also been widely considered. Possible security threats related
to LD, such as Sybil or wormhole attacks, are described in [132] and [143]. Some techniques for attack
resistant location discovery are described in [142], which are based on defining data-driven bounds on the
accepted mean square errors (as in the L1 norm) for every single node positioning, and based on voting. A
similar method combined with the use of difectional antennae is the method proposed in [132]. The focus
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adopted in [143] is different, where the authors suggest a method for detecting malicious beacon nodes
based on a combination of wormhole detectors with “detective” beacon nodes. In [41], the performance of
localization algorithms using signal strength as the ranging technique in the case of signal strength attacks
is evaluated. The authors distinguish two kinds of location techniques: point-based, that return a single
point location for each node, and area based, that return a location area for each node. The experiments
are performed indoor, thus multilateration cannot be performed, and a radio-map is established instead.
Algorithms of the first class are Radar and Highest Probability, and of the second class are Simple Point
Matching (SPM), Area Based Probability, and Bayesian Networks. Both attenuation and amplification
attacks are considered, each attack may be done over a single landmark, a set of landmarks, or all landmarks.
In [185], the objective is to produce LD problem instances that are difficult to solve. Several parameters are
identified as having an influence on the difficulty of the LD; among them are the number of nodes, number
of beacons, average graph connectivity degree, average signal noise, etc. Using a setM of experimental
distance measurements mi,j,k where i and j are node indexes and mi,j,k is the kth measurement for that
node pair, producing a problem instance amounts to selecting a subset S ⊆ M such that some node pairs
exist in the subset, and for each of them only one measurement is selected. The difficulty of an objective
function for the produced instance is measured from three indicators: rank-based consistency, variance, and
drifting.

Among the works oriented towards solving LD, there are a number of trends. The main classification
can be established depending on the information used as input. The first category contains techniques
that do not make use of distance estimations, and generally rely on connectivity information uniquely.
An MDS algorithm to solve the LD problem is used in [186] using only connectivity information. The
authors propose two approaches, one centralized (MDS-MAP(C)) that builds a global map, and a distributed
approach (MDS-MAP(P)) that divides the WSN in small maps, solves the location for each map, then
rebuilds the global map by fusing smaller maps. The distributed version has the advantage of being less
sensitive with respect to shortest path-based distance estimation accuracy (since shortest path is generally
not a reliable estimation of inter-node distances in non-homogeneous WSNs, algorithms should not rely
on it). Both algorithms have a basic version, and a refined version that includes a least-squares refinement
phase. The authors of [136] present a method to solve LD relying solely on connectivity information, with
special focus on complex terrain shapes, which are difficult scenarios for LD in which flips often occur. The
authors rely on the rigidity of the graph to avoid flip errors. The key idea is to identify a subset of the nodes
that are placed along the region frontiers (external and internal); there are several distributed techniques that
do this. This subset will act afterwards as the reference set, or landmarks, for the rest of the nodes to locate.
The whole LD process works with virtual coordinates, since there is no predefined set of GPS-equipped
beacons. A beacon-less scheme using a Maximum likelihood approach to solve LD is presented in [72] that
uses only connectivity information. The authors argue that indeed absolutely removing the need for beacon
nodes can be interesting from an economic perspective. In their problem formulation, the nodes must have
previous knowledge about their intended deployment area (a group of nodes may be dropped from a plane
over location ‘X’), and discover their location by analyzing the drop locations of their neighbors using ML.
A gradient descent and a geometric approach are proposed to solve the problem. Some works use angular
information either in addition to connectivity or alone. The LD problem based solely in connectivity and
angle information, and without beacon nodes in the network, is solved in [26], with the purpose of using
it for GPSR routing; additionally, a planar spanning of the graph is obtained by using exclusively angular
information. The Unit Disk Graph embedding is solved using Linear Programming, with links and loops
as constraints. To reduce the number of variables, geometric techniques are proposed: apply the proportion
ratios of closed triangles to reduce three link variables to a single one whenever possible. Another angular
approach to the LD problem (AoA) is presented in [167]. In this work, nodes do not require specific
hardware, since they receive the signals from the beacons and only register the time separations among
them. Beacons, however, require specific hardware to transmit a rotating beam-shaped signal. The authors
claim their system achieves higher precision that RSS-based systems, and identify two sources of error:
beam width and multipath. They tackle the first by choosing the time instant when the received signal
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has maximum strength, and the second by performing multiple locations with as many different sets of 3
beacons.

The second category of LD problems uses distance estimations as references. Many different solving
methods have been proposed for these problems, which can be solved with greater accuracy than the pre-
vious ones. Some early works on the subject employ the norm functions L1, L2, and L∞ as the fitness
functions for the optimization procedure. In [123], all three functions are alternatively used in addition to
a location error minimization function

∑nB
j=1

√
(xAIj − xAFj)2 + (yAIj − yAFj)2, where AIj represents

the original GPS-determined position of the beacon j, and AFj represents the location determined for that
beacon. The paper contemplates the existence of Gaussian error both in the GPS locations of the beacon
nodes, and in the distance measurements (with standard deviation proportional to the real distance). Sur-
prisingly enough, L∞ outperforms the other two norm functions in the experiments performed. Maximum
likelihood is used to solve the LD problem in [73], with a strong focus on the statistical modeling of the
measurements. Real data by sensors with acoustic ranging based on TDoA are used. Several families of
error models are tested, and compared against kernel-smoothing. Off-line and on-line constructed models
are used. In [49], the LD problem is formulated as a Multidimensional Scaling problem (MDS). For-
mally speaking the MDS problem uses a number of dissimilarities (i.e., distances) in order to determine the
multidimensional values (i.e., coordinates) of a set of objects. The authors propose a distributed iterative
algorithm in which every node refines its location by using location information and measured distances
from its neighbors. Special stress is put on the neighbor selection as a two-stage resolution process is used
to eliminate the induced bias. The Curvilinear Component Analysis (CCA) technique is presented for LD
in [138]. The distributed version, CCA-MAP, is analogous to MDS-MAP: the LD problem is solved for
small subnetworks producing small maps of virtual coordinates, which are progressively fused into larger
maps, until a single map is ultimately obtained. Each fusion of two maps requires three shared nodes be-
tween the maps. Finally, with three beacons, the global map is transformed into absolute coordinates. The
key idea of CCA is to use data projection to reduce the dimensionality of a vector system, such that the
system of reduced vectors maintains the inter-vector distances. This is applied by initially generating ex-
panded point coordinates (with more dimensions than the real points), that respect the inter-point distances
corresponding to the measured distances, and, through an iterative process, obtain their projection transfor-
mation: the real point coordinates. A different focus is adopted in [163], where the main stress is put on
the robustness of the localization. A robust localization is defined as one that avoids flip ambiguities. A
distributed algorithm for beaconless network localization is proposed, in which nodes use noisy distance
measurements only. Thus, locations are determined up to a global rotation and translation. The concept of
robust quadrilaterals is introduced, representing quads of nodes that can be unambiguously located even
in the presence of measurement noise; when a node cannot be included in such a quad, its location is not
determined and is considered unknown. The algorithm is implemented on a physical WSN, and supports
localization of mobile nodes. The Ad hoc Positioning System (APS) is proposed in [170], and its perfor-
mance is tested. The algorithm uses estimated distances from the nodes to the different landmarks. Since
not all landmarks are within ranging distance from the nodes, the authors explore the use of three approx-
imate distance propagation techniques: the Distance Vector hop (DV-hop), where the number of hops is
multiplied by the average hop length; the Distance Vector distance (DV-distance), where the cumulative
measured hop lengths are used; and the Euclidean propagation method, where node A requires distance
references from two nodes B and C from the landmark, along with estimations of the distances AB, AC,
and BC, to estimate its own distance.

Finally, some works are specifically designed to cope with the main difficulties found in LD. For this,
the generally adopted method is to tackle problem instances that are known for being difficult to solve. The
problem of LD inside concave spaces is considered in [208]. In this problem formulation, the nodes of the
WSN use their available references with respect to the beacons when they can directly estimate the distance,
or by using a hop-distance approximation. In a concave area, the estimated distances may be much larger
than the real ones and thus produce errors; the proposed solution consists in considering the estimations as
upper bounds of the distances, instead of approximations of the distances. This way, each reference is not
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treated as a circle (trying to approach the node to the circumference), but instead as a full disk (anywhere
inside the disk is a valid location). The approximated location is the intersection of all reference disks.
Some enhancements are proposed, as an iterative multilateration version where nodes may only locate
themselves if the expected accuracy surpasses a threshold, and then become beacons that can be used by
unlocated nodes. LD in anisotropic networks is studied in [141]. The concept of an anisotropic network
is a network in which the connectivity properties of the nodes are not homogeneous over all the space
occupied by the WSN; for instance, a network whose nodes are not uniformly distributed is anisotropic,
like a network with an inner hole. Another example of anisotropic network is a network in which RCOMM

depends on the node location. The authors propose the use of Proximity Distance Map (PDM) for LD in
these networks. In this technique, nodes use a proximity measure towards the beacons; using the proximity
measures among beacons, the transformation matrix T is generated such that the proximity measures of the
nodes can be transformed into geographic distances, and the multilateration system is obtained. The work
presented in [139] focuses on LD for networks with irregular shapes, for instance a C shape or an O shape,
for which most techniques initially proposed for LD do not perform well. Their proposal relies on network
partition into several localized subnetworks, locating nodes in the subnetworks, then reconstructing the
global network. In this technique, nodes search their neighborhoods to form robust triangles, that become
beacons for the rest of the nodes; then the rest of the nodes try to localize themselves using three non-
collinear beacon references. The global map of virtual coordinates finally gets absolute coordinates using
at least three landmark references.

Our interest lies with the resolution of a generic approach to LD, instead of specific hard instances
with weird network shapes (which may be unlikely to happen in a real case). In the problem we consider
the hardship comes from the use of real, error containing measured distances from which we define the
instances. Since we propose the use of metaheuristics to tackle this problem, we are left with two main
types of guiding function, namely the error norm functions and the likelihood functions. In the next chapter,
we will perform a study on the two types of function, and propose a solving method using a combination of
them.

9.7 Conclusions
In this chapter, we have presented and described the Location Discovery problem in WSNs. LD is widely
acknowledged as one of the most prominent problems found in most ad-hoc networks, and notably in
WSNs; it has also been proved to be NP-hard. In short, the LD problem amounts to finding the geographic
coordinates of the nodes of a WSN with the minimum error possible, given a set of internode distances and
beacon node references.

We have briefly presented the main methods used to measure internode distances: received signal
strength, time of arrival, and time difference of arrival; we have later described the basic location methods
that have been used in the literature: trilateration, multilateration, triangulation, and multidimensional scal-
ing. Also, some simple enhancements as iterative or cooperative localization have been explained. Then,
we have highlighted the importance and effect of errors in measurements, and presented the two main types
of guiding functions that may be used to solve LD as an optimization problem: error norm functions and
likelihood functions.

Finally, we have provided a review of the existing literature in the field, with special attention to the
main difficulties found in LD. In the next chapter, we will perform a study on the two types of guiding
function and propose a new solution method combining both, that will be tested experimentally on real data
instances.
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Chapter 10

Resolution Methodology and Results for
Location Discovery

In the previous chapter, we presented the Location Discovery (LD) problem in WSNs, the techniques used
to generate the required data (distance estimations), some solving procedures, and the main difficulties
found in this problem (errors in measurements, finding a guiding function, etc.). In this chapter we describe
the formulation adopted for the LD problem and present the real data used to define the problem instances
that are solved in this thesis. Additionally, we study the two main types of guiding function used to solve
the LD problem, error norm and likelihood functions, and propose a two-phase resolution procedure that
combines both.

We adopt a mono-objective approach to solve this problem, and try three different types of algorithm to
solve it: a trajectory-based metaheuristic (SA), an evolutionary algorithm (GA), and a particle swarm based
algorithm (PSO). The representation used for the solutions and the operators used by the different solving
techniques to manipulate these solutions are described. The instances solved are generated using real data
measurements organized into 33 datasets taken over the course of a few days; the size of the corresponding
WSN is of a hundred nodes approximately.

