Accuracy and Efficiency in Simulating VANETs

Enrique Alba, Sebastián Luna, and <u>Jamal Toutouh</u>

Universidad de Málaga

Outline

- 1 Introduction and Motivation
- VANETs Simulation
- The CARLINK-UMA Scenario
- 4 Results
- 6 Conclusions and Future Work

Introduction and Motivation

- The performance evaluation of the different VANET protocols and applications is done by using both outdoor experiments and simulations
- The evaluation through outdoors experiments has several drawbacks:
 - neither easy nor cheap
 - difficult to analyze in an inherently distributed and complex environment
 - reproduction of all kinds of situations where they must act is not possible
- The **simulation** avoid the previous drawbacks. Nevertheless it presents the following one:
 - the fidelity of the simulated results versus the real ones
- We present here a comparison between simulations and real tests
- The goal is to better know the actual VANET used in CARLINK and the data/delay rates affecting the final applications

VANET Simulation

Three kinds of approaches in VANET simulation have been initially considered:

Using an specially-designed VANET simulator Alternatives: Trans, MOVE, CARISMA, and STRAW

VanetMobiSim/Ns-2

- Integrating a vehicular mobility model generator into an existing network (MANETs) simulator
 - •Mobility model generator: SUDO and VanetMobiSim
 - Network simulators: Ns-2, GlomoSim, QualNet, and OpNet
- MANET applications programming framework which allows the developer to test the applications via simulations. Alternative: JANF

JANE

VANET Simulation. VanetMobiSim/Ns-2

VanetMobiSim/Ns-2 [mobility model generator + network simulator]

- VanetMobiSim:
 - Freely available
 - Different kind of outputs
 - Generates realistic models
 Macro-mobility features
 Micro-mobility features

■ Ns-2:

- Freely available
- Easily adding features
- Widely used
- Numerical output

TARGET: making precise simulations of the real systems

VANET Simulation. JANE

- JANE: Java Ad hoc Network Environment
 - Open source Java-based middleware platform which is intended to assist adhoc network researchers in application and protocol design
 - Three different execution modes:
 - 1. Simulation Mode: the complete environment is simulated
 - 2. Hybrid Mode: the devices and the ad-hoc network are simulated, but real users can interact with the simulation From Simulation to Real World
 - 3. Platform Mode: the whole setting is real
 - Drawback: It is not specialized for VANETs
 not provide realistic mobility models for the simulation of vehicular networks
 - TARGET: programming high level applications

The CARLINK-UMA scenario

• The scenarios are defined by their specific mobility models:

- File transfers between two cars by using ad-hoc operation mode of the IEEE 802.11b MAC Layer Standard
 - PROXIM ORINOCO PCMCIA transceiver
 - Range extender antenna gain: 7 dBi

The CARLINK-UMA scenario

- Each experiment is composed of different tests
- The tests consist in repeatedly transferring a file in specific scenarios:
 - File type 1: 1 MB (traffic information documents)
 - File type 2: 10 MB (multimedia files)
- The file transfers are carrying out by using the Vehicular Data Transfer Protocol (VDTP):
 - Chunk size: 25Kbytes
 - Retransmission time: 8 seconds
 - Max number of attempts per packet: 8

It denotes the file type:

File type 1 = 1 MB

File type 2 = 10 MB

- The test are named as follows:
 - Test A1
 - Test A2
 - Test B1
 - Test B2

It describes the scenario:

Scenario A

Scenario B

• Test A1 (same sense, 1 MB files)

Average values:

Accurate results

	Real Experiments	JANE	VanetMobiSim/Ns-2
Transmission Time	1.6 secs	1.8 secs	1.6 secs
Data Rate	626.9 KB/s	563.8 KB/s	609.7 KB/s

● **Test A2** (opposite sense, 1 MB files)

Average values:

Difference 0.6 secs

	Real Exp	Real Experiments		JANE		VanetMobiSim/Ns-2		
Transmission Time	17.3	17.3 secs		esecs	16.7 sec		cs	
Data Rate	585.2	585.1 KB/s		4 KB/s		611.1 KB/s		
Difference 0.6 secs								

Average values:

	Real Experiments	JANE	VanetMobiSim/Ns-2
Transmission Time	2.7 secs	1.8 secs	2.6 secs
Data Rate	371.4 KB/s	563.7 KB/s	391.4 KB/s

• Test B2 (opposite sense, 10 MB files)

JANE: No transfers completed

Average values:

Accurate results

	Real Experiments	JANE	VanetMobiSim/Ns-2
Transmission Time	20.1 secs	N/A	19.9 secs
Data Rate	502.1 KB/s	N/A	513.3 KB/s

Global average results

Mean data rate differences (absolute value in KB/s) between real and simulation results

	Test A1	Test A2	Test B1	Test B2
JANE	63.1 KB/s	20.6 KB/s	192.3 KB/s	N/A
VanetMobiSim/Ns-2	17.2 KB/s	25.8 KB/s	20.0 KB/s	11.3 KB/s

Conclusions

- The real world is quite difficult to simulate in a trustworthy manner. Our simulations can be changed by including:
 - obstacles
 - signal reflections
 - etc.
- At the CARLINK-UMA Scenario an important quantity of data can be transferred with a transmission data rate always higher than 300 KB/s
- VanetMobiSim/Ns-2 is the most realistic simulator, if the goal is to model the VANET in a computer
- JANE is useful for programming/testing high-level applications
- As a future work:
 - perform simulations of other scenarios in order to predict the performance of the communications at urban and highway environments (almost finished)
 - combine the simulator (VMS/Ns-2) with optimization techniques in order to offer an optimal configuration of VDTP (in progress)

Metz, France September 8-10th, 2008