Using the available problem data we conduct a study of the consistency of the two main types of guiding
function used in LD: error norm (we pick L1), and likelihood (we pick a pyramid kernel function). This
study serves as the basis for the proposal of our novel approach: the combination of the two types of function
into a sequential two-stage approach. Then, we select 10 data sets to be the test instances, where we test
the effectiveness of the enhancements proposed for the error norm function, the expected accuracy of the
locations depending on the number of beacons, and the relative performances of the different algorithms.
Finally, we assess the validity of our two-stage proposal by comparing the results it obtains with the results
obtained by each of the two types of guiding functions working separately.

10.1 Problem formulation and models
The LD problem was previously presented in Section 9.1. We briefly review and complete the definition in
this section. Our formulation of the problem is as follows: given a set S of N nodes si, 1 ≤ i ≤ N , where
the subset sj , 1 ≤ j ≤ K < N , has previously knowledge about their locations (anchor nodes), and given
a set of distance estimations δi,j , 1 ≤ i, j ≤ N, i 6= j, we have to determine the locations of every node
sl,K < l ≤ N , such that the location error is minimized. Hence, we define the fitness value of a candidate
solution as the average position error of all the nodes (see Equation 10.1). More formally, let ~x be a given
solution to the LD problem, in which xi represents the estimated location of the ith node in the network,
and let ni be the real location of the ith node, then we have:
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fitness(~x) =

∑|~x|
i=1 |xi − ni|
|~x| , (10.1)

where |~x| is the number of elements in ~x, that is, the number of nodes in the WSN.
As was argued in Section 9.1, the real node locations are unknown in a practical scenario (otherwise

there would be no need to solve the LD problem), thus the fitness function cannot be computed. Instead,
a guiding function is defined as the function to be optimized; this function needs to be such that solutions
close to the optimum of the guiding function should also be close to the optimum of the fitness function as
well. We consider two possibilities for the guiding function of the LD problem:

• An error norm function of the produced distances over the measured distances. When an error norm
function is used, the underlying assumption is that the measured distances are fairly accurate, and
that producing a WSN in which the inter-node distances match the measured distances results in
trustful node locations. They are the simplest guiding functions for LD, and do not require previous
knowledge about the error model. The norm functions are a family of Rn → R functions that serve
as indicators of how much error a given candidate solution incurs, in terms of inter-node distances.
When an error norm function is employed the location discovery becomes a minimization problem.

The most popular norm functions are L1, L2, and L∞ ([123, 194]), which were shown in equations
(9.4), (9.5), and (9.6), respectively. In the absence of measurement errors, the LD problem can be
solved optimally using any of these norm functions as guiding function. However, in the presence
of significant measurement errors, the performance of any search algorithm that uses an error norm
function is severely degraded. When the errors are highly varying (as is usual in WSN) the L1 norm
produces the best results, while L∞ produces the worst ones. In [73], all three norm functions were
tested on a small instance where 1 node was located using 9 anchor nodes as references, with node to
node distances ranging from 7 m to 45 m. The location errors obtained were 1.272 m, 5.737 m and
8.365 m for L1, L2, and L∞, respectively. Therefore, we set L1 as the base error norm function in
our work.

Let li, 1 ≤ i ≤ L be the measured link distances (li = δi1,i2 corresponds to the link between nodes
i1 and i2). We define the measured distance error for link li as εi = ci1,i2 − δi1,i2. The simplest
approach to the use of a measurement error model is to incorporate a weighting function to the norm
operator. This means we will still use the norm function, but we will multiply every link distance
error εi by a weight ωi that indicates how reliable the measured value is. The resulting modified error
norm function, L′1, is shown in Equation 10.2.

L′1 = |ω(δ1) · ε1|+ |ω(δ2) · ε2|+ |ω(δ3) · ε3|+ ...+ |ω(δL) · εL|. (10.2)

The weighting function is defined based on knowledge of the measurement errors. It qualifies the
reliability of a measured distance δ, in such a way that a distance measurement that is believed to
be correct will receive a corresponding large weight, while one that is suspected to be incorrect will
receive a corresponding low weight. This way, the weighting function should help reduce the impact
of measurement errors. For our work, the weighting function employed is calculated as follows:

ω(δ) = exp

(
−average location error(δ)

NORM

)
, (10.3)

where δ is the measured link distance in meters, the average location error is calculated for all links
in the data base ranging from (δ−margin) to (δ+margin), and NORM is a normalization value.
Both margin and NORM are determined empirically.
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• A likelihood function of the real distances over the measured distances. The likelihood function relies
on the use of a probability density function (PDF) that characterizes the measurement errors, thus
natively incorporates the use of measurement error knowledge. In this case, a full measurement error
model has to be developed such that for any pair of real and estimated (measured) distances (d, δ), the
model provides the likelihood (probability) that given an estimated distance δ, the corresponding real
distance is d, noted P (d, δ). We say that every link has an associated probability, or likelihood. In
this case the LD becomes a maximization problem, namely the Maximum Likelihood problem (ML),
where the value to be maximized is the global likelihood L (Eq. 10.4).

L = P (d1, δ1) · P (d2, δ2) · P (d3, δ3) · ... · P (dL, δL). (10.4)

There are many possible manners to create a statistical model for the measurement errors. One can
assume the measurement errors follow some probability distribution (Gaussian, beta, gamma, etc.)
and adjust the corresponding parameters to best fit the available data. These models are called para-
metric models. Rather than the previous, we use a non-parametric kernel error model similar to the
one in [73]. In this model, each measurement is represented by a surface function called kernel func-
tion, centered at the (x, y) position corresponding to the pair of real and measured distances for that
measurement. We have chosen a pyramid function as the kernel function (see Figure 10.1). The com-
plete PDF function is obtained by adding the kernels corresponding to all the measurements available,
and normalizing the resulting function; this way, a set of discrete points in 2D is transformed into a
continuous 2D PDF function.

Figure 10.1: Kernel function for the probability density function in LD.
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10.2 Representation and operators
In this section we describe the representation used for the candidate solutions for the LD problem, and the
way they are manipulated by the different genetic operators used with these solutions: mutation, crossover,
and flight operator of PSO.

10.2.1 Solution encoding
In LD, a candidate solution is an array of 2D coordinates indicating the locations of the nodes in the network.
First, every node in a WSN is numbered. Then, we use a straightforward encoding: an array of real numbers
with length double the number of sensor nodes in the WSN. The first two elements are respectively the x
and y coordinates of the first node, from this point on every two values represent the x and y coordinates of
one of the following nodes, respectively. Figure 10.2 displays the solution encoding for this problem. The
positions corresponding to the beacon nodes can take arbitrary values, since they are not computed1.

Figure 10.2: Solution encoding for LD.

10.2.2 Genetic operators
SA, GA, and PSO are the algorithms that were used to solve the LD problem, hence the genetic operators
involved are mutation, crossover, and PSO’s specific operators.

Mutation operator

The mutation operator is employed in both SA and GA. We use an adaptive mutation operator. This mu-
tation selects each of the individual coordinates independently with a given probability pm. Figure 10.3
illustrates the mutation operator used for LD.

When a coordinate has been selected, it is modified by adding a displacement d, which is a random value
between −Rmax and +Rmax. The value for Rmax is selected as the average error per link measurement
(considering L1 norm) multiplied by a scaling factor we refer to as mutation intensity, regardless of the
chosen guiding function. The intuition behind this is that when the error value is low the solution is close
to the optimum, thus smaller steps should be used, while when the error value is high the solution is far
from the optimum, and larger steps are preferred. Additionally, this value is further weighted by a value
representing the algorithm’s execution progress: 1−evaluations/max evaluations. The idea behind this
is to have an increasingly fine grain precision, by performing smaller steps, even when the error norm is
lower bounded.

Crossover operator

The crossover operator is used in GA. For LD, the crossover operator used is the Simulated Binary Crossover
(SBX) crossover, a well-known operator ([58]).

1These values are still included for code simplicity
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Figure 10.3: Mutation operator for the LD problem.

Flight operator

The flight operator is used by PSO to explore the search space, by updating the particles. The way in which
PSO updates the particle ~xi at the generation t is given by the formula:

~xi(t) = ~xi(t− 1) + ~vi(t), (10.5)

where the factor ~vi(t) is known as velocity and is calculated as:

~vi(t) = w ∗ ~vi(t− 1) + C1 ∗ r1 ∗ (~xpbesti − ~xi) + C2 ∗ r2 ∗ (~xgbesti − ~xi). (10.6)

In this formula, ~xpbesti is the best value that ~xi has ever had (personal best), ~xgbesti is the best particle
(also known as the leader) that the entire swarm has ever viewed (global best), w is the inertia weight of
the particle and controls the trade-off between global and local experience, r1 and r2 are two uniformly
distributed random numbers in the range [0, 1], and C1 and C2 are specific parameters which control the
effect of the personal and global best particles.
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10.3 Problem data

We employ data gathered from several experiments performed at the Fort Leonard Wood Self Healing
Minefield Test Facility ([156]). Those experiments deployed WSNs containing from 79 to 94 sensor nodes,
which are custom design on an SH4 microprocessor running at 200 MHz. The nodes are equipped with
four independent speakers and microphones and use ToA on the acoustic signal to determine the distance
between themselves ([171]). The WSN was deployed on an area of 200 m× 50 m.

In total, there are 33 sets of distance measurements collected over the course of a few days. Each set
consists of a single round of acoustic signal transmission by all the nodes. In a practical scenario, this kind
of knowledge can be acquired in two ways. The first is to do as explained here: perform some previous ex-
periments from which the measurement error model can be compiled. This is not always feasible, therefore
a second, on-the-fly approach can alternatively be adopted. In this approach we assume some beacon nodes
are within measurement range. In that scenario, the combination of GPS-known locations and measured
distances can be used to establish the measurement error model.

10.3.1 Specific models for the used problem data

Figure 10.4 shows a graphical representation containing all the data from the 33 sets. With this data we can
build up the models previously commented. In the figure, each dot represents a link whose distance has
been measured; its abscissa value is the measured link distance, while its ordinate value is the real distance.
If the two coincide, the measurement is correct, if they differ, the measurement is wrong. We notice that
the majority of points tend to arrange themselves close to the diagonal, thus the majority of measurements
are correct. However, for low or high distance values, the dots are spread in a cloud fashion, thus the
corresponding measurements tend to be inaccurate.

Weighting function

Using these measurements, the weighting function for the L1 norm function is calculated following Equa-
tion 10.3 withmargin = 50 cm, andNORM = 5. Figure 10.5 illustrates the resulting weighting function.
We can see how the function assigns higher weights to links with measured distances between 5 and 35 me-
ters, which are thus the distance measurements with highest accuracy, there is a transition zone for distances
from 35 to 45 meters, and measured distances below 5 or over 45 meters are heavily discriminated against
with low corresponding weight values, since they are found to be the less reliable ones. This behavior
closely matches the observed nature of measurements in Figure 10.4.

Likelihood function

The data displayed in Figure 10.4 is also used to generate the likelihood function: for this, a kernel function
is centered at each of the represented points; as explained in Section 10.1, we employ a pyramidal smoothing
kernel function with a base diagonal of 1 m. Figure 10.6 shows the resulting probability density functions
obtained for five different values of measured link distance: 10, 20, 30, 40, and 50 meters. For simplicity
we show all five PDF functions superimposed.

However, an analysis of this likelihood function showed that with the data available for this work, for
almost any given candidate solution there is always some link producing a probability of zero (even for op-
timal solutions). This renders the likelihood function virtually useless, since a single zero turns the global
product into zero. In order to avoid this, we establish a minimum probability floor, that ensures that im-
probable links will not produce a zero likelihood, but rather a very low value. After some experimentation,
this ground value was set to 10−6. Additionally, in order to cope with the enormous range of values of this
guiding function, we use a logarithmic scale rather than the linear one.
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Figure 10.4: Distance measurements plot.

10.4 Two-Stage resolution process
In this section we present our novel proposed approach to solve LD. This approach is motivated by a study
on the consistency of the most commonly used guiding functions in LD: the error norm and the Maximum
Likelihood. We first present this study, later describe the two-stage approach, and finally discuss a beacon-
reinforcement enhancement for the guiding functions in LD.

10.4.1 Guiding function consistency
It has already been said that the main objective of location discovery is to reduce the location error, that
is, the distance between the real positions and the position estimations. However, we do not employ this
parameter as the guiding criterion to our optimization technique, since it is unrealistic to assume we already
know the real sensor nodes locations. Instead, a guiding function like the ones described above is employed
to evaluate the solutions. It is only natural thus to ask oneself whether the guiding function selected is
correctly leading the algorithm towards better solutions, that is, whether the evaluated value and the location
error of a given solution are correlated.

In order to provide some insight onto this issue, we will use a simple yet effective criterion: let sa and
sb be two possible solutions for a given LD instance, and LE() the location error function; if LE(sa) <
LE(sb) then the guiding function should favor sa over sb. If this is the case, then we say the guiding
function is consistent for this pair of nodes.

We define two different scenarios in order to apply our criterion. The first scenario consists of a pool
of randomly generated pairs of solutions (low quality solutions). The second scenario consists of pairs of
random solutions with low average location error (high quality solutions); for this scenario the solutions are
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Figure 10.5: Weighting Function.

generated by adding low power white Gaussian noise to the real locations of the nodes.
Algorithm 10 shows the pseudocode of the consistency check performed; the Initialize function (lines 3

and 4) depends on the considered scenario, the Evaluate function (lines 5 and 6) is the corresponding
guiding function (error norm or likelihood), and the evaluation values are considered better (line 8) when
they are higher if the guiding function is the likelihood, or lower if it is an error norm. Finally, the returned
value is the percentage of consistent solution pairs (line 13).

Algorithm 10 Guiding Function Consistency Check
1: consistency = 0
2: for 10000 do
3: Initialize(Sa)
4: Initialize(Sb)
5: Evaluate(Sa)
6: Evaluate(Sb)
7: if LocationError(Sa) ≤ LocationError(Sb) then
8: if Sa Has better fitness than Sb then
9: consistency ++

10: end if
11: end if
12: end for
13: return consistency/100
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Figure 10.6: Kernel error model

For each scenario we generate 10000 random pairs of solutions, and compare the Maximum Likelihood
function, the L1 norm function, and the location error for the two solutions. For the second scenario we
have used three different power levels for the noise: 0db, −10dB and −20dB corresponding the average
location errors of 1 m, 10 cm, and 1 cm, respectively. The percentage of pairs of solutions where each
function is consistent (the solution with the lowest location error is evaluated as the best) are shown in
Table 10.1; we also include the consistency of the L∞ norm –which is not used in this work– as a reference.

Table 10.1: Consistency of the Maximum Likelihood (ML), L1 and L∞ norm functions for different loca-
tion errors (%).

Scenario ML L1 L∞
Pure random 55.8 62.1 54.7
WGN 100 cm 69.1 66.8 49.4
WGN 10 cm 68.5 55.8 50.4
WGN 1 cm 71.7 51.9 50.1

For the first scenario (pure random), L1 gets higher consistency than ML: 62.1% vs. 55.8%. For the
second scenario with 0dB error power (1 meter of average error), the consistencies are 68.9% and 66.3% for
ML and norm guiding functions, respectively. If the noise power is reduced to −10dB (10 cm on average)
the consistency values become 68.0% and 56.1%, and for −20dB (1cm) they become 71.6% and 51.6%,
respectively.

From Table 10.1 it can be appreciated that ML acts only slightly better than random search (which
would have 50% consistency) when the solution is far from the optimum. The same holds true for the L1
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norm function when the solution approaches the optimum. Therefore, we can state that the norm function
is preferable when the solution is far away from the optimum, as in the beginning of the search process, and
the ML function is preferable when the solution is close to the optimum, as in the end of the search process.
As a result, we propose a new approach for solving this problem, that is described in the following section.

10.4.2 Two-stage Resolution

If we use the L1 norm function alone, the obtained accuracy is expected to be limited, but it provides good
guidance when the current solution is far away from the optimum, and the local optima are not extremely
sharp. If we use the likelihood function, it provides a highly improved accuracy in the neighborhood of
the optimum, but its guidance is poor in regions far away from it, and the local optima can be very strong.
Therefore, using the L1 norm seems a good idea when starting from a randomly generated solution, since it
is likely to guide the search towards the neighborhood of the optimum; once the search process approaches
that neighborhood, it is convenient to switch to a likelihood estimation, since it will produce much more
accurate results in that narrow region.

Figure 10.7: Two-Stage resolution process combining the first stage using error norm function and the
second stage with a likelihood function.

Therefore, as in [49], we propose a two-stage solving process that combines two search processes.
Figure 10.7 shows the basic configuration. The basic intuition is to use an initial phase to generate a rough
initial guess by using L1 starting from a random initial solution, then a second phase to refine the initial
guess by using ML. The key feature for the first phase is robustness, we want to obtain a solution that has
an upper bounded location error. The key feature for the second phase is accuracy, we want to minimize the
location error as much as possible.
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10.4.3 Beacon Reinforcement Factor
As was commented in Section 9.5, one of the major difficulties that arise during LD is the apparition
of flips or rotations in a part of the WSN, generally by a cluster of nodes. This happens when a set of
nearby nodes (the cluster) contains many references among nodes inside the set, and very few between
nodes in the set and nodes outside of the set. As a result, the cluster is a “floating” entity, and a translation,
rotation or flipping of the complete set produces only small variations of the guiding function; it is thus very
difficult to be detected by the search algorithm, even when the location error suffers a large increase [163].
An example of flip/rotation error is shown in Figure 10.8, where real locations are indicated with dots,
estimated locations with asterisks and a dotted line links every estimated location with its corresponding
real location. We can see that almost every dotted line intersects at a single point: the rotation center.
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Figure 10.8: Example flip error: a cluster of nodes has their location estimations reflected through a point;
this error is hard to detect when there are few distance measurements from nodes in the cluster to nodes
outside the cluster.

Once the flip has occurred, it is very difficult for the search technique to fix it, since the flipped nodes
produce an attraction effect on the remaining nodes of the cluster, stopping them from returning to their
real locations. Speaking in optimization terms, a cluster displacement constitutes a local optima, and a very
strong one for that matter. Therefore, there is a need for special mechanisms that helps escape this trap, or
prevent falling into it in the first place.

There are some heuristic factors that can be incorporated to the guiding function and can help improve
its performance. Since a beacon cannot be moved away from its location, this issue is usually solved when
one or more nodes in the cluster set is a beacon. However, due to the reduced number of beacons, this is
generally not the case. We propose to reinforce the effect of the already existing beacons in the network
as a way to avoid translation, rotation, of flip errors. To do this, we assign a higher weight to those links
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in which one of the nodes is a beacon node. This will force those nodes that have link distances measured
with respect to some beacon to keep those distances, specially the beacon’s close neighbors. For this work
we have chosen a weight of 2 for the links containing a beacon; this weight is used both in the L1 norm and
the ML functions.

10.5 Problem instances

Of the 33 total data sets, we select 10 data sets to generate the problem instances, and the remaining 23 will
serve as the data to establish the model. The main defining properties (number of nodes, number of link
measurements available, and average measurement error per link) of the selected instances are summed up
in Table 10.2. As can be seen, the average measurement errors are rather important, ranging from 1.70m to
4.58m.

Table 10.2: LD problem instances features.

Instance 3-19A 3-19B 3-19C 3-19D 3-19E 3-19F 3-20A 3-20B 3-25A 3-25B
Number of nodes 79 93 93 94 94 94 94 93 93 94
Number of links 677 673 394 644 378 622 978 1026 992 1279
Avg. link error (m) 4.55 3.89 2.05 2.99 1.70 2.52 3.51 2.92 2.55 4.58

In all of our instances, we set a small number of the nodes to become beacons and serve as reference
points for the rest of nodes to locate themselves. The default quantity of beacon nodes in our LD formulation
is 10% of the nodes in the network. The beacons are chosen randomly among the nodes in the deployed
WSN; in order to avoid possible dependencies with the chosen beacons, for each problem instance we select
ten random beacon configurations, labeled from ‘1’ to ‘10’, and solve each beacon configuration of each
problem instance as an instance.

In all the data sets, we have complete knowledge about the real locations of the nodes (otherwise nei-
ther Figure 10.4 nor the data-dependent models could have been generated), however the optimization
algorithms have no access to this information. We use this information in a post-processing estimation of
the nodes location accuracy, as a mean of evaluation of the LD processes.

10.6 Experiments

In this section we describe the experimental tests conducted on the LD problem. We pick SA as the base
technique to solve LD, and the L1 norm function as its base configuration for comparison purposes. We
test the effect of the different configurations against it, and the sensibility of the obtained solutions with
respect to the beacon density in the WSN. Later, we compare the performance of the different optimization
algorithms: SA, GA, and PSO. Finally, we assess the effectiveness of our proposed two-stage resolution
process by comparing its results to the results produced under the same conditions using either the L1 error
norm function or the likelihood approach.

The parametric configurations of the algorithms were empirically tuned; the values obtained are shown
in Table 10.3. All the solutions are obtained after performing 100 independent executions of 5, 000, 000
evaluations each (since there are ten instances with ten beacon configurations each, in total 10, 000 inde-
pendent executions are performed for each test scenario). For the comparisons, we show the boxplots of the
average location errors for the non-beacon nodes, for each of the ten problem instances. In each graphical
representation, the same scale is used for all the representations, to enable visual comparisons among plots.
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Table 10.3: Parametric configurations of the optimization algorithms.

Algorithm GA
evaluations 5, 000, 000
population 100

selection Roulette
replacement 8-Tournament

crossover 0.80

mutation
{
pm = 1/L
Rmax = 15

Algorithm PSO
evaluations 5, 000, 000

swarm 50
C1 2
C2 2

starting inertia 0.5
final inertia 0.1

Algorithm SA
evaluations 5, 000, 000

mutation
{
pm = 1/L
Rmax = 15

Markov chain 50
α 0.99995
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Figure 10.9: Effect of link weighting and beacon reinforcement in the L1 error norm.

10.6.1 Impact of the Link Weighting and the Beacon Reinforcement

We start by analyzing the effects produced by the use of link weighting and beacon reinforcement over
the basic L1 error norm function. For this, we run SA using the raw error norm function as its guiding
function, and SA using the error norm function with both link weighting and beacon reinforcement (see
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Figure 10.10: Influence of the beacon density.

sections 10.3.1 and 10.4.3). The location errors obtained for the ten selected problem instances are displayed
in Figure 10.9. For all scenarios, the parametric configurations are like the one presented in Table 10.3.

Figure 10.9 shows the boxplot representation of the global average location errors obtained with the raw
L1 error norm function for the ten problem instances (top), and the average location errors obtained with
L1 error norm function using link weight and beacon reinforcement (bottom). The configuration of SA that
uses raw error norm function performs noticeably poorer than the base configuration of SA: for instances
3-19A, 3-19C, 3-19D and 3-25B the location errors are visibly larger, while for the rest of the instances
both configurations perform similarly.

Therefore, we conclude that adding link weight and beacon reinforcement improves the performance
of an optimization algorithm that uses the L1 error norm function, since in several instances it achieves
location errors lower by an order of magnitude, while for the rest of instances the achieved location errors
are similar or slightly lower.

10.6.2 Influence of the beacon density

In this section we study how the density of beacons in the WSN affects the overall location error. Our
intuition says that for higher beacon densities, the expected resulting location error should become smaller.
The base technique is SA with L1 error norm, link weight, and beacon reinforcement. Figure 10.10 shows
the boxplot representation of the average location errors for WSN with: 10% beacon nodes (top), 20%
beacon nodes (center), and 30% beacon nodes (bottom). Note that the beacon configurations in the two
additional scenarios defined cannot match the ones used in the test case (since different numbers of beacons
are used).
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Figure 10.11: Performance of the different optimization algorithms.

The boxplot representations match the aforementioned intuition concerning the influence of the beacon
density. As can be seen, the solutions produced with 20% beacon nodes achieve lower location errors in all
ten instances, the largest improvements being found in instances 3-19E, 3-20A and 3-25B. Additionally, the
achieved location errors show much smaller variances. These properties are even more pronounced when
the node density is augmented to 30%, with the lowest average location errors and almost zero variance; the
differences between using 20% and 30% beacon nodes are small, however, in fact the average location error
in the first case ranges from 0.29m to 1.04m, while in the second it ranges from 0.21m to 0.99m, depending
on the problem instance considered.

The statistical analysis confirms that the location errors of solutions of instances containing either 20%
or 30% beacon nodes are significantly lower than those with 10% beacon nodes, for any of the problem
instances. However, switching from 20% to 30% beacon nodes does not bring a clear improvement: the
error is significantly lower in 6 problem instances, but in the remaining 4 instances it is significantly higher.
Therefore, we recommend 20% beacon nodes as the optimal trade-off value between price and accuracy.

Despite these results, the test instances we use for the rest of experiments contain 10% beacon nodes.
The reason for this is to test the solving techniques in the most challenging yet feasible scenario. From
the results of this section, the performances of the optimization techniques are expected to significantly
improve if the beacon density is increased to 20%, for any of the problem instances at hand.

10.6.3 Performance of the different algorithms

In this section we test the relative performances of the different optimization algorithms selected for LD.
Their parametric configurations were empirically tuned, and are displayed in Table 10.3. The base test
instances are the same used so far, with 10% beacon nodes randomly selected in ten different configurations
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Figure 10.12: Results of the different search processes.

per instance (the same sets of beacon configurations are used in all the algorithms). The three algorithms
use the L1 error norm function with link weighting and beacon reinforcement as the guiding function. The
boxplots of the average location errors produced by the algorithms is shown in Figure 10.11.

The results displayed clearly show that SA outperforms both GA or PSO in the LD problem. In effect,
for all of the ten instances at hand, the average location errors produced by SA are visibly lower (and have
lower variance) that those obtained by the other two techniques. Between GA and PSO the differences
are slight: for instances 3-19B and 3-19F PSO obtains lower errors, but for the remaining eight both algo-
rithms perform similarly. Additionally, the statistical analysis of the results performed for the 100 scenarios
(combination of ten problem instances and ten beacon configurations) points out that the location error of
the solutions obtained using SA are significantly lower than those obtained with GA in 95 cases, and sig-
nificantly lower than those obtained with PSO in 94 scenarios. As a result, we state that SA is the best
performing algorithm for LD, outperforming both GA and PSO.

10.6.4 Comparison of the different search processes

Finally, we are ready to assess the effectiveness of our proposed two-stage search technique. For this, we
select SA as the optimization technique, and establish the comparison for three different configurations: L1

error norm as the guiding function (with both link weight and beacon reinforcement), likelihood guiding
function, and our proposed two-stage approach (Section 10.4.2) using L1 error norm in the first stage, and
the likelihood function in the second stage. The results obtained in this experiment are displayed in Fig-
ure 10.12. The balance between the two phases has been empirically determined. The chosen configuration
is 4, 000, 000 solution evaluations in phase 1 (L1 error norm) and 1, 000, 000 solution evaluations in phase
2. This configuration is the result of the LD problem complexity, in which the task of finding an approxi-
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mate solution is relatively more complex than refining that solution. Note that the combined computational
effort of the two phases equals the computational effort of each of the other two approaches, for which the
stopping criterion is 5, 000, 000 solution evaluations.

Between the L1 error norm and the likelihood function there is no clear winner; for instances 3-19C and
3-19D the L1 error norm obtains lower location errors, while for instances 3-20A and 3-25B the opposite
happens. Finally, our proposed two-stage approach receives the best part out of each of them, and outper-
forms both in all problem instances (except for 3-20A, where it is slightly outperformed by the likelihood
function). The results from the statistical analysis state that the two-stage search process is significantly
better than the test case (L1 error norm) in 95% of the test scenarios, and worse in only 5%, it is better than
the likelihood in 94%, and worse in only 5%. Therefore, we conclude that the two-stage search process
produces a real improvement over single phase solving processes, obtaining significantly lower location
errors in over 94% of the tested cases.

10.7 Conclusions
In this chapter we have addressed the resolution of the LD problem in WSNs. In this problem a set of nodes
is deployed in a terrain and nodes take certain inter-node distance measurements. Among the nodes, a small
subset has self-locating capabilities, and their locations are used are absolute references by the rest of the
nodes.

In our formulation, the objective of LD is to obtain the coordinates of the nodes such that the average
node location error is minimal. However, the location error cannot be computed in a real scenario, so the
fitness or guiding function has to be defined otherwise; we consider two alternatives for it: error norm
functions, and Maximum Likelihood. We incorporate a link weight factor to discriminate links according to
the reliability of the distance measurement they have in the error norm function, and a beacon reinforcement
factor that doubles the contribution of each link in which one of the nodes is a beacon node, in order to avoid
flip errors.

After conducting a study of the consistency of the two guiding functions available, we conclude that
each one outperforms the other under different circumstances: for solutions with large errors, the error norm
performs better, while for solutions with low errors, the likelihood performs better. Therefore, we propose
a two-stage approach that uses error norm first, then switches to likelihood when the solution is considered
to contain lower error.

We define a test bench of 10 instances selected from 33 sets of real distance measurements; the 23
remaining sets serve to construct the models used for link weighting and likelihood. For each selected
instance we generate 10 random beacon node configurations, thus obtaining a total of 100 test scenarios.
We conduct the first series of experiments to assess the effectiveness of the link weighting and beacon rein-
forcement factors, the influence of the beacon node density, and the performance of the different algorithms.
The results show that link weighting and beacon reinforcement noticeably contribute to reduce the average
location error of the L1 error norm function: in 50% of the instances adding link weighting and beacon
reinforcement factor has reduced the errors by an order of magnitude of the errors, while for the remaining
50% the produced results have been of similar quality. We also show that 20% beacon nodes holds the op-
timal trade-off between accuracy and cost (we still keep the value to 10% to have a challenging problem).
Regarding the algorithms, we highlight that SA largely outperforms GA and PSO, in 95% and 94% of the
test cases, respectively.

Finally, we conduct the last set of experiments to test the effectiveness of the proposed two-stage solving
procedure against both L1 and likelihood approaches in isolation. The two base approaches outperform
one another in different scenarios, however the proposed two-stage approach showed a clear improvement
towards each of the other two, being able to equal or outperform both in 94% of the 100 test scenarios.
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Chapter 11

Conclusions

This thesis work has tackled the resolution of complex optimization problems found in the domain of
Wireless Sensor Networks (WSNs). This relatively new field has brought new and exciting possibilities
for experimental sciences and industry, but also novel problems, and new hard constraints that must be
dealt with. This combination of factors demands that new and powerful optimization techniques have to be
developed and tuned in order to properly address them.

We have first made a review of the basic principles found in WNSs, including the models most com-
monly used for both the sensor nodes and the network itself. We have listed the special features that
distinguish WSNs from other networks, specially regular ad hoc networks. We have provided short reviews
of existing hardware platforms for sensor nodes, types of sensors, and current sensor network application
fields. Then, we have provided a review of the main problems (with optimization component) that can be
found in WSNs, with special attention to those that receive most attention from the research community.

We propose the use of metaheuristics as the key tool to address the resolution of the optimization prob-
lems chosen for this thesis, so we first offer a description of this kind of technique. We classify the tech-
niques into the main categories found, depending on the way they handle the candidate solutions (population
and trajectory), and the type of problem approach they solve (mono-objective or multi-objective). Addi-
tionally, we have explain the convergence model for distributed populations developed by Gabriel Luque
since it serves as the basis for our automatic migration tuning technique.

Regarding the problems, we have picked two of the most addressed ones found in the literature, the
layout optimization problem (WSNL) and the location discovery problem (LD), and additionally, we have
addressed a third problem, the radio network optimization problem (RND), that is closely related to another
problem found in WSNs, the sensor node scheduling problem. We now describe them shortly in turn. In
RND, the task consists in selecting a subset of locations from a set of available locations for the installa-
tion of base stations (BTs), the objectives are to maximize the radio coverage these BTs will provide and
minimize the total number of locations selected. In the WSNL problem, the task consists in deciding the
number of sensor nodes and the geographic locations for their deployment as a WSN, with the objectives of
maximizing the sensing coverage, minimizing the economic cost (expressed through the number of sensor
nodes), and maximizing the lifetime of the system (by reducing the energy consumption due to communi-
cations). In LD, the task consists in finding the geographic locations of the nodes of a deployed WSN from
a set of node-to-node distance measurements and landmarks (or beacons), the objective is to minimize the
average node positioning error.

These problems address different concepts found in WSNs; both RND and WSNL are design problems,
where the network or some aspect of it has to be designed in order for the resulting system to meet some
quality standards, meanwhile the LD problem is an analysis problem, where some properties of the network
(in this case, the location of nodes) have to be approximated. It should be noted that our approaches to these
problems are not limited to abstract academic definitions; we develop complex realistic problem models
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and instances (for RND and WSNL), or even solve real problem instances when possible (for LD). From
a resolution point of view, the approaches to these problems also cover a wide spectrum, since LD is a
mono-objective problem, WSNL is a multi-objective problem, and RND has been defined under both mono
and multi-objective approaches. We now proceed to describe the work done for each of the three problems
in detail.

In the RND problem, we propose CHC as a competitive solving algorithm in the mono-objective prob-
lem formulation, since it consistently outperformed (100% of the test cases) both SA and GA in 10 problem
instances of different dimensions and geometry. We developed a multi-objective version of that algorithm,
MOCHC, and showed that it is also highly competitive by comparing it against the state-of-the-art algorithm
NSGA-II in the same set of instances and noticing that it obtained better results (again, in 100% of the test
cases). Both CHC and MOCHC were successfully expanded to deal with non-binary solutions as the prob-
lem was developed to include directional antennae, for which a direction parameter needs to be defined.
Finally, in a wide spectrum comparison against 13 state-of-the-art optimization algorithms conducted on
the large real-world based instance of Malaga, performed in cooperation with other research groups, CHC
ranked third. In addition, using that same instance of Malaga as a test bench, we tested a novel theory-driven
proposal to automatically configure the migration parameters in a parallel Genetic Algorithm. We managed
to obtain results similar to the best performing fixed migration schedules found during an empirical param-
eter tuning, and only slightly worse than the best found sequential configuration, while avoiding the burden
of parameter tuning; the overall computational effort was estimated to achieve savings of over 75%.

In the WSNL problem, we propose a new local improvement operator, PACO, to be used integrated with
an optimization algorithm. Our proposed operator searches the candidate solution for local inefficiencies
due to two nodes being too close to one another, then tries to fix it by replacing the close nodes by a
single node capable of maintaining the network’s original coverage and connectivity. The effectiveness
of the operator is proved for four state-of-the-art multi-objective metaheuristics: NSGA-II, PAES, SPEA2
and MOCell. Two kinds of genetic operator we tried for both the mutation and the crossover, a ‘random’
operator on the one side (SBX for the crossover), and a ‘geographic’ operator on the other side. The use of
PACO improved the results in the wide picture with a probability of 84.85%, but when the study is restricted
to the best performing half set of algorithmic configurations, then PACO brings improvement in 98.48%
of the cases. Additionally, the performance of PACO has been found to improve when the dimension of
the problem instance grows, making it even more attractive to the domain of WSNs, since networks are
expected to contain high numbers of nodes in the near future.

In the LD problem, we study the use and consistency of the two most popular kinds of guiding func-
tion: the error norm functions and the likelihood functions. After the study, we conclude that each one
outperforms the other under different circumstances, and thus propose a new two-stage resolution method
to take advantage of each of the functions strengths. To test our proposal, we use a set of 10 real problem
instances, and additional data from another 23 measurement data sets to establish the required models. SA,
GA, and PSO are the algorithms chosen for our experiments. We found that SA produced better results
than the two others, that link weighting and beacon reinforcement greatly improve the performance of the
error norm function, and that by using 20% beacon nodes the expected accuracy is close to optimal. Finally,
the effectiveness of the proposed two-stage approach was proved in SA by comparing its results to those
of either guiding function working separately; the best average location error obtained by using only one
guiding function is improved by the two-stage approach in 94% of the test cases.

As a general evaluation of the thesis work, we have tackled three of the most important problems
found in (or closely related to) the domain of WSNs, and have solved all of them satisfactorily using
metaheuristics. Additionally, we have proposed a novel contribution in each of the problems that help
improve the solutions obtained, or that help reduce the required time and computational effort to solve the
problems. Each of these contributions explores an important concept found in optimization. Parallelism is
explored in the RND problem, where we have proposed an automatic migration tuning technique for dGA,
thanks to which high-quality solutions are obtained in shorter times. Integration of problem knowledge
in specific advanced operators is explored in the WSNL problem, where we have proposed a novel local
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improvement operator that, used in combination with a metaheuristic algorithm, helps the latter improve
the quality of the solutions produced. Finally, the combination of different search techniques is explored
in LD, where we have proposed a two-stage combination of two types of guiding function, error norm and
likelihood, that produces results with lower location errors than either of the former separately. Another
concept that has a noticeable importance throughout this work is multi-objective optimization; in WSNL it
constitutes the approach chosen for the problem (with additional constraints), and in RND its use is validated
by comparing its performance against that of mono-objective techniques under equivalent circumstances.

This thesis has produced significant publications of high impact related to its different contributions.
The following references are published papers in ISI listed journals, and can be found in Appendix A in the
following. The performance of CHC for solving RND was stated in [3]. The effectiveness of metaheuristics
applied to the WSNL problem was presented in [4], and the benefits of using PACO in that problem were
shown in [1]. Finally, the power of the combination of different search techniques for LD was demostrated
in [2]. Furthermore, the results of the work developed in this thesis have direct applicability to real-world
problems like the site selection problem for cellular networks (taken from RND), or the geographic location
of sensor nodes or mobile devices (taken from LD); strategies for the deployment of sensor nodes can also
be developed from our proposed methods in WSNL.

As future lines of research, we can identify two main trends. The first one is problem-oriented, and
consists in developing new, more complex, and more accurate problem instances and models. The second
is technique-oriented: to add a strong focus towards distributed execution of the optimization techniques.
Possible first steps in this second trend are to develop geographic partitions of the network and solve the
problem locally for each subnetwork, then integrate the solutions.
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Appendix A

List of publications related to this thesis
work

In this appendix we present the set of works that have been published during the years in which this thesis
work has been developed. These publications speak for the interest, validity, and impact on the scientific
community and literature of the work contained in this thesis, since they have appeared in prestigious
forums, and have been subject to peer review by expert researchers. Figure A.1 shows a diagram of the
different publications, and their relationships with the contents of the work. We list these publications next.

IEEE Trans. Evol. Comp. [3]

Opt. Tech. for Solv. Complex Problems [5]

EUROCAST 2007 [10]

EvoCOMNET 2007 [11]

GECCO 2007 [14]

NM&A 2006 [12]

MAEB 2007 [15]

NCP 2007 [16]

HEUNET 2008 [13]

LSSC 2007 [9]

J. Universal Computer Science [4]

Engineering Optimization [1] Applied Soft Computing [2]

EvoCOMNET 2009 [7]

NAA 2008 [8]

LSSC 2009 [6]

Figure A.1: Diagram of the publications related to this thesis work.

ISI JCR indexed journals:

[1] G. Molina, F. Luna, A.J. Nebro, and E. Alba. An efficient local improvement operator for the multi-
objective wireless sensor network deployment problem. Engineering Optimization, Accepted for
publication, 2010.

[2] G. Molina and E. Alba. Location Discovery in Wireless Sensor Networks Using Metaheuristics.
Applied Soft Computing, in press, corrected proof, 2010.
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C. Segura, E. Alba, P. Isasi, C. León and J. M. Sánchez-Pérez. Benchmarking a Wide Spectrum of
Meta-Heuristic Techniques for the Radio Network Design Problem. IEEE Transactions on Evolu-
tionary Computation, vol. 13, no. 5, pages 1133 – 1150, 2009.
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heuristics. Journal of Universal Computer Science, vol. 14, no. 15, pages 2549 – 2565, 2008.
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[5] G. Molina, J. F. Chicano and E. Alba. Optimal Location of Antennae in Telecommunication Net-
works. In Optimization Techniques for Solving Complex Problems, Wiley (en prensa), 2008.

International conferences of the series Lecture Notes in Computer Science:

[6] S. Fidanova, E. Alba and G. Molina. Hybrid ACO Algorithm for the GPS Surveying Problem. In
Proceedings of the Large-Scale Scientific Computations (LSSC 09), volume 5910 of LNCS pages
318–325, 2009.
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Appendix B

Resumen en español

Los avances recientes en la miniaturización de la electrónica han propiciado la aparición de dispositivos
integrados de tamaño reducido con capacidades de cómputo, comunicación, y medición: los nodos sensores.
Estos nodos forman el elemento constitutivo básico de las redes de sensores, un nuevo paradigma en el
campo de las ciencias experimentales que ofrece prestaciones de medición y monitorización nunca antes
vistas. Sin embargo, a la par que este campo abre nuevas posibilidades, un nuevo conjunto de problemas de
gran complejidad ha de ser resuelto para lograr un comportamiento satisfactorio.

Ya existe un importante cuerpo de conocimiento sobre las redes de sensores, y en particular sobre el
abordaje y la resolución de muchos de los problemas que en ellas surjen. Sin embargo, el rápido desarrollo
experimentado por esta propuesta tecnológica hace que dicho cuerpo de conocimiento crezca, evolucione,
y se modifique continuamente y cada vez con mayor ritmo, lo cual vuelve muchas de las anteriores prop-
uestas obsoletas. Es por tanto necesario el proponer una serie de estrategias y métodos que permitan, de
manera robusta, flexible, y eficiente, resolver distintos problemas cuyos planteamientos, por su naturaleza
y complejidad, varı́a con frecuencia.

En este trabajo de tesis doctoral proponemos el uso de técnicas metaheurı́sticas para la resolución de al-
gunos de los principales problemas que se hallan en las redes de sensores. Adicionalmente, por cada uno de
los problemas considerados, proponemos una contribución novedosa que permite mejorar las prestaciones
de la técnica resolutiva, ya sea en lo referente a la calidad de las soluciones obtenidas, o en la eficiencia
del método, cuya efectividad evaluamos de forma experimental, con confianza estadı́stica, sobre instancias
complejas o incluso realistas del problema en cuestión.

B.1 Organización
Esta tesis doctoral se compone de cinco grandes bloques. En el primer bloque se presentan los fundamentos
en los que se basa el trabajo: por una parte las redes de sensores, y por otro las técnicas metaheurı́sticas
que sirven como base para la resolución. Las tres siguientes partes se ocupan de cada uno de los tres
grandes problemas resueltos en este trabajo: el diseño de la red de radio (RND), el despliegue de nodos
sensores (WSNL), y el descubrimiento de localización (LD). Finalmente, en el último bloque se agrupan
los principales logros alcanzados en esta tesis y se extraen las conclusiones, tanto a nivel de conjunto como
particularizadas por escenario. A continuación detallamos de manera especı́fica el contenido por capı́tulos.

• Capı́tulo 1: Introducción. En este capı́tulo se realiza una justificación de las razones que motivan
la presente tesis, y se esboza un esquema del contenido de la misma.

• Capı́tulo 2: Redes de sensores. Este capı́tulo describe de manera general los nodos sensores y
las redes de sensores. Los modelos empleados para ambas entitades son presentados, ası́ como las
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principales caracterı́sticas que distinguen a este tipo de red de otras redes a priori similares, como
las redes inalámbricas ad hoc. También se presenta un breve listado de plataformas existentes, ası́
como ejemplos de aplicaciones de uso. Finalmente, se realiza una revisión general de los problemas
de optimización encontrados en relación con el uso de estas redes.

• Capı́tulo 3: Metaheurı́sticas. Este capı́tulo realiza una introducción genérica al campo de las
técnicas metaheurı́sticas, incluyendo los principales conceptos que se emplean, e indicando las prin-
cipales categorı́as en las que se clasifican. Se hace especial hincapié en los paradigmas especı́ficos
empleados en este trabajo: resolución de problemas multiobjetivo y metaheurı́sticas paralelas, in-
cluyendo una breve descripción de un estudio terico sobre la convergencia en problaciones dis-
tribuidas, ya que sirve como punto de partida para una de las contribuciones que vienen se exponen
en los captulos siguientes.

• Capı́tulo 4: Algoritmos. En este capı́tulo se describe de manera general (como plantillas) los algo-
ritmos que se utilizan para resolver los distintos problemas abordados.

• Capı́tulo 5: Problema de diseño de la red de radio. En este capı́tulo se describe el problema
de diseño de la red de radio (RND). Los principales modelos empleados para la evaluación de la
cobertura ofrecida por la red son presentados, y la literatura existente relativa a la resolución de este
problema se revisa. A continuación se presenta en problema de planificación en redes de sensores, que
guarda relación con RND, y dicha relación es explicada. Se propone una extensión de la resolución
de RND para cubrir el problema de planificacin, y se revisa la literatura existente relativa a este ltimo
problema.

• Capı́tulo 6: Resolución del problema de diseño de la red de radio. En este capı́tulo se describen
las dos formulaciones empleadas en el planteamiento de objetivos del problema RND, monoobje-
tivo y multiobjetivo, ası́ como los dos tipos de problema, binario (sin parámetros) y entero (con
parámetros). Se definen ocho instancias de problema de distinta complejidad, y se resuelven con
distintos algoritmos. Se propone un método de autoajuste de la migración basado en el estudio de
convergencia presentado en el capı́tulo 3. Finalmente, empleando como base la mayor instancia
definida, se demuestra la efectividad de la técnica de autoajuste de la migración.

• Capı́tulo 7: Problema de despliegue de nodos sensores. En este capı́tulo se describe el problema
de despliegue de nodos de la red de sensores (WSNL). Se describe los distintos modelos existentes
para la cobertura y las comunicaciones que se emplean en la literatura, tanto a nivel de nodo como a
nivel de red. Se define el concepto de tiempo de vida, y se presentan los modelos más comúnmente
empleados para su estimación. Finalmente, se realiza una revisión de la literatura existente para este
problema.

• Capı́tulo 8: Resolución del problema de despliegue de nodos sensores. En este capı́tulo se de-
scribe la formulación multiobjetivo empleada para este problema, con el número de nodos y el tiempo
de vida como objetivos, y la cobertura planteada como restricción. Se propone un novedoso oper-
ador de mejora local para las soluciones, PACO, para su uso integrado dentro de un algoritmo de
optimización. La efectividad del operador propuesto se testea sobre instancias de distinto tamaño, y
sobre 4 algoritmos del estado del arte, y dos conjuntos de operadores, aleatorios y geográficos.

• Capı́tulo 9: Problema de descubrimiento de localización. En este capı́tulo se describe el problema
del descubrimiento de localización (LD). Se comienza con un breve repaso de las técnicas existentes
para la medición de distancias entre nodos, sus limitaciones y errores, y los primeros métodos em-
pleados para determinar las posiciones de los nodos. Posteriormente, se introducen los dos tipos de
función más empleados para guiar las técnicas de búsqueda: norma del error y probabilidad. Final-
mente, realizamos una revisión de la literatura relativa a este problema.
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• Capı́tulo 10: Resolución del problema de descubrimiento de localización. En este capı́tulo de-
scribimos la formulación empleada para el problema LD. Se realiza un estudio de la consistencia de
los dos tipos de funcion utilizados para guiar los mecanismos de búsqueda, y se propone un método de
dos fases como resultado. Se comprueba la efectividad del método propuesto mediante la resolución
de 10 instancias generadas a partir de un conjunto de datos experimentales reales.

• Capı́tulo 11: Conclusiones En este capı́tulo se resumen las principales conclusiones extraı́das del
trabajo realizado, tanto a nivel de conjunto como particularizadas por cada uno de los problemas
abordados.

• Apéndice A: Publicaciones. En este apéndice se listan las publicaciones realizadas como consecuen-
cia del trabajo enmarcado dentro de la presente tesis doctoral, ası́ como su relación con los distintos
contenidos de la misma.

• Apéndice B: Resumen en español. El presente resumen de la tesis.

B.2 Redes de sensores
Las redes de sensores (WSNs) son un nuevo tipo de redes sin infraestructura (ad hoc) compuestas por
pequeños dispositivos llamados nodos sensores, cuyo propósito es medir o monitorizar una o más variables
fı́sicas dentro de un determinado entorno. Cada nodo sensor posee capacidad de cómputo y de comuni-
cación (inalámbrica), y además incluye uno o más sensores (de ahı́ su nombre). Algunos tipos de sensor
pueden ser: sensores mecánicos, sensores magnéticos y electromagnéticos, térmicos, ópticos, quı́micos, o
acústicos.

Las principales caracterı́sticas definitorias de los nodos sensores son, además de las ya expuestas, su
reducido tamaño, bajo coste, y reducida capacidad de cómputo, almacenamiento, comunicación, y energı́a.
Su arquitectura básica comprende cuatro módulos principales: el procesador, el transceptor (para comuni-
caciones), los sensores, y la alimentación (energética). El modelo básico de un nodo sensor es binario y se
define en base a dos valores: el radio de medición RSENS y el radio de comunicaciones RCOMM . Todo
los que se encuentra a menor distancia que el radio de medición es medido (o detectado) por el nodo, ası́
como cualquier nodo a menor distancia que el radio de comunicaciones puede recibir transmisiones desde
el nodo. Existen dos tipos de arquitectura para redes de sensores, la plana, donde todos los nodos están al
mismo nivel, y la jerárquica (o clusterizada). En nuestro trabajo se considera que la red es de tipo plano.
Además, las redes tienen un nodo (o varios) especial llamado High Energy Communications Node (HECN),
y que forma el punto de acceso a la red; todos los demás nodos de la red han de ser capaces de comunicarse,
directa o indirectamente, con este nodo.

Las WSNs poseen caracterı́sticas especiales que las distinguen de otros tipos de redes ad hoc. Deben
trabajar de manera autónoma y por largos periodos de tiempo con escasa energı́a y sin mantenimiento.
Albergan grandes cantidades de nodos sensores que deben configurarse automáticamente. Se despliegan en
entornos hostiles, y deben responder a cambios en el entorno, o en la propia red.

Las WSNs ya han sido empleadas en multitud de tipos de aplicación. Los principales dominios en
los que pueden clasificarse estas aplicaciones son los siguientes: aplicaciones militares, de vigilancia, in-
genierı́a civil, aplicaciones biomédicas, servicios, industria, agricultura, medio ambiente, ayudas a zonas
catastróficas, y exploración.

B.2.1 Problemas de optimización en redes de sensores
Como ya se anunció, el uso de WSNs implica la resolución de nuevos problemas de optimización. Ya existe
un importante cuerpo de conocimiento en este sentido, por lo que realizamos una labor de compilación de
los principales problemas encontrados:
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• Despliegue de nodos sensores (WSNL). Este es uno de los problemas abordados en esta tesis doc-
toral. Consiste en decidir el número de nodos que se despliega ası́ como las posiciones geográficas
de cada uno de esos nodos, de manera que se consiga el grado de cobertura deseado, se maximice el
tiempo de vida y se emplee el menor número de nodos posible.

• Descubrimiento de localización (LD). Otro de los problemas abordados en esta tesis doctoral. Dada
una WSN ya desplegada y un conjunto de estimaciones de distancia entre pares de nodos, hay que
encontrar las coordenadas geográficas correspondientes a los nodos de la red con la mayor precisión
posible.

• Planificación de tareas. Es el tercer problema referenciado en esta tesis; si bien no se resuelve
directamente, sı́ se resuelve el problema RND, que guarda relación con el mismo. Este problema
consiste en realizar la planificación de tareas en la WSN de manera que se determina cuando cada
nodo está activo y cuando en reposo. El objetivo es maximizar el tiempo de reposo de los distintos
nodos para maximizar el tiempo de vida de la WSN, mientras se mantiene en todo momento las
prestaciones requeridas (cobertura, conectividad).

• Sincronización entre nodos. Este problema consiste en generar una señal de reloj sı́ncrona entre
los distintos nodos de la red, con precisión suficiente para el correcto funcionamiento de los distintos
procesos (mediciones, transmisión de información, etc.). Alternativamente, pueden idearse métodos
de operación que sean robustos frente a errores de sincronı́a, o que no requieran sincronı́a en absoluto.

• Control de topologı́a. Este problema consiste básicamente en garantizar la conectividad de la red,
generalmente de manera distribuida y controlando la activación de los nodos ası́ como la energı́a
empleada para la transmisión de datos y por consiguiente el radio de comunicaciones. También
pueden buscarse otras propiedades, como la planaridad del grafo.

• Encaminamiento en WSNs. En este problema se debe decidir la estrategia de routing seguida por
los nodos (idealmente de manera totalmente distribuida), ası́ como los valores de los parámetros em-
pleados (si los hubiera). Los principales objetivos perseguidos en routing son la fiabilidad, eficiencia
energética, y la latencia.

• Data-fusion en WSNs. Este problema consiste en integrar la información temporalmente, espacial-
mente, o ambas. Generalmente se persigue realizar un procesado de la información, o simplemente
reducir la cantidad de información que se transmite (para ahorrar energı́a, evitar la congestión en la
red, etc.).

• Seguridad en WSNs. La seguridad en WSNs incluye la protección de la información o la detección
de intrusión (dentro de las comunicaciones de la red). También se estudian los efectos de ataques
sobre algunos procesos de las redes (tı́picamente LD), ası́ como algunas técnicas para la protección
frente a dichos ataques.

En los distintos problemas descritos hay una serie de parámetros que surgen con cierta recurrencia y
son objetivos que deben ser tenidos en cuenta. Los principales de ellos son: eficiencia energética (y tiempo
de vida), probabilidad de detección y tasa de falsa alarma, latencia en la respuesta de la WSN, operación
distribuida, uso eficiente de recursos limitados (de cómputo, comunicaciones y almacenamiento), robustez
frente a condiciones adversas del entorno, y robustez frente a fallos de los nodos.

B.3 Metaheurı́sticas
Las metaheurı́sticas son estrategias de alto nivel que combinan distintos métodos para explorar un espacio
de búsqueda. Suelen definirse a modo de plantillas que se deben rellenar empleando información especı́fica
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del problema sobre el cual han de aplicarse (representación de las soluciones, operadores, etc.), y son
capaces de abordar problemas cuyos espacios de búsqueda son muy extensos. Las metaheurı́sticas pueden
clasificarse dentro de dos categorı́as, según el número de soluciones que manejan de forma simultánea: las
basadas en trayectoria, que tienen una única solución, y las basadas en población, que manejan un conjunto
de soluciones, o población, de forma simultánea. Algunas metaheurı́sticas conocidas del primer tipo son
el recocido simulado (SA), la búsqueda tabú (TS), GRASP, la búsqueda de vecindario variable (VNS), o la
búsqueda local iterada (ILS). Algunos ejemplos conocidos del segundo tipo son los algoritmos evolutivos
(EA), los algoritmos de estimación de distribuciones (EDA), la búsqueda dispersa (SS), la optimización por
colonia de hormigas (ACO), y la optimización por cúmulos de partı́culas (PSO).

Hay dos caracterı́sticas principales de los problemas seleccionados en esta tesis que deben ser tenidas
en cuenta y que justifican el uso de metaheurı́sticas. La primera es que todos ellos implican una gran
complejidad computacional, y por lo tanto requieren de muchos recursos para su resolución. La segunda
es que, tanto en RND como en WSNL, existen distintos objetivos en conflicto, es decir que no pueden
alcanzarse de manera simultánea, por lo que es necesaria una resolución de tipo multiobjetivo, en la que
se persigue un cierto equilibrio entro los objetivos. Estas caracterı́sticas nos impulsan a utilizar dos tipos
avanzados de metaheurı́stica: técnicas multiobjetivo basadas en la optimalidad de Pareto, y metaheurı́sticas
paralelas para reducir los tiempos de cómputo. A continuación se presentan estas técnicas.

B.3.1 Técnicas multiobjetivo

En la optimización multiobjetivo se busca optimizar varios objetivos de manera simultanea, los cuales están
en conflicto entre sı́ (de manera intuitiva, para mejorar uno se debe empeorar alguno de los otros). Por esto,
y a diferencia de la optimización monoobjetivo, el óptimo no es una única solución, sino un conjunto de
soluciones conocido como el óptimo de Pareto, el cual al ser representado en el espacio de objetivos da
lugar al llamado frente de Pareto. Cada solución de este conjunto es óptima en el sentido de que no es
posible mejorar ninguno de sus objetivos sin empeorar alguno de los demás.

El objetivo de la optimización multiobjetivo es pues la obtención del conjunto de soluciones Pareto-
óptimas. No obstante, esto no siempre es factible; en ese caso el objetivo pasa a ser el obtener una aprox-
imación suficientemente “buena” del conjunto, es decir, un conjunto de soluciones tal que se cumplen dos
propiedades: cercanı́a al verdadero frente de Pareto, y diversidad de las soluciones a lo largo del frente.

B.3.2 Técnicas paralelas

A veces, los problemas resueltos por las metaheurı́sticas son tan complejos que los tiempos de computación
resultan demasiado elevados. En estos casos, una posible opción es el uso de múltiples plataformas de
cómputo de manera simultánea y cooperativa, de modo que el problema puede resolverse en un tiempo
menor. Los algoritmos que siguen este tipo de estrategia se conocen como algoritmos paralelos.

En el caso de las metaheurı́sticas existen múltiples maneras de llevar a cabo la paralelización. Ası́,
para las técnicas basadas en trayectoria, se tienen los modelos de ejecuciones múltiples, de movimientos
paralelos, o de aceleración del movimiento, según si se ejecutan algoritmos completos en paralelo, si se
realiza la exploración del vecindario de forma paralela, o si se fracciona el cálculo de la función de fitness
y se realiza en paralelo, respectivamente. Para las metaheurı́sticas poblacionales, se tienen dos grandes
modelos: las metaheurı́sticas distribuidas, en las cuales se divide la población en varias subpoblaciones de
menor tamaño que se intercomunican, y las celulares en las cuales las soluciones se distribuyen siguiendo
un modelo regular que establece vecindarios.
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Estudio de la convergencia en EAs distribuidos

Según un estudio realizado por Luque y Alba [11], la convergencia de una población distribuida puede
aproximarse, bajo ciertos supuestos, mediante la expresión:

P (t) =

i=d(T )∑
i=1

1/N

1 + a · e−b·(t−per·(i−1)) +
N − d(T )/N

1 + a · e−b·(t−per·d(T ))
, (B.1)

donde P (t) es la proporción de la población global ocupada por el óptimo, per es el periodo de migración,
N es el número de subpoblaciones o islas, y d(T ) el diámetro de la topologı́a. A partir de este resultado
puede extraerse una expresión para el tiempo en que se alcanza la convergencia completa (el takeover time,
P (t) = 1), como sigue:

t∗ = per · d(T )− 1

b
· Ln

(
1

a
· ε

N − d(T )− ε ·N

)
, (B.2)

done t∗ es el takeover time, medido con un nivel de precisión ε.

B.3.3 Algoritmos usados
Para resolver los distintos problemas abordados en esta tesis se emplea un juego de algoritmos con distintas
caracterı́sticas. Estos algoritmos son de tipo tanto monoobjetivo como multiobjetivo. Dentro del primero
tipo, podemos mencionar la técnica basada en trayectoria SA, los algoritmos evolutivos GA y CHC, y la
técnica basada en cúmulo de partı́culas PSO. Dentro del segundo tipo tenemos la técnica basada en trayec-
toria PAES, los evolutivos MOCHC, NSGA-II, y SPEA2, y el algoritmo celular MOCell. Adicionalmente,
se emplea una versión paralela del GA para realizar el estudio de la efectividad de la técnica de migración
autoadaptativa propuesta.

B.4 Diseño de la red de radio
Nuestro primero problema abordado es el problema de diseño de la red de radio (RND). Este problema
consiste en seleccionar los emplazamientos para la colocación de estaciones base (o antenas), ası́ como los
posibles parámetros de las mismas, para ofrecer cobertura de radio a un determinado terreno, buscando
colocar el mı́nimo número de estaciones base posible. Los emplazamientos deben ser escogidos entre una
lista de emplazamientos disponibles. Los modelos más frecuentemente empleados para la estimación de
la cobertura son los modelos de puntos de test, donde una serie de puntos especiales son definidos en los
cuales se estima la recepción de la señal, y la rejilla o grid, en el cual se superpone una rejilla regular sobre
el terreno y se evalúa la recepción de señal en cada punto de dicha rejilla.

Este problema puede relacionarse de forma sencilla con el problema de planificación de actividad y
reposo en una WSN. En este ltimo problema debe decidirse los tiempos de actividad y de reposo de los
nodos de manera que siempre se mantengan los niveles de cobertura, y los nodos estén en reposo el mayor
tiempo posible. Este problema se puede transformar en elegir subconjuntos de nodos tales que cada sub-
conjunto contiene el menor número de nodos posible, y mantiene la cobertura requerida; en este caso, elegir
un subconjunto equivale a resolver RND.

B.4.1 Formulación
Planteamos el problema RND desde dos ópticas, la monoobjetivo y la multiobjetivo. En la primera, se
busca maximizar al mismo tiempo cobertura y número de antenas; para ello, la formulación empleada es:

f(~x) =
Coverage(~x)2

|antennae| , (B.3)
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donde la funcin f se debe maximizar. En la segunda, ambos objetivos se optimizan por separado:

f1(~x) = 100− Coverage(~x), (B.4)
f2(~x) = |antennae|, (B.5)

donde ambas funciones se deben minimizar, y además se definen las siguientes restricciones para encaminar
la búsqueda hacia zonas interesantes del espacio de búsqueda:

p1(~x) =

{
f1(~x)−K (f1(~x) > K)
0 (f1(~x) ≤ K)

, (B.6)

p2(~x) =

{
f2(~x)−N (f2(~x) > N)
0 (f2(~x) ≤ N)

. (B.7)

En nuestra definición del problema, la evaluación del terreno se realiza mediante el uso de una rejilla.
Además, se emplean tres modelos distintos para la cobertura de las antenas: cobertura cuadrada y cobertura
circular (sin parámetros), y cobertura sectorial o directiva (con parámetro dirección).

B.4.2 Resultados experimentales
Se abordó la resolución de 8 instancias de problema: 5 de tamaño reducido con antenas sin parámetros,
2 de tamaño medio con antenas directivas, y una de gran tamaño, basado en la ciudad de Málaga, usando
antenas sin parámetros. En todos los casos excepto el último se planteó la resolución monoobjetivo ası́
como la multiobjetivo. En cada prueba se realizan 30 ejecuciones independientes para realizar el análisis
estadı́stico de los resultados.

En las 5 instancias de tamaño reducido las ejecuciones se realizaron hasta hallar el óptimo. Se encontró
que el algoritmo CHC fue más eficiente que SA y que GA, y que su versión multiobjetivo, MOCHC, superó
los resultados de NSGA-II, al encontrar el óptimo del problema en todos los casos necesitando un menor
esfuerzo computacional que los demás algoritmos (visitando un menor número de soluciones del espacio de
búsqueda). En las instancias con antenas directivas se reutilizó CHC/MOCHC con resultados satisfactorios,
encontrándose que para algunos casos (los de mayor complejidad), la versión multiobjetivo es más efectiva
que la monoobjetivo.

Para la instancia de Málaga las ejecuciones se realizaron hasta completar 5 millones de evaluaciones.
Este trabajó se realizó dentro de un marco de colaboración con otros grupos, en un amplio estudio que
incluyó hasta 14 distintas técnicas de optimización, quedando CHC dentro del primer cuartil (las más efi-
cientes).

B.4.3 Técnica de migración automática
Nuestra propuesta de técnica de migración automática se basa en el estudio teórico de la convergencia en
poblaciones distribuidas. La idea básica consiste en adaptar las migraciones de tal manera que la con-
vergencia se produzca en el momento de terminación de la ejecución (parámetro fijo y predeterminado al
comienzo de la prueba); de esta manera, al evitar tanto la convergencia prematura como la no convergencia,
se espera alcanzar un equilibrio adecuado entre la exploración y la explotación de las soluciones.

Para esto, partiendo de la Ecuación B.2, podemos extraer:

tremaining + per ·
(
P (t)

1/N

)
= per · d(T )− 1

b
ln

(
1

a

ε

N − d(T )− εN

)
, (B.8)

a partir de la cual extraemos el periodo de migración per:

per =
tremaining −K
d(T )−

(
P (T )
1/N

) , (B.9)
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donde se define:

K =
1

b
· Ln

(
1

a
· ε

N − d(T )− εN

)
, (B.10)

donde a es igual al tamaño de la población en una isla, b = 0.4, y ε es un factor de tolerancia que se
configura como ε = 0.1.

Evaluación experimental

Para la evaluación de la técnica de migración automática se compararon los resultados obtenidos por un GA
distribuido que la incorpora frente a 10 GAs distribuidos con configuraciones fijas de migración, y 2 GAs
secuenciales. El modelo escogido de población distribuida fue de 8 islas de 50 individuos (población global
de 400 individuos), formando una topologı́a de anillo unidireccional. Se utilizaron dos modalidades según
los operadores de selección: la primera, llamada Elitista, combina una selección por ruleta y un reemplazo
elitista; la segunda, llamada Normal, combina una selección aleatoria y un reemplazo por torneo. Para este
experimento, las ejecuciones se realizaron hasta realizar 5 millones de evaluaciones.

Los resultados demostraron que, si bien nuestra técnica propuesta no obtuvo los mejores resultados entre
todos los algoritmos distribuidos, sı́ que obtuvo resultados cuando menos comparables; la técnica propuesta
funcionó mejor con la configuración de selección denominada Elitista. Comparada a los algoritmos secuen-
ciales, los resultados fueron algo inferiores, pero se compensa por un menor tiempo para la obtención de
resultados de calidad similar.

Finalmente, se estimó que el ahorro debido a la configuración automática de los parámetros de mi-
gración puede suponer entre un 75% y un 89% del tiempo completo de realización de la prueba.

B.5 Despliegue de nodos sensores

El segundo problema abordado es el despliegue de nodos para formar una red de sensores (WSNL). En
este problema, hay que determinar la cantidad de nodos que se va a desplegar ası́ como las coordenadas
en las que se va a colocar cada uno de ellos. Los objetivos perseguidos son obtener la mayor cobertura
posible (o bien un determinado grado de cobertura predeterminado), formar una red conexa con el HECN,
emplear el menor número de nodos posible, y obtener el mayor tiempo de vida posible (se asume que el
gasto energético se debe a las comunicaciones de información).

Para este problema se requiere el uso de modelos de cobertura y comunicaciones, ası́ como una definición
del tiempo de vida. Los modelos más conocidos para la cobertura a nivel de un nodo son la cobertura bina-
ria, la cuasi-binaria, y la probabilı́stica; para la cobertura a nivel de red se conocen la cobertura de puntos,
cobertura de área, cobertura de perı́metro, cobertura de camino, o cobertura diferenciada (con grados de
detección), entre otras; en nuestro caso empleamos cobertura binaria para nodo, de área para la red, y em-
pleamos un grid para el cómputo. Para las comunicaciones se tienen los mismos modelos a nivel de nodo,
que luego han de combinarse con la jerarquı́a de red y el protocolo de routing empleado. Nosotros asumi-
mos un modelo binario, red plana, y proponemos un routing de equilibrio energético local, donde cada nodo
distribuye la información entre los nodos más cercanos al HECN de manera proporcional al inverso de la
potencia necesaria para la transmisión.

Asumimos el criterio de time to first failure (TTFF) para la estimación del tiempo de vida, es decir que el
tiempo de vida abarca hasta el momento en que el primer nodo se queda sin energı́a. El consumo de energı́a
se debe exclusivamente a las transmisiones de información, y el modelo que empleamos para la potencia de
transmisión es cuadrático (la potencia de transmisión es proporcional al cuadrado de la distancia del enlace:
P ∝ d2).
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B.5.1 Formulación
En nuestro acercamiento al problema adoptamos una formulación multiobjetivo. En ella, tanto el número
de nodos sensores como el tiempo de vida son objetivos que hay que optimizar, mientras que la cobertura se
impone como restricción (exigimos 100% de cobertura). Por lo tanto, la formulación es la siguiente, donde
los objetivos son:

f1(~x) = Cost(~x), (B.11)
f2(~x) = Energy(~x), (B.12)

sujeto a la restricción impuesta por la función de penalización P :

P (~x) = 100− C(~x). (B.13)

Asumimos que los nodos empleados tienen valores RSENS = RCOMM = 30m.

B.5.2 El operador de mejora PACO
Proponemos un operador de mejora local para las soluciones candidatas, el Proximity Avoidance Coverage-
preserving Operator (PACO). El principio básico de funcionamiento de este operador consiste en buscar
parejas de nodos cercanos, e intentar reemplazar la pareja de nodos por un único nodo tal que se mantengan
la cobertura y la conectividad de la red tras el cambio. De esta manera, el número de nodos se habrá
reducido (mejora en un objetivo), y el tráfico de la nueva red será menor –al haber un nodo menos–, por lo
que podrı́a haber menor consumo de energı́a (posible mejora en el segundo objetivo).

El funcionamiento es el siguiente: una vez localizada la pareja de nodos próximos, se identifica el área
que es cubierta exclusivamente por eso nodos, ası́ como los nodos de los que cuelgan, y aquellos que a
su vez cuelgan de ellos. Se establecen las áreas equivalentes para cobertura y conectividad, tales que un
único nodo colocado en esas areas asegura la cobertura del área (caso del area equivalente de cobertura), y
la conexión con todos los nodos hijos de la pareja, y con al menos uno de los padres (nótese que cualquiera
de estas reas podra no existir). Si ambas areas tienen zona común, se sustituye la pareja por un único nodo
que se coloca en esa zona común.

El operador se integra dentro de los algoritmos a continuación de la etapa de evaluación de las nuevas
soluciones (etapa que todas las técnicas tienen). Además, cada vez que el operador PACO sustituye una
pareja de nodos por un nodo lleva a cabo un reevaluación de la solución, de manera que únicamente da por
buenos los cambios que no empeoran ningún objetivo (criterio elitista). Además, estas evaluaciones son
contabilizadas dentro de la ejecución de los algoritmos, de manera que el esfuerzo computacional de una
ejecución no se modifica debido al uso de PACO, por lo que las comparaciones entre técnicas con PACO y
técnicas sin PACO son válidas.

B.5.3 Resultados experimentales
Para los experimentos con este problema se escogieron 4 algoritmos multiobjetivo del estado del arte: los
evolutivos NSGA-II y SPEA2, el basado en trayectoria PAES, y el celular MOCell. Cada uno se configuró
con todas las combinaciones posibles de operadores aleatorios y geográficos, y tanto usando PACO como
no usándolo. Se resolvieron instancias de 3 tamaños distintos (con máximos de 500, 1000, y 2000 nodos
respectivamente), y cada escenario fue resuelto 30 veces de manera independiente.

En la instancia de problema básica (hasta 500 nodos), la efectividad del operador de mejora PACO
quedó demostrada al obtener mejores valores de hipervolumen en el 84.85% del total de configuraciones
probadas. Sin embargo, cuando la comparación se restringe únicamente al 50% de configuraciones con
mejores resultados, el uso de PACO supone una mejora en el 98.48% de los escenarios. Por lo tanto,
nuestro operador tiene un comportamiento muy robusto, que se ve acrecentado cuando la configuración
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algorı́tmica de base es una configuración de buenos resultados. Respecto a los operadores, observamos una
clara ventaja de los de tipo geográfico frente a los aleatorios, y entre los algoritmos MOCell y NSGA-II
fueron los que obtuvieron los mejores resultados (algo mejores por parte de MOCell, pero mayor robustez
frente a distintas configuraciones en NSGA-II).

Al comprobar la efectividad del operador para instancias de problema de mayor complejidad (hasta 1000
o 2000 nodos), es decir la escalabilidad del mismo, observamos que a medida que la instancia de problema
aumenta en complejidad, los resultados de PACO tienden a mejorar. Esto se aprecia en el hecho de que,
mientras que las configuraciones sin PACO se ven seriamente degradadas al aumentar la complejidad del
problema, aquellas que incorporan PACO se mantienen mucho mejor. Es notable el caso particular de
PAES, que pasa a ser el mejor algoritmo en la instancia de mayor tamaño.

B.6 Descubrimiento de localización
El tercer problema abordado es el de descubrimiento de la localización (LD). En este problema, los nodos,
que ya han sido desplegados, deben averiguar las coordenadas de sus posiciones geográficas, de manera
que puedan dotar de sentido espacial a las mediciones que realizan. Para ello, se dispone de una serie de
mediciones de distancia entre pares de nodos, ası́ como de un pequeño subconjunto de nodos equipados con
algún sistema de autolocalización que conocen sus coordenadas y sirven como referencia para el resto de
nodos de la red, llamados balizas o beacon nodes.

Los métodos existentes para la medición de distancias involucran el uso de señales radio y/o señales
acústicas. Los principales que se recogen en la literatura son: el nivel de intensidad de señal recibida, RSSI
(para la señal de radio), el tiempo de llegada, ToA (usando señal acústica), y la diferencia de tiempos de
llegada, TDoA (combinando ambas señales).

B.6.1 Formulación
Nuestro problema tiene como objetivo encontrar las coordenadas de los nodos con el menor error posible,
esto es, queremos minimizar la función:

fitness(~x) =

∑|~x|
i=1 |xi − ni|
|~x| , (B.14)

donde xi es la posición determinada para el nodo i, cuya auténtica posición es ni.
Sin embargo, no es posible emplear esta función para guiar la búsqueda ya que requiere conocimiento

sobre las auténticas posiciones, lo cual no es posible en un escenario real. Por lo tanto, consideramos dos
funciones de guiado para nuestro acercamiento a este problema:

• Funciones de tipo norma de error. Estas funciones realizan una valoración del error cometido por
una solución determinada, en base a la diferencia entre las distancias medidas entre parejas de nodos,
y las distancias resultantes de las posiciones determinadas. Concretamente, la función L1 se define
como:

L′1 = |ω(δ1) · ε1|+ |ω(δ2) · ε2|+ |ω(δ3) · ε3|+ ...+ |ω(δL) · εL|, (B.15)

donde εi es la diferencia entre ambos valores de distancia para el enlace i. La función está sujeta
a minimización. Además asociamos un valor de peso ω a cada componente de error que pondera
la calidad esperada de la medición; estos pesos se obtienen a partir de información especı́fica del
problema, o, para ser más exactos, conocimiento especı́fico de la técnica de medición.

• Funciones de probabilidad. Estas funciones asignan a cada solución una probabilidad de que dicha
solución sea correcta, en base a la relación entre las distancias medidas y las distancias obtenidas
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como fruto de la asignación de coordenadas a los nodos. Para esto es necesario tener conocimiento del
problema suficiente para generar una función de densidad de probabilidad para estas dos magnitudes.

L = P (d1, δ1) ∗ P (d2, δ2) ∗ P (d3, δ3) ∗ ... ∗ P (dL, δL). (B.16)

B.6.2 Resolución en dos fases

Llevamos a cabo un estudio de la consistencia de los dos tipos de función de guı́a, es decir, de la correlación
entre la solución favorecida por la función de guı́a y la solución que tiene menor error de localización
para distintos pares de soluciones, en diferentes condiciones. Como resultado del estudio observamos que
cuando las dos soluciones tienen un elevado componente de error (para soluciones dichas “aleatorias”), la
función L1 alcanza una consistencia del 62.1% frente al 55.8% de la función de probabilidad, mientras
que para soluciones con baja componente de error esos valores son de 51.9% (cuasi aleatoriedad) frente a
71.7% respectivamente.

Como consecuencia, proponemos una resolución en dos fases. Durante la primera fase, en la cual la
solución tiene un elevado componente de error, se emplea como guı́a la función L1. Un vez concluida la
primera fase, y obtenida (en principio) una solución con baja componente de error, comienza la segunda
fase, que utiliza la función de probabilidad como guı́a. De esta manera se pretende emplear en cada etapa
de la búsqueda aquella función de guiado que ofrece las mejores prestaciones.

B.6.3 Resultados experimentales

Para poner a prueba nuestra propuesta de resolución en dos fases disponemos de 33 conjuntos de datos
reales obtenidos de otras tantas mediciones llevadas a cabo sobre WSNs desplegada en el fuerte Leonard
Wood (EE.UU.), cuyos números de nodos varı́an entre 79 y 93. Seleccionamos 10 conjuntos de datos para
que sean las instancias de problema, mientras que el resto sirve como base para establecer los modelos
de pesos de los enlaces, y de función de probabilidad. Para cada instancia generamos 10 configuraciones
distintas de balizas, y cada escenario se resuelve 100 veces de manera independiente para producir los
resultados. Como algoritmos seleccionamos SA, GA y PSO, y por defecto fijamos el número de balizas al
10%. Las ejecuciones se detienen al evaluar 5 millones de soluciones.

Las primeras pruebas se realizan empleando la función L1 como guı́a. Los primeros resultados demues-
tran la efectividad de los pesos combinados con la función L1, ya que producen una notable mejora en los
errores de localización en la mitad de las instancias, mientras que para la otra mitad los errores son similares
o ligeramente mejores. Al estudiar la influencia del número de balizas, observamos que si aumentamos la
proporción de balizas hasta el 20% el error de localización se reduce enormemente, y se vuelve muy es-
table; si se aumenta desde el 20 hasta el 30%, por contra, no se aprecian grandes variaciones. Por lo tanto,
deducimos que un buen valor de compromiso es 20% de balizas; no obstante, y con el ánimo de afrontar
un desafı́o mayor, enfrentamos nuestras técnicas a instancias de problema con sólo un 10% de balizas. Al
comparar los algoritmos se aprecia una clara ventaja de SA frente a los otros dos algoritmos, que obtienen
resultados similares.

Finalmente comparamos nuestra técnica propuesta, la de dos fases, frente a la resolución utilizando
únicamente L1, y utilizando únicamente la función de probabilidad. En nuestra configuración, la primera
fase acaba tras evaluar 4 millones de soluciones, y la segunda fase realiza un millón de evaluaciones más
(de manera que el número total de soluciones evaluadas se mantiene en 5 millones). Los resultados son
contundentes: en el 94% de los casos de test la resolución en dos fases supera a ambas resoluciones que
usan una única función de guiado. Por lo tanto, concluimos que nuestra propuesta resulta efectiva.
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B.7 Conclusiones
En esta tesis doctoral hemos abordado la resolución de dos de los principales problemas en redes de sen-
sores, el despliegue de nodos (WSNL) y el descubrimiento de localización (LD), y de un tercer problema,
el diseño de una red de radio (RND), directamente relacionado con otro de los problemas de redes de
sensores, el de planificación. La resolución de estos problemas se ha hecho empleando diversas técnicas
metaheurı́sticas, entre las cuales hay técnicas basadas en trayectoria, poblacionales, basadas en partı́culas,
y celulares. Hemos empleado formulaciones tanto monoobjetivo (RND y LD) como multiobjetivo (RND y
WSNL), y un algoritmo paralelo (RND).

El problema de diseño de la red de radio (RND) consiste en escoger las localizaciones para la colocación
de antenas –de entre un conjunto de localizaciones disponibles–, ası́ como los parámetros de configuración
de las mismas (si los hay), para obtener la mayor cobertura empleando el menor número de antenas. Cuando
se emplean antenas sin parámetros (codificación binaria), los mejores resultados se obtienen por CHC en
el planteamiento monoobjetivo y por MOCHC en el multiobjetivo. Cuando se usan antenas directivas (con
parámetro dirección), CHC y MOCHC siguen produciendo buenas soluciones. En un amplio estudio real-
izado sobre una instancia de gran dimensión basada en la ciudad de Málaga, CHC quedó dentro del primer
cuartil (entre un total de 14 técnicas). Proponemos una técnica automática para controlar las migraciones
en un GA distribuido, que obtiene resultados similares a los mejores resultados encontrados usando mi-
graciones periódicas y sólo ligeramente inferiores a los del GA secuencial equivalente, pero reduciendo el
tiempo completo de la prueba entre un 75% y un 89%.

El problema de despliegue de los nodos sensores (WSNL) consiste en determinar el número de nodos
y sus posiciones para obtener la mayor cobertura y tiempo de vida empleando el menor número de nodos
posible. Proponemos un operador de mejora local, PACO, que busca resolver pequeñas ineficiencias debidas
a parejas de nodos cercanos. Tras probarla con 4 algoritmos multiobjetivos y distintas configuraciones
algorı́tmicas, nuestra propuesta resulta efectiva en un 84.85% del total de configuraciones, y en un 98.48%
de las configuraciones con mejor rendimiento. Más aún, cuando el tamaño de la instancia de problema
aumenta, las ventajas de utilizar PACO se vuelven mayores.

El problema de descubrimiento de la localización (LD) consiste en averiguar las posiciones de los
nodos basándose en una serie de distancias medidas entre parejas de nodos, y un subconjunto de nodos
cuyas posiciones son conocidas. Tras estudiar las dos principales funciones de guiado existentes, la norma
del error y la probabilidad, se propone un sistema en dos fases para la resolución del problema. Empleando
un conjunto de 10 instancias creadas con datos –mediciones– reales, nuestra técnica propuesta proporciona
mejores resultados en el 94% de los escenarios de test.

La presente tesis doctoral ha tenido una notable repercusión mediante las publicaciones realizadas en
foros de divulgación, con especial atención a las revistas de impacto, para los diferentes temas abordados.
La validez de CHC en la resolución de RND se presenta en [3]1, la efectividad del uso de metaheurı́sticas
para resolver WSNL queda demostrada en [4], la efectividad de PACO en [1], mientras que los beneficios
del uso combinado de distintas técnicas de guiado en el problema LD se expone en [2]. Por último, cabe re-
saltar que el trabajo realizado en esta tesis no se reduce a la resolución de problemas puramente académicos,
y tiene una fuerte componente de aplicabilidad. Ası́, el trabajo realizado en RND puede emplearse para la
selección de estaciones base de una red de telefonı́a celular, los resultados de LD pueden emplearse para la
geolocalización de nodos o terminales móviles, y los resultados de WSNL pueden servir para el diseño de
estrategias de despliegue de nodos sensores. Futuras lı́neas avanzarán en el modelado realista del problema
y el desarrollo de técnicas distribuidas y ligeras especialmente adaptadas para su ejecución en la plataforma
que representan los nodos sensores.

1Las citas están referidas a las publicaciones propias, que pueden verse en el capı́tulo dedicado.
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Evolutionary Algorithm. In T. Bäck, editor, Proceedings of the 7th International Conference on
Genetic Algorithms, pages 181–186. Morgan Kaufmann, 1997.

[182] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks
of sensors. In MobiCom ’01: Proceedings of the 7th annual international conference on Mobile
computing and networking, pages 166–179, New York, NY, USA, 2001. ACM.

[183] L. Schwiebert, S. K. Gupta, and J. Weinmann. Research challenges in wireless networks of biomed-
ical sensors. In MobiCom ’01: Proceedings of the 7th annual international conference on Mobile
computing and networking, pages 151–165, New York, NY, USA, 2001. ACM.

[184] C. Sengul, M. J. Miller, and I. Gupta. Adaptive probability-based broadcast forwarding in energy-
saving sensor networks. ACM Trans. Sen. Netw., 4(2):1–32, 2008.

[185] D. Shamsi, F. Koushanfar, and M. Potkonjak. Challenging benchmark for location discovery in
ad hoc networks: foundations and applications. In MobiHoc ’08: Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and computing, pages 361–370, New York,
NY, USA, 2008. ACM.

[186] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from connectivity in sensor networks.
IEEE Transactions on Parallel and Distributed Systems, 15:961–974, 2004.

[187] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, 2003.

[188] Y. Shi and Y. T. Hou. Optimal base station placement in wireless sensor networks. ACM Trans. Sen.
Netw., 5(4):1–24, 2009.

[189] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh. Simulating the power
consumption of large-scale sensor network applications. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 188–200, New York, NY,
USA, 2004. ACM.

[190] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri. Target tracking with binary proximity
sensors. ACM Trans. Sen. Netw., 5(4):1–33, 2009.
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